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(communicated by J. Pečarić)

Abstract. We study the following inequality

Ga,b(x, y) � Sc,d(x, y) (x, y ∈ R+),

where Ga,b(x, y) stands for the so-called Gini mean of the positive variables x and y , and
Sc,d(x, y) is the Stolarsky mean of them. We give some necessary conditions for the parameters
a, b, c, d , then, distinguishing the different positions of the Gini-parameters, we present some
sufficient conditions for the inequality above to hold for variables indicated. In some special
cases it turns out that these conditions coincide.

1. Introduction

There is an extended literature concerning the so-called Gini and Stolarsky means.
These two variable homogenousmeans play important roles both in the theory of means
and in the application of inequalities in various branches of mathematics.

We recall now the definition of these means. If x, y are positive real numbers, then
their Gini mean is defined by:

Ga,b(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
xa + ya

xb + yb

) 1
a−b

if a �= b,

exp

(
xa log x + ya log y

xa + ya

)
if a = b,

Mathematics subject classification (2000): 26D15, 26D07.
Key words and phrases: two variable homogeneous means, Gini means, Stolarsky means.
This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grants T-43088, T-43080,

K-62316.

c© � � , Zagreb
Paper MIA-09-55

607
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while their Stolarsky mean is the following:

Sa,b(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
b(xa − ya)
a(xb − yb)

) 1
a−b

if (a − b)ab �= 0,

exp

(
−1

a
+

xa log x − ya log y
xa − ya

)
if a = b �= 0,

(
xa − ya

a(log x − log y)

) 1
a

if a �= 0, b = 0,

√
xy if a = b = 0.

By taking particular choices of the parameters a, b , one can see that the power
means are included in both classes of means. More surprisingly, as it has recently
been proved by Alzer and Ruscheweyh [1], the class of power means forms exactly the
intersection of the classes of Gini and Stolarsky means.

The comparison problem for the means of the same kind, but with different pa-
rameters has played an important role in the research concerning Gini and Stolarsky
means. This problem, for the Stolarsky means, was solved by Leach and Sholander
[6] (cf. also [8]) and for the Gini means by Páles [9]. The case when the variables x, y
run in a subinterval of R+ was treated for both classes of means by Páles [10]. In
three recent papers [2], [3], [4] the authors have restated and completed these theorems
(covering also the cases of equal parameters) offering new (but equivalent) necessary
and sufficient conditions.

These results, however, describe only the cases where at the two sides of the com-
parison inequality there stand means of the same kind. The aim of the present paper is to
state necessary/sufficient conditions for the comparison of Gini and Stolarsky means.
The first results in this direction are due to Neuman and Páles [7] who investigated the
comparison of Gini and Stolarsky means of equal parameters and proved that, for given
real numbers a, b , the comparison inequality

Ga,b(x, y)
�
(�) Sa,b(x, y) (x, y ∈ R+)

holds if and only if a + b
�
(�) 0 . Another problem, the so-called strong comparison

problem (which is equivalent to the monotonicity property of the ratios of the means in
question), has recently been investigated by Hästö [5].

In the next section we recall the main known comparison theorems for the Gini
and Stolarsky means. Then some necessary conditions are obtained. In Section 4
we formulate two propositions that offer necessary and sufficient conditions for the
comparison problem in a particular setting. These results will play an important role
in the last section when stating the sufficient conditions for the comparison of Gini and
Stolarsky means.

In the sequel, we restrict our attention to the inequality Ga,b � Sc,d only because
the analogous inequality Sa,b � Gc,d is equivalent to G−c,−d � S−a,−b , therefore the
results for the second type of the comparison inequality can easily be derived from what
we will obtain.
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2. Preliminary results. Comparison inequalities

The next result offers a necessary and sufficient condition for the comparison of
Gini means (cf. [9], [2], [4]).

THEOREM 1. Let a, b, c, d be positive numbers. Then the inequality

Ga,b(x, y) � Gc,d(x, y) (x, y ∈ R+)

holds if and only if the conditions

a + b � c + d (1)

and
M(a, b) � M(c, d), μ(a, b) � μ(c, d) (2)

are valid, where

M(u, v) =

⎧⎨
⎩

min{u, v}, if u, v � 0 ,
0, if uv < 0 ,
max{u, v}, if u, v � 0 .

and μ(u, v) :=

⎧⎨
⎩

|u| − |v|
u − v

, if u �= v ,

sgn(u), if u = v .

The comparison problem for Stolarskymeans is answered by the following theorem
([6], [8], [3]).

THEOREM 2. Let a, b, c, d be positive numbers. Then the inequality

Sa,b(x, y) � Sc,d(x, y) (x, y ∈ R+)

holds if and only if the conditions

a + b � c + d (3)

and
L(a, b) � L(c, d), μ(a, b) � μ(c, d) (4)

are valid, where

L(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

u − v
log(u/v)

, if 0 < uv and u �= v ,

u, if 0 < uv and u = v ,

0, otherwise.

3. Necessary conditions

In this section we derive conditions that are necessary for the mixed comparison
inequality of Gini and Stolarsky means.

THEOREM 3. Suppose that the inequality

Ga,b(x, y) � Sc,d(x, y) (5)

holds for any positive x, y . Then
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(i)
3(a + b) � c + d, (6)

(ii)
min{a, b} � 0. (7)

If min{a, b} = 0 < max{a, b} then

max{a, b} � log 2 · L(c, d). (8)

(iii) Finally,
μ(a, b) � μ(c, d). (9)

Proof. Applying the homogeneity of the means, and denoting the ratio x/y by t ,
(5) is equivalent to the following:

ga,b(t) � sc,d(t) (t ∈ R+), (10)

where ga,b(t) stands for Ga,b(t, 1) and sc,d(t) for Sc,d(t, 1) . It follows from this
inequality that

ga,b(t) − t+1
2

(t − 1)2
�

sc,d(t) − t+1
2

(t − 1)2
(t ∈ R+ \ {1}).

Using l’Hospital’s rule twice for the left hand side, four times for the right hand side,
and performing the limit t → 1 , we get that

a + b − 1
8

� c + d − 3
24

,

i.e., (6) holds.
Starting from (10) again, we obtain that

lim
t→0

ga,b(t) � lim
t→0

sc,d(t). (11)

On the other hand, we have that

lim
t→0

ga,b(t) =

⎧⎨
⎩

0, if min{a, b} < 0 or (a, b) = (0, 0),

2
− 1

max{a,b} , if min{a, b} = 0 and max{a, b} > 0,
1, if min{a, b} > 0,

and

lim
t→0

sc,d(t) =

{
0, if min{c, d} � 0,(

d
c

) 1
c−d , if min{c, d} > 0.

In this way, we have obtained that limt→0 sc,d(t) < 1 , therefore min{a, b} > 0 is not
possible, that is, (7) must be valid.

If min{a, b} = 0 < max{a, b} , then min{c, d} must be positive and

2
− 1

max{a,b} �
(d

c

) 1
c−d

,
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that is, max{a, b} � log 2 · L(c, d) , which means that (8) holds true.
When proving (9), the only non-trivial case is when max{a, b} > 0 > min{a, b}

and max{c, d} > 0 > min{c, d} . We may assume that b < 0 < a , d < 0 < c . Then,
it follows from (10) that

lim
t→∞

ga,b(t)
sc,d(t)

� 1. (12)

Denoting this limit with h ,

log(h) = lim
t→∞

[ 1
a − b

(
log(ta + 1) − log(tb + 1)

)− 1
c − d

(
log

tc − 1
c

+ log
d

td − 1

)]
= lim

t→∞

[ 1
a − b

log(ta + 1) − 1
c − d

log
tc − 1

c
− log(−d)

c − d

]
= lim

t→∞

[ 1
a − b

log(ta + 1) − 1
c − d

log(tc − 1) +
1

c − d
log
(
− c

d

) ]

= lim
t→∞ log

(ta + 1)
1

a−b

(tc − 1)
1

c−d
+ log

(
− c

d

) 1
c−d

,

that is,

h =
(
− c

d

) 1
c−d

lim
t→∞

(ta+1)
1

a−b

(tc−1)
1

c−d
>
(
− c

d

) 1
c−d

lim
t→∞

(ta)
1

a−b

(tc)
1

c−d
=
(
− c

d

) 1
c−d

lim
t→∞ t

a
a−b− c

c−d .

If, in the last expression the exponent of t were positive, then h would be plus infinity,
which is in contradiction with the condition (12). Therefore,

a
a − b

− c
c − d

� 0,

which is equivalent to (9).

4. Particular comparison inequalities

In this section we examine two particular cases of the comparison of Gini and
Stolarsky means. These statements will turn out to be useful tools in formulating
sufficient conditions for the general comparison problem. In these cases the parameters
a, b and c, d of the Gini and Stolarsky means are chosen so that the necessary condition
(i) of Theorem 3 hold with equality.

PROPOSITION 1. The inequality

Ga,b(x, y) � S3a,3b(x, y) (13)

holds for all positive x, y if and only if a + b � 0 , while the reversed inequality holds
if and only if a + b � 0 .
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Proof. We deal only with the characterization of the inequality (13), the investi-
gation of the reversed inequality is completely analogous.

Suppose first that a �= b , for example, a > b and ab �= 0 . Using the symmetry
and homogeneity of the means, setting t = log(

√
x/y) , (13) can be rewritten in the

equivalent form

(
cosh(at)
cosh(bt)

) 1
a−b

�
(

sinh(3at)
3a

sinh(3bt)
3b

) 1
3a−3b

(t ∈ R+),

which is also equivalent to

sinh(3bt)
bt cosh3(bt)

� sinh(3at)
at cosh3(at)

(t ∈ R+). (14)

To investigate this inequality, introduce the function

f : R \ {0} → R, x �→ sinh 3x
x(cosh x)3

.

It can immediately be seen that f is even. We also claim that it is decreasing on R+ .
We can easily obtain that

f ′(x) =
6x cosh 2x − sinh 4x − sinh 2x

2x2(cosh x)4
(x ∈ R \ {0}).

Thus, it suffices to show that 6x cosh 2x− sinh 4x− sinh 2x := h(x) is negative for any
positive x . (Therefore, f ′ is negative on R+ .)

Expanding the function h into McLaurin series, we get that

h(x) =
∞∑
i=0

(
6 · 22i

(2i)!
− 42i+1

(2i + 1)!
− 22i+1

(2i + 1)!

)
·x2i+1 =

∞∑
i=0

(3i+1−22i)
22i+2

(2i + 1)!
·x2i+1.

Here the coefficient 3i+ 1− 22i vanishes for i = 0 and i = 1 and is negative if i � 2 .
Therefore h(x) and also f ′(x) is negative for all positive x . Thus, the symmetric f is
decreasing on the positive half line and increasing on negative reals. It readily follows
from this that (14), i.e., f (bt) � f (at) is valid if and only if |a| � |b| . One can easily
observe that this inequality together with b < a holds if and only if a + b � 0 .

In the cases a = b or ab = 0 , the necessity and sufficiency of the condition
a + b � 0 can similarly be verified.

REMARK 1. Proposition 1 implies the result of Neuman and Páles [7], since (by
Theorem 2) S3a,3b(x, y) � Sa,b(x, y) holds for all positive x, y if and only if a + b � 0 .

PROPOSITION 2. The inequality

Ga,b(x, y) � S2a+b,a+2b(x, y) (15)

holds for all positive x, y if and only if ab(a + b) � 0 .
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Proof. The case a = b is covered by Proposition 1. Moreover, if ab = 0 , then
the inequality turns to an identity, since Ga,0(x, y) = S2a,a(x, y) for all positive x, y .

In the case 2a + b = 0 , ab �= 0 , with the notation t = log(
√

x/y) , (15) is
equivalent to the inequality(

ch(at)
ch(−2at)

) 1
3a

�
(

sh(−3at)
−3at

) 1
−3a

(t ∈ R+). (16)

Thus, we have to show that (16) holds if and only if a < 0 .
For, we will prove that the inequality

ch(x)
ch(−2x)

�
(

sh(−3x)
−3x

)−1

(17)

holds for all x �= 0 . The functions on the two sides of this inequality are even, so we
may assume that x > 0 . Then, inequality (17) can be rewritten into the form

sh(4x) + sh(2x) − 6x ch(2x) � 0.

As we have seen it in the proof of Proposition 1, the left hand side of this inequality
is nonnegative. Thus (17) follows for all x �= 0 . In view of (17), the inequality (16)
holds for all t > 0 if and only if a < 0 , which completes the proof in this case.

The case a + 2b = 0 , ab �= 0 can be treated similarly.
We may assume now that a �= b , e.g., a > b , ab �= 0 , and (a+2b)(2a+b) �= 0 .

Now (15) can be rewritten in the equivalent form

ch(at)
ch(bt)

�
sh(2a+b)t

2a+b
sh(a+2b)t

a+2b

(t ∈ R+), (18)

or, rearranging this and dividing both sides by the positive t ,

ch(at) sh(a + 2b)t
(a + 2b)t

� ch(bt) sh(2a + b)t
(2a + b)t

(t ∈ R+).

Finally, applying the product-to-sum formulas and denoting 2t by s , our statement is
equivalent to the following:

sh(a + b)s + sh(bs)
(a + 2b)s

� sh(a + b)s + sh(as)
(2a + b)s

(s ∈ R+). (19)

Introduce the function f (x) = 1+ x
3! + x2

5! + x3

7! + . . . on R+ . Clearly, f is strictly
convex on R+ and sh x = x · f (x2) holds for any real x . Using this notation, (19)
transforms to

(a + b)f
(
(a + b)2s2

)
+ bf (b2s2)

a + 2b
− (a + b)f

(
(a + b)2s2

)
+ af (a2s2)

2a + b
� 0 (s ∈ R+).

(20)
The left hand side of (20) is, however, the product of ab(a − b)(a + b) · s4 and the
2nd-order divided difference [(a + b)2s2, a2s2, b2s2; f ] . The function f being strictly
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convex on R+ , we have that this divided difference is positive if (a + b)2s2 , a2s2 , and
b2s2 are pairwise distinct, i.e., if ab(a+b)(a−b)(a+2b)(2a+b) �= 0 . Consequently,
(20) holds if and only if ab(a − b)(a + b) is nonpositive. With the assumption a > b
this yields that (20), that is, (18) is valid if and only if ab(a + b) � 0 .

5. Sufficient conditions

In this section, according to the position of the pair (a, b) ∈ R
2 , we give suf-

ficient conditions for the Gini-Stolarsky comparison inequality. These conditions are
sometimes (unfortunately not always) also necessary.

THEOREM 4. Let a, b be positive numbers. Then there are no parameters c, d so
that the inequality

Ga,b(x, y) � Sc,d(x, y)
be valid for all positive numbers x, y .

Proof. This is a direct consequence of (7) in Theorem 3.

THEOREM 5. Let a, b be real numbers so that min{a, b} = 0 < max{a, b} .
Then

Ga,b(x, y) � Sc,d(x, y)
is valid for all positive numbers x, y if and only if
(a) 3a � c + d ,
(b) a � log 2 · L(c, d) .

Proof. The necessity of the condition follows form Theorem3. For the sufficiency,
assume that 0 = b < a . Then Ga,b(x, y) = Ga,0(x, y) = Sa,2a(x, y) , and we can
apply Theorem 2 to the inequality Sa,2a(x, y) � Sc,d(x, y) . Now (a) is equivalent to
a+2a � c+d and (b) yields L(a, 2a) � L(c, d) . Thus c, d must be positive, whence
μ(a, 0) � μ(c, d) also follows. Therefore, in view of Theorem 2, (a) and (b) yield
that Ga,0(x, y) = Sa,2a(x, y) � Sc,d(x, y) holds for all positive x, y .

THEOREM 6. Let a, b be real numbers so that ab < 0 and a + b � 0 . If
(a) 3(a + b) � c + d ,
(b) L{a + 2b, 2a + b} � L(c, d) ,
(c) μ(2a + b, a + 2b) � μ(c, d) , then

Ga,b(x, y) � Sc,d(x, y)

is valid for all positive numbers x, y .

Proof. By Proposition 2, the condition ab(a+ b) � 0 yields that, for any positive
x, y ,

Ga,b(x, y) � Sa+2b,2a+b(x, y).
Moreover, the conditions guarantee that Theorem 2 can be applied to obtain

Sa+2b,2a+b(x, y) � Sc,d(x, y).
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Combining these two inequalities, the desired inequality follows.

THEOREM 7. Let a, b be real numbers so that ab < 0 and a + b � 0 . Then

Ga,b(x, y) � Sc,d(x, y)

is valid for all positive numbers x, y if and only if
(a) 3(a + b) � c + d ,
(b) μ(a, b) � μ(c, d) .

Proof. The necessity of conditions (a) and (b) is the consequence of Theorem 3.
By Proposition 2, the condition a + b � 0 yields that, for all positive x, y ,

Ga,b(x, y) � S3a,3b(x, y).

To complete the proof of the sufficiency, we will also prove that

S3a,3b(x, y) � Sc,d(x, y).

For, by Theorem 2, we have to ensure that, in addition to (a) , μ(3a, 3b) � μ(c, d)
and L(3a, 3b) � L(c, d) hold. The first inequality trivially follows from (b) since
μ(3a, 3b) � μ(a, b) . On the other hand, ab < 0 , consequently, L(3a, 3b) = 0 . Thus
it suffices to show that L(c, d) is nonnegative. Indeed, in the opposite case we have
that c, d < 0 , thus μ(c, d) is equal to −1 , while μ(a, b) > −1 — in contradiction
with (b) .

REMARK 2. It is clear that the conditions of Theorem 6 and Theorem 7 coincide
in the case ab < 0 , a + b = 0 – that is, b = −a , b �= 0 .

THEOREM 8. Let a, b be real numbers, a, b � 0 . If
(a) 3(a + b) � c + d ,
(b) L(2a + b, a + 2b) � L(c, d) , then

Ga,b(x, y) � Sc,d(x, y)

is valid for all positive numbers x, y .

Proof. Firstwe check our statementwhen (a, b) = (0, 0) . In this case G0,0(x, y) =√
xy = S0,0(x, y) , so we can use Theorem 2 again. Then (a) and (b) are equivalent to

the inequality 0 � c + d which, by Theorem 2, results that S0,0 � Sc,d is valid.
In the rest of the proof, we assume that (a, b) �= (0, 0) .
In view of Proposition 2, it is clear that, for all positive x, y ,

Ga,b(x, y) � S2a+b,a+2b(x, y).

We have that a, b � 0 and a+ b < 0 , consequently, μ(2a+ b, a+ 2b) = −1 , whence
μ(2a + b, a + 2b) � μ(c, d) follows. Therefore, using Theorem 2, the conditions (a)
and (b) imply that

S2a+b,a+2b(x, y) � Sc,d(x, y),

which combined with the previous inequality results our statement.
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REMARK 3. In the domain a, b � 0 we also have the inequality Ga,b � S3a,3b

which could be used to obtain that the inequality in (a) and L(3a, 3b) � L(c, d) form
also a system of sufficient conditions. However, applying Theorem 2, it easily follows
that S2a+b,a+2b � S3a,3b holds, too. Thus, the sufficient condition obtained this way is
essentially weaker than that of Theorem 8.
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[5] P. A. HÄSTÖ, A monotonicity property of ratios of symmetric homogeneous means, J. INEQUAL. PURE
APPL. MATH., 3, (5/71) (2002), 1–23.

[6] E. LEACH, M. SHOLANDER, Extended mean values II, J. MATH. ANAL. APPL., 92, (1983), 207–223.
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