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CLASSES OF CONVEX FUNCTIONS ASSOCIATED

WITH BERNSTEIN OPERATORS OF SECOND KIND

IOAN RASA

(communicated by J. Pečarić)

Abstract. The ordinary convex functions satisfy some well-known inequalities involving the clas-
sical Bernstein operators. We describe some classes of generalized convex functions satisfying
similar inequalities with respect to Bernstein operators of second kind.

1. Introduction

Consider the classical Bernstein operators (Bn) on C[0, 1] . For f ∈ C[0, 1] the
following statements are equivalent (see, e.g., [1], Cor. 6. 3. 8):

(a) f is convex;
(b) Bnf � Bn+1f , n � 1 ;
(c) Bnf � f , n � 1 .
In [8] Paolo Soardi introduced the so-called Bernstein operators of second kind,

βn , which have the same relation with Chebyshev polynomials of second kind as the
classical Bernstein operators have with Chebyshev polynomials of first kind. He raised
the problem to find the properties of f which are inherited by βnf . Some answers and
a Voronovskaja-type formula can be found in [7].

In this paper we study some classes of generalized convex functions f related to
the inequalities

(b′) βnf � βn+1f , n � 1 ;
(c′) βnf � f , n � 1 .

2. Bernstein operators of second kind

Following [8], we present a brief description of the Bernstein operators of second
kind.

Details about hypergroups and polynomial hypergroups can be found in [4], [5],
[6], [8] and the references given there.
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Denote by δt the unit mass at t ∈ R . Let Z be the group of the integers with
convolution defined by δm ∗ δn = δm+n, m, n ∈ Z . For a given x ∈ [−1, 1] let Yn be
the random walk on Z with law

μ =
1 − x

2
δ−1 +

1 + x
2

δ1.

Then the distribution of Yn is described by

μn =
(1 − x

2
δ−1 +

1 + x
2

δ1

)n
=

n∑
k=0

(
n
k

)(1 + x
2

)n−k(1 − x
2

)k
δn−2k.

Let (Bn)n�1 be the classical (first kind) Bernstein operators on C[−1, 1] . Then for
f ∈ C[−1, 1] we have

Bnf (x) = Ef
(Yn

n

)
=

n∑
k=0

(
n
k

)(1 + x
2

)n−k(1 − x
2

)k
f
(n − 2k

n

)
.

Let Tn(x) = cos(n arc cos x) denote the Chebyshev polynomials of first kind. Define
the convolution on N = {0, 1, 2, . . .} by

δn ∗ δm =
Tm+n(1/

√
1 − x2)δm+n + T|m−n|(1/

√
1 − x2)δ|m−n|

2Tn(1/
√

1 − x2)Tm(1/
√

1 − x2)
.

This hypergroup is denoted by N
1 . Let Zn be the random walk on N

1 with law
δ1 .

If f ∈ C[−1, 1] is even, we have (see [8])

Bnf (x) = Ef
(Zn

n

)
.

Let now Pn(x) = 1√
1−x2

sin((n + 1) arc cos x) denote the Chebyshev polynomials

of second kind. On N the convolution will be defined by

δn ∗ δm =
m+n∑

k=|m−n|

Pk(1/
√

1 − x2)
Pm(1/

√
1 − x2)Pn(1/

√
1 − x2)

δk

where the summation is taken over all k such that k − |m − n| is even.
This hypergroup is denoted by N

2 . Let Vn be the random walk on N
2 with law

δ1 .
In [8] the Bernstein operators of second kind βn : C[0, 1] −→ C[0, 1] are defined

by

βnf (x) = Ef
(Vn

n

)
, f ∈ C[0, 1], x ∈ [0, 1], n � 1.

Let n � 1, m = [n/2], 0 � k � m, 0 � x � 1. Consider the polynomials

wn,k(x) =
n+1−2m+2k
(n+1)2n+1x

(
n+1
m−k

)
((1−x)m−k(1+x)n+1−m+k−(1−x)n+1−m+k(1+x)m−k).
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THEOREM 2.1. ([8]) For f ∈ C[0, 1], x ∈ [0, 1] and n � 1 ,

βnf (x) =
m∑

k=0

f
(n − 2m + 2k

n

)
wn,k(x).

3. Classes of generalized convex functions

Let K1 := {f ∈ C[0, 1] : f is increasing and convex} . Let [x1, . . . , xn; f ] be the
divided difference of the function f at the points x1 < · · · < xn .

We shall denote by K2 the set of all functions f ∈ C[0, 1] such that

(i) for all m � 1 and k ∈ {0, 1, . . . , m − 1}, f
(

1
2m−1

)
� f (0) and

2m − k
2m − k + 1

[2m − 2k − 1
2m + 1

,
m − k

m
; f
]

� 2m − 2k − 1
2m − 2k + 1

[m − k − 1
m

,
2m − 2k − 1

2m + 1
; f
]
;

(ii) for all m � 2 and k ∈ {0, 1, . . . , m − 2} ,

m − k
m − k + 1

[m − k − 1
m

,
2m − 2k − 1

2m − 1
; f
]

� 2m − k
2m − k − 1

[2m − 2k − 3
2m − 1

,
m − k − 1

m
; f
]
.

PROPOSITION 3.1. K1 is contained in K2 .

Proof. Let f ∈ C[0, 1] be increasing and convex, m � 1, k ∈ {0, 1, . . . , m− 1} .
Then

2m − k
2m− k + 1

>
2m − 2k − 1
2m − 2k + 1

> 0

and [2m − 2k − 1
2m + 1

,
m − k

m
; f
]

�
[m − k − 1

m
,
2m − 2k − 1

2m + 1
; f
]

� 0.

Now (i) follows immediately; (ii) can be proved similarly.

PROPOSITION 3.2. The function f ∈ C[0, 1] is in K2 if and only if

(iii) for all m � 1 and k ∈ {0, 1, . . . , m − 1} , f
(

1
2m−1

)
� f (0) and

2m − 2k − 1
2m + 1

[m − k − 1
m

,
2m − 2k − 1

2m + 1
,
m − k

m
; f
]

+
m

2m − k + 1

[2m − 2k − 1
2m + 1

,
m − k

m
; f
]

� 0;

(iv) for all m � 2 and k ∈ {0, 1, . . . , m − 2} ,

2m − 2k − 2
2m − 1

[2m− 2k − 3
2m − 1

,
m − k − 1

m
,
2m− 2k − 1

2m − 1
; f
]

+
m

2m − k

[m − k − 1
m

,
2m − 2k − 1

2m − 1
; f
]

� 0.



602 IOAN RASA

Proof. By using the recurrence relation for divided differences

[x, y, z; f ] =
[y, z; f ] − [x, y; f ]

z − x

it is not difficult to verify that (iii) is equivalent to (i) , and (iv) to (ii) ; this proves
our assertion.

Let us remark that Proposition 3.2 can be used in order to give another proof of
Proposition 3.1.

EXAMPLE 1 . The function f : [0, 1] −→ R, f (x) = −x2 + 4x is in K2 , but not in
K1 . So the inclusion described in Proposition 3.1 is strict.

In what follows, we shall consider the function ω : (0, 1] −→ R,

ω(x) = x − 1
x

+ 2 log x, x ∈ (0, 1].

A function f defined on (0, 1] is called (1,ω) -convex (see [2]) if∣∣∣∣∣∣
f (x) f (y) f (z)
1 1 1

ω(x) ω(y) ω(z)

∣∣∣∣∣∣ � 0

whenever 0 < x < y < z � 1 .
Let K3 := {f ∈ C2[0, 1] : x(1 + x)f ′′(x) + 2f ′(x) � 0, x ∈ [0, 1]}.
THEOREM 3.1.

1. K2 ∩ C2[0, 1] ⊂ K3 .
2. For f ∈ C2[0, 1] the following statements are equivalent:

(a) f ∈ K3 ;
(b) f is (1,ω) - convex on (0, 1] ;
(c) f satisfies the inequality

[y, z; f ]
[y, z;ω ]

� [x, y; f ]
[x, y;ω ]

for all 0 < x < y < z � 1.

Proof.
1. Let f ∈ K2 ∩ C2[0, 1] and x ∈ [0, 1] .

Choose km ∈ {0, 1, . . . , m − 1} such that

lim
m→∞

km

m
= 1 − x.

According to the mean-value property of divided differences, there exist

tm ∈
[
m − km − 1

m
,
m − km

m

]
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and

sm ∈
[
2m − 2km − 1

2m + 1
,
m − km

m

]
such that [

m − km − 1
m

,
2m − 2km − 1

2m + 1
,
m − km

m
; f

]
=

1
2
f ′′(tm)

and [
2m − 2km − 1

2m + 1
,
m − km

m
; f

]
= f ′(sm).

Then lim
m→∞ tm = lim

m→∞ sm = x. Using Proposition 3.2 we get

x
f ′′(x)

2
+

1
1 + x

f ′(x) =

lim
m→∞

(2m − 2km − 1
2m + 1

[m − km − 1
m

,
2m − 2km − 1

2m + 1
,
m − km

m
; f
]
+

m
2m − km + 1

[2m − 2km − 1
2m + 1

,
m − km

m
; f
])

� 0.

Thus x(1 + x)f ′′(x) + 2f ′(x) � 0, x ∈ [0, 1] , which means that f ∈ K3 .
2. Let f ∈ C2[0, 1] . By a result of Bonsall [3] (see also [2]), f is (1,ω) -convex on

(0, 1] if and only if ∣∣∣∣∣∣
f (x) f ′(x) f ′′(x)
1 0 0

ω(x) ω ′(x) ω ′′(x)

∣∣∣∣∣∣ � 0

for all x ∈ (0, 1] . Thus (b) is equivalent to x(1+x)f ′′(x)+2f ′(x) � 0, x ∈ (0, 1] ,
which is equivalent to (a) .
Finally, (b) is equivalent to (c) by virtue of Theorem 4 [2].

EXAMPLE 2 . We construct a function f ∈ C2[0, 1] which is in K3 but not in K2 .
Let ε ∈ (0, 1

3 ) . Define

f (x) =

⎧⎨
⎩

log x, x ∈ [ε, 1],

− 1
2ε2

x2 +
2
ε
x − 3

2
+ log ε, x ∈ [0, ε].

Then f ∈ C2[0, 1]∩K3 . On the other hand, the conditions (i) and (ii) are not satisfied
for m = 2, k = 0 , which means that f is not in K2 .

The next results show how the functions in K2 and K3 are related to the Bernstein
operators of second kind.

THEOREM 3.2.
1. If f ∈ K2 , then

βnf � βn+1f � f , n � 1.

2. If f ∈ C2[0, 1] and βnf � f , n � 1, then f ∈ K3 .
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Proof.
1. Let f ∈ K2 . According to equations (24) and (25) in [7] we have

β2mf (x) − β2m+1f (x) =

1−x2

xm(2m+1)22m+1

m−1∑
k=0

(
2m−1

k

)(
(1+x)2m−k(1−x)k − (1+x)k(1−x)2m−k

)×
×
(

2m − 2k − 1
2m− k

[
m − k − 1

m
,
2m − 2k − 1

2m + 1
,
m − k

m
; f

]
+

+
m(2m + 1)

(2m− k)(2m − k + 1)

[
2m − 2k − 1

2m + 1
,
m − k

m
; f

])

and

β2m−1f (x) − β2mf (x) =

2

(
1 − x2

4

)m(
2m − 2
m − 1

)
2m − 1

m(m + 1)

(
f

(
1

2m − 1

)
− f (0)

)
+

1−x2

xm(2m−1)4m

m−2∑
k=0

(
2m−2

k

)(
(1+x)2m−1−k(1−x)k−(1+x)k(1−x)2m−1−k

)×
×
(

2m − 2k − 2
2m − k − 1

[
2m − 2k − 3

2m − 1
,
m − k − 1

m
,
2m − 2k − 1

2m − 1
; f

]
+

+
m(2m − 1)

(2m− k)(2m − k − 1)

[
m − k − 1

m
,
2m − 2k − 1

2m − 1
; f

])
.

Now, by Proposition 3.2,
βnf � βn+1f , n � 1.

This implies
βnf � βn+mf , n � 1, m � 1.

We have also (see [8], Theorem 2)

lim
m→∞ βn+mf = f

uniformly on [0, 1] , which entails βnf � f .
2. Let f ∈ C2[0, 1] and βnf � f , n � 1 . By Theorem 4.1 [7] we have for x ∈ (0, 1]

lim
n→∞ n(βnf (x) − f (x)) =

1 − x2

2
f ′′(x) +

1 − x
x

f ′(x).

This implies x(1 + x)f ′′(x) + 2f ′(x) � 0 , x ∈ [0, 1] , which concludes the proof.

EXAMPLE 3 . Let f be the function from Example 2. Then f ∈ K3 and for
1/

√
log 3 < x < 1 we have

β3f (x) =
1 − x2

2
log

1
3

< log x = f (x).
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So the converse of the second assertion in Theorem 3.2 is not true.

Acknowledgement. The author would like to thank the referee for helpful sugges-
tions.
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