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SOME NEW NONLINEAR RETARDED INTEGRAL
INEQUALITIES AND THEIR APPLICATIONS

QING-HUA MA AND JOSIP PECARIC

(communicated by D. Bainov)

Abstract. In the present paper, priori bound on certain new retarded integral inequalities in two
independent variables are established. Applications are given to illustrate the usefulness of these
inequalities.

1. Introduction

It is well known that integral inequalities play a fundamental role in the theory of
differential and integral equations. Over decades, many investigators have discovered
a lot of useful and interesting integral inequalities in order to achieve various goals,
see [1-15] and the references cited therein. Recently, Lipovan [4, 5] proved some
retarded Gronwall-like and Gronwall-Ou-lang type inequalities and presented some of
their applications to quantitative study of delay differential equations. In [14], Sun
generalized Lipovan’s results and also given some interesting applications to delay
differential equations. The aim of the present paper is to establish some more general
two independent variables retarded version of above inequalities which on the one hand
generalize some existing results and the other hand can be used as tools to study the
behavior of solutions of certain general retarded differential and integral equations.
Some applications of our results are also given.

2. Main results

Throughout, we define R = (—o0,+o0), Ry = [0,400), I} = [x0,X) and
L, = [yo,Y) two given intervals of R; A = I; x I, and denote by C'(M,S) the class of
all i-times continuously differentiable functions defined on set M with range in the set
S(i=1,2,...) and C°(M,S) = C(M, S). The first-order partial derivative of a function
Z(x,y) for x,y € R*> with respect to x and y are denoted as usual by D;Z(x,y) and
D»yZ(x,y), respectively.
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differential equation.
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THEOREM 2.1. Let a;, bj € C(A,R+), oy, O € Cl(ll,ll), ﬁli; BQJ' € Cl(lz,lz)
be nondecreasing with oi;(x), opj(x) <xon Iy, Bu(y), By(y) Syonbh,i=1,...,m,
j=1,...,n, w € C(Ry,R;) be a nondecreasing function with w(u) > 0 for u > 0
and p > q > 0 and k > 0 be constants.

Ifue C(o,Ry) and

oni(x Bui(y
w(x,y) / / (s, )ud (s, 1)drds
aui(xo) 1i(vo)
By (1)

/ / i(s, ul (s, t)w(u(s, 1))drds
052] X0) BZ] o)

Sforany (x,y) € A, then

u(x,y) < {G1 {G(kaq +L2—4 ZAli(x,y)) + [% isz(X,Y)} }1"’ (2)

Sfor xo <x < x1,y0 <y < y1, where

0511 ﬁll
Ayi(x,y) :/ / (s,n)dtds, i =1,. (3)
aui(xo)  Bui(vo)

0i(x) By
Boj(x,y) = / bi(s,t)drds, j=1,...,n, 4)

0(x0)  Baj(yo)

r 1
G(r) = / —ds,r >ry >0, (5)

ro w(sp—4)

G~ denotes the inverse function of G, and real numbers x| € I1,y, € I, are chosen
so that the quantity in the square brackets of (2) is in the range of G.

Proof. Let k > 0 and define a positive nondecreasing function

oni(x Bui(y
ri(x,y) —k+ / / a;(s, (s, t)drds
aui(xo) 1i(yo)

By (6)
]
/ / i(s, ul (s, t)w(u(s, 1))drds,

(XZJ X0) 32] yo)

for (x,y) € A, then from (1) we have

u(x,y) < 1l (x,) )

and

Bii(y)
Diri(x,y) =Y of(x) /ﬁ ai(ou;(x), Hul (ou;(x), t)dr

1 (o)

Baj(y)
3 ) /B by (o) 1) (ot (), )t (x), 1))
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m
!
< E ay;(x) /
i=1 Bii(yo)
S [
By

](YO>

Bui(y) q
ai(oni(x), 1)r{ (oui(x), t)dt

i () q 1
bj(anj(x), 1)r{ (0n;(x), Hw(r{ (on;(x),1))dt

q Bii(y)
< alz Bll Zah / Cli(alj(x),l)dl
B

1i(yo)
i () 1
1 (o), By(y) Zaz, /ﬁ b0t (x), DYw(rf (o (x), 1))

](YO>
Blz

(x,y [Zall /ﬁ a;(oy;(x), 1)dt

u()u)
Byj(») 1
3 o) /ﬁ bj<azj<x>,r>w<rf<az,<x>,t>>dr},

ie.,

D m Bii(y)
MgZa{l /B ai(oni(x), 0)de

! (x,y) i1 1i (o) ®)
Ba(v) 1
+ Z o (x /B . bl vt (@) )

Keeping y fixed in (8), setting x = o and then integrating from xy to x and changing
the variable we obtain

p rP—q aii(x Bui(y
r’ (xy) < / / (s, 1)dtds
pP—4q p oui(xo) 1i(vo)

052] 1
/ / rl (s, 1))dtds.
002] Xo) ﬁzj o)
,,,

Setting vi(x,y) =r,” (x,y), (9) can be rewritten as

r—q _ m
vi(x,y) <k7 +l% ZAli X,y)

052] BZ] 1
/ / WO (s, 0)dids (10)
O"Zj XO BZ] yo

_ 0j(x) By (v) ;
=A(x,y) + / / bi(s,t)w(v{™? (s, 1))dtds.
0j(x0)  Baj(vo)



620 QING-HUA MA AND JOSIP PECARIC

Fixing any numbers X;(xo < ¥ < x1) and y,(xo <¥; < y1), from (10) we have
_ _ q aZJ BZ] #
vi(x,y) <AXLY) + / / bi(s, )w(v{ ™% (s, 1))drds, (11)
a(x0) +J Baj(yo)
for xop < x <X1,y0 <y <y,. Define
B o By 0
Ay =50 + IS [ [ o s, (12)
p =1 0aj(x0) / Paj(30)

for xo < x <X1,y0 <y <7, then from (11), (12) we observe that

vi(x,y) <7i(x,y) (13)
d
an ~ P—q n , Bai(v) L
Dy ()= 24 S e (v) / b (), Opw(v 7 (05(x), 1)t
p j=1 52j()’0)
p _ q n , + ﬁ2}(Y>
<Py o] (o). By0)) [ by(any (o).
p j=1 ﬁzj(y0>
n B (y)
)4 > J
<P oo [ b
j=1 sz ¥0)
p—q .1 n , Bai(v)
< ) a0 [ b, nar
p = Baj (o)
ie.,
D7 . Bi0)
ey P4 3 o) / by(oy (x), 1)dr. (14)
W( P q(_x y)) p j=1 ﬁzj(ﬂ))

From the definition of G and (14) we have

r1(x Bai(v)
DiG(Fi(x,y)) = D 1( Y A qz / bi(0n(x),1)dr.  (15)
w(Fl ™ "(x y)) =1 Baji(vo)

Keeping y fixed in (15), setting x = ¢ and then integrating from xy to x,x € I,
making the change of variable s = 0;(0) and using the definition of 7 (x,y) we have

_ _ CI 052/ sz
G(Fi(x,y)) < GAF,5))) / / (s, )dds
aj(x0) < Baj(yo)

for xp < x < X1,y0 <y <y,. Taking x = X,y = ¥, in the last inequality and (13),
we obtain

. _ n oi(x1)  pBay(yy)
(7 (%1,7)) < GA,7) + L4 3" / by (s, s
p aj(x0) Byjlyo)

and
Vl(xhyl) < 71(}1751)'



SOME NEW NONLINEAR RETARDED INTEGRAL INEQUALITIES AND THEIR APPLICATIONS 621

Since xp < X1 < x1,y0 <y, <y are arbitrary, from the last relations we have

_ P C] 0‘21 321
G(Fi(x,v)) < G(A(x,)) + / / (5, 1)dids
a(x0)  Baj(yo)
or
7i(x,y) < GV G(A(x,y)) + / / (s, 1 dtds] (16)
052] ’CO BZ] Yo)
and
vi(x,y) <Fi(x,y) (17)

for xp <x < x1,y0 <y < yl. Hence from (16), (17) and (7) we have
1 1

u(x,y) < rf (6y) = v (6,y) <F 7 (%,y)

— aZJ 32] PTI{ (18)
<<{G™! [G(A(x, )+ / / ;i (s, tdtds] ,
a(x0)  Baj(yo)

for xo < x < x1,y0 <y <y.By(1), (18) holds also when x = xy or y = yo.Hence
(2) holds for all & > 0. By continuity,(2) also holds for any £ > 0. O

REMARK 1. When m = n =1, all(x) = Om(x) = Oé(x), ﬁn(y) = ﬁzl(y) =
B(y), Theorem 2.1 is a two independent-variable version of Theorem 2.1 of Sun [14],
which can be used in the qualitative analysis of hyperbolic partial differential equations
with retarded arguments.

ds = c©

REMARK 2. If oo 1
/

w(s77)
then G(00) = oo and (2) is valid on R2.
If welet ¢ = p — 1 in Theorem 2.1, then we have the following corollaries.

COROLLARY 2.1. Let the functions u, a;, bj, o, 0y, PBu, By (i=1,....,m;
j=1,...,n) and w, and the constants p and k be defined as in Theorem 2.1, and
oix Bui(y
u(x,y) / / (s, )ul ™" (s, t)dtds
ai(xo) 1i(vo)
(19)

/ / i (s, )P~ (s, )w(u(s, 1))dtds
a(x0)  Baj(yo)

Sforany (x,y) € A, then
T/ 1 m 1 n
) <G [6(H 41D )+ LY myen| o
i=1 =1

for xo < x < x2,y0 <y < y2, where Ayi(x,y) and Boj(x,y) are defined as in (3) and
(4) respectively,

— "1
G(r)= / st,r =19 >0, (21)
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——1 . . —
G denotes the inverse function of G, and real numbers x, € I1,y, € I, are chosen
so that the quantity in the square brackets of (20) is in the range of G.

COROLLARY 2.2. Let the functions u, a;, b;, o, 0j, PBii, By (i=1,...,m;
j=1,...,n) and constants p and k be defined as in Theorem 2.1, and
oi(x Buiy
P (x,y) k+Z/ / a;(s, O)uf " (s, t)dtds
aii(xo) 1i (o)

aZJ BZ]
/ / (s, O)uf (s, 1)dtds
052] Xo) BZ] o)
Sforany (x,y) € A, then

) < (k41 émi(x,y)) o (3 éBz,(x,y)) (23)

for (x,y) € A, where Ay;(x,y) and Boj(x,y) are definedasin (3) and (4) respectively.

REMARK 3. (i) Itis interesting to note here that if k = ¢, a;(s, ) = pa;(s,t) and
bi(s,1) = pb;(s,t) in (19) and (22), then the bound appeared in (20) and (23) on the
unknown function u(x,y) has not relation with the parameter p, respectively.

(ii) When p =1, a;(x,y) =0, i=1,....m, n =2, op1(x) =x, Bu(y) =y
in Corollary 2.2, we have a Pachpatte’s result [11, Theorem 3 (cy) |.

COROLLARY 2.3. Let the functions u, a;, b;, ou;, B (i=1,...,m) and w,
and the constants p,q and k be deﬁned as in Theorem 2.1, and

oi(x Bui(y
u(x,y) / / (s, H)ud (s, t)drds, (24)
i 1i (o)

Sforany (x,y) € A, then

1

—q ayi(x Bui(y P—q
u(x,y) < < k7 + Z/ / (s tdtds> (25)
i=1 * oui(xo) 1i (o)

SJorany (x,y) € A.

REMARK 4.For g =1, m =2, a;;(x) = x, Bi1(y) =y in Corollary 2.3, we
have a Pachpatte’s result [11, Theorem 3 (c3)].

THEOREM 2.2. Let the functions u, a;, b;, i, O, Pii, By (i=1,...,m;
j=1,...,n) and w, and the constants p,q and k be defined as in Theorem 2.1, and
oi(x Bui(y
i (x,y) / / (s, )u? (s, )w(u(s, 1))dtds
aui(xo) 1i (o)

aZJ BZ] (26)
/ / (s, Oud (s, t)w(u(s, 1))deds
052] X0) BZ] o)
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Sforany (x,y) € A, then

u(x,y) <G G(Tq Zm: i(x,y) +—Zszxy o (27)
p

i=1 j=1

for xo < x < x3,y0 <y < y3, where Ayi(x,y) and Boi(x,y) are defined as in (3)
and (4) respectively, G and G~ are defined as in Theorem 2.1, and real numbers
x3 € I1,y3 € I are chosen so that the quantity in the square brackets of (27) is in the
range of G.

Proof. Let k > 0 , define r,(x,y) to denote the right-hand side of (26) and

P—4q
va(x,y) =r,” (x,y), then by same steps in the proofs of Theorem 2.1, we have

1
u(x,y) < ry (x,y) (28)
and
oui(x ﬁll
va(x,y) <K'7 +— / / ; (s, 1))drds
oi(xo) 1i(v0)
onj(x Bai(v) (29)
/ / w7 (s, ) drds.
O"Zj XO BZ] yo

Setting 7»(x,y) as the right-hand side of (29), then we have 7,(xo,y) = s

vz(x,y) < 72()6,}1), (30)

o Bui(y) 1

D7 (x,y) =’% 3 o) /B ., s T (). )
1i1(Y0

_ Bai(v) 1

+ P S e [ b, w0 (e, 1)
p Baj(v0)

— g - L Bii(y)
éuza{i(x)w(vg’ (i (x), Bri(y )))/B.(, ) ai(oni(x), 1)dt
—q < i By(»)

4 Z /j(x)w(vg (a2J( ) B2J( )))/B() bj(azj(x),t)dt

— L Bii(»)

L0 () (L el [ atanto).

1i (o)

by (), )dr)
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P—q 1 m Bui(y)
Rl e (x,y))<za;i(x) / ai(oni(x), 1)di
p o Bii(y0)
n Bai(y)
+3 o) / bj(azj(x),t)dt>,
j=1 ﬁzj(ﬂ))
i.e.,
DIFZ(X y) p—q m Bii(y)
DD LIS ) [ et
W T wy) P e an
_ n Baj(v)
24 Z 0t5;(x) / bj(onj(x), t)dt
j=1 Baj (o)
From the definition of G and (31) we have
_ D7y (x,
DGR (x,y) =222
w(ry " (x, )
a0 Bui(y)
LIS o [ aonio. nar 32)
A Bui(ro)

_ Bai(v)
+ ’% > ag(x) /3 bi(0n;(x), 1)dt.

5i(0)

Keeping y fixed in (32), setting x = ¢ and then integrating from xy to x,x € I,
making the change of variables and using the definition of 7,(x,y) we get

g - m . n
G(72(x>y)) < G(k P ) + I% ZAli(x>y) + pp—q Zsz(x,y),
i=1 =1
ie., !
r—q o m o n
7a(x,y) < G~ {G(k )+ ’% S Aulxy) + ’% Zgzj(x,y)] . (33)
i=1 =1
for xo < x < x3,y0 < y < y3. Hence from (28), (29), (30) and (33) we get the desired
inequality (27). By continuity, (27) also holds for any k£ > 0.0

REMARK 5. 1In [11], Pachpatte have studied following nonlinear delay integral

inequality x oy
u(x,y) < k+/ / a(s,t)g1(u(s, t))deds
Xo /Yo

alx) BO) (%)
+/ / b(s,1)g2(u(s, ))dds,
a(xo) 7 B(yo)

but because he added a condition g; < g» or g2 < g1, (x) only contain one nonlinear
term g>(u) or gi(u), respectively. By this fact, for p =1, ¢ =0, m =n =1,
o1(x) =x, Bu(y) =y, oi(x) = a(x), Bu(y) = B(y) in Theorem 2.2, we have a
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Pachpatte’s result [11, Theorem 4, (d;)]; Forp > 1, g=0, m=n=1, oy(x) = x,
Bui(y) =y, ai(x) = a(x), Po1(y) = B(y) in Theorem 2.2, we get the other one result
of Pachpatte [11, Theorem 4 (d3)].

Let g = p — 1 in Theorem 2.2, then we have the following corollaries.

COROLLARY 2.4. Let the functions u, a;, b;, ou;, 0o, Pii, By (i=1,....m;
j=1,...,n) and w, and the constants p and k be defined as in Theorem 2.2, and
oi(x Bui(y
u(x,y) / / (s, )P~ (s, )w(u(s, 1))dtds
aui(xo) 1 (y0) (34)
052] BZ]
/ / (s, )P~ (s, )w(u(s, t))dtds
O"Zj X0) BZ] Y0)

forany (x,y) € A, then /=
Y 1 m P—gq n

u(x,y) G G(HRP) + 23 Aulxy) + == Byx.) (35)
i=1 =1

for xo < x < x4,y0 <y < ya, where Ayi(x,y) and Boi(x,y) are defined as in (3)

and (4) respectively, G and EA are defined as in Corollary 2.1, and real numbers
x4 € I1,y4 € I are chosen so that the quantity in the square brackets of (35) is in the
range of G.

COROLLARY 2.5. Let the functions u, a;, b;, o, 0j, PBii, By (i=1,...,m;
Jj=1,...,n) and constants p and k be defined as in Theorem 2.1, and
oi(x Bui(y
' (x,y) / / (s, 0)u” (s, t)dtds
oui(xo) 1i(yo) (36)
(XZJ BZ]
/ / (s, ) (s, t)dtds
j(x0) / Baj(yo)

Sforany (x,y) € A, then "
u(x.y) < exp ( S A+ Zsz(%y)) )
j=1

for (x,y) € A, where Ay;(x,y) and Boj(x,y) are definedasin (3) and (4) respectively.

REMARK 6. It is interesting to note here that if k = ¢?,a;(s,t) = pa;(s,t) and
b(s,1) = pb;(s,t) in (34) and (36), then the bound appeared in (35) and (37) on the
unknown function u(x,y) has not relation with the parameter p, respectively.

THEOREM 2.3. Let the functions u, a;, b;, ou;, 0j, Pii, By (i=1,....,m; j=
1,...,n) and the constants p,q and k be defined as in Theorem 2.1, w; € C(Ry,R})
be a nondecreasing function with w;(u) >0 for u >0, i=1,2, and

W (x,y) /:“ /B” (s, ) (s, £)wi (u(s, 1) )dids

1i(vo)

aZJ BZ]
/ / i(s, )ul (s, t)wa (u(s, t))drds
aj(x0)  Baj(yo)
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SJorany (x,y) € A, then

u(x,y) < {Ql {Q( Tq ZAl, x,y) + —Zsz X,y }} i (39)

for xo <x < x5,y0 <y < ys, where Aii(x,y) and Boj(x,y) are defined as in (3) and
(4) respectively,

" 1
Q(r):/ - —ds,r > ryp >0,
ro wi(sP=4) + wyp(s7=4)

Q! is the inverse function of Q and real numbers xs € 11,ys € I, are chosen so that
the quantity in the square brackets of (39) is in the range of Q.

Proof. Let k > 0 , define r3(x,y) to denote the right-hand side of (38) and

u
v3(x,y) = r;” (x,y), then by same steps in the proofs of Theorem 2.1, we have
1
u(x,y) <5 (x,y) (40)
and
p— oni(x Bui(y 1
v3(x,y) Sk / / ai(s, )wy (VS (s,1))drds
aui(xo) 1 (o) a1
BZ] 1 ( )
/ / (s, )wa (VS ™7 (s, 1) )dtds.
052] ,CO ﬁZ] y0)
Setting 73(x,y) as the right-hand side of (41), then we have 73(xo,y) = K7 ,
v3(x,y) < 73(x,Y), (42)

and
D173 (x7 y)
1 1
wi (7577 (x, ) +wa (757 (x, )

g Bii(v) 1
P93 o) /B e (x) 1w (77 o (), 1))

P S 1i(v0)

) w7 (3,3)) + wa (7T (5,3)
qZ o (x /:: oy (), e (v (0 (), 1)l

: w7 . ) + w27 (x.))

p qi% w07 (0139, Bu(¥)) /Bf;z)ai<au<x>7r>dr

N

1

Wl(é’_(,Y))+W2( (%))
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Byj(y)

o “’Zaz, wOT (09, By00) [ a9, e
+ 1 -
W (7 (e 3)) a7 (5,9)
1 Bii(y)

L qzal, P @, But) [ et na
g — — 1i(Yo
) el )
1 By(y)

L qzaz, WGT @), By [ b,
- 1 —
T ) el )

—q m Bui(v)
—w 7§’ (x,¥) Zall / a;(oy;(x), r)dt
p Bui(yo)
< T .
wi (T é’ (x, Y)) + w2 (r57 (x, )
— J BZ]
P4 (7T (x,y) Z%] / bi(0n;(x), )dt
P BZ] ()
+ 1 1

wi(737" (x,3)) + wa (7577 (x,))

<= ( Z o (x) /:”( )ai(ali(x)7 t)d

1i (o)

Bai(y)
+>og(x) /B bj(otz_,-(x),t)dt).

hi (vo)

By the definition of Q, we observe that from the last inequality

m Bui(y)
D1Q(F3(x,y)) (Z o (x / ai(oui(x), 1)de
B

1 (y0)
e |

2]()0)

32]

bi(on;(x), t)dt).

Keeping y fixed, setting x = ¢ and then integrating with respecting to ¢ form xj to
x and changing the variables we obtaln

Q(Fs(x,y)) < Q(Fs(x0,y)) + =2 ZAI, x,y) l% > By(x.y).
j=1

By the definition of 73(x,y) and the last inequality we have

m
—q

F3(x,y) < Q7' Q(k T ZAI, x,y) + —232, x y} (43)

for xo <x < x5,y0 <y < ys.
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By (40-43), we get the desired inequality (39). By continuity, (39) also holds for
any k> 0. O

COROLLARY 2.6. Let the functions u, a;, b;, oi;, o), B, By (i=1,...,m
Jj=1,...,n) and the constants p,q and k be deﬁned as in Theorem 2.1, and

oix Bui(y
u(x,y) / / (s,1)dtds
oui(xo) 1i (o)

/ / ul# (s,t)drds
a(x0)  Baj(yo)
SJorany (x,y) € A, then

ulx,y) < {(1 LK exp< ZAI, X,y) + —ZBZJ X,y > - 1}2 (45)

Sforany (x,y) € A.

Proof. Let wy(u) = uP~9, wy(u) = u"T" , then we have

" d 1+ 72
Q(r):/ L S sl
r 482 l—l—rg

and
2

Q7 (r) = {(1 + ré)exp(%) -1

Now by Theorem 2.3, we have the desired inequality (45).

3. Applications

Consider the initial boundary value problem of hyperbolic partial delay equation
DyDyul (x,y) = F |x,y,u(x—h11(x),y=g11()), - - -, u(x—h1m(x), y—g1m(¥)),

u(x — ha1(x),y — g21(9)), - - -, ulx — han(x),y — g2.(y)) |,

with the given initial boundary conditions

u(x,y()) = Cl(x)a M(X(),y) = Cz(y), Cl(X()) = Cz(yo) = 07 (47)
where p > 1 is a constant, F € C(A x R™™ R), ¢; € C'(I;,R), ¢z € C'(I,R);
hi; € C(I,Ry), gj € C(I,,Ry) are nonincreasing, and such that x — hy;(x) > 0,
x—hi(x) € CH (I, 1), y—g3i(y) 2 0, y—g3(y) € C' (I, 1), hi;(x) < 1, gy(y) <1,
hli()Co) =0, g2j(y0) =0 fori= L,...om,j=1,...,n; )CEIl, velb and

1 1
My =max——— N —_ 48
TR T T N T g ) “8)
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1

My = max —————, Nopj = —_— 49
J xel; 1— hlzj( ) S yGIz 1— gZJ(y) ( )
Our first result gives the bound on the solution of the problem (46)-(47).
THEOREM 3.1. Suppose that
[F (o, p, 11y oy Uiy Unt sy Uzn)| Z (o6, ) foani”™ +Zb (x, ¥)[uzl”, (50)
i=1 j=1
le1(x) + ()] <k, (51)
where a;(x,y), bj(x,y), k are asin Theorem 2.1. If u(x,y) is any solution of (46) - (47),
then
m 1 n _
lu(x,y)| (k" ZAh X,y ) exp ([—) > Bylx, y)) (52)
j=1
where

ouix Bii(y
i(x,y) / / (s, 1)dtds, (53)
oui(xo) 11(y0)
Onj(x

BZ]
Byi(x,) / (s, 1)dtds, (54)
(ij x0) / Baj(

where  @;(x,y) = MiNyai(eg;' (x), ;' (v), B ( y) = MyNybi(ou; ' (x), By (v))
a1i(x) = x — hyi, Bu(y) =y — 81(y), 0zi(x) :xfhzj( x), Boj(v) =y — 82i(v)-

Proof. Tt is ease to observe that every solution u(x,y) of (46)-(47) satisfies the
equivalent integral equation

W (x,y) = (x) + 2y //} sotu(s — hiy(s),t — g1 (1)), - .-

u(s — han(s), — gun(t)), uls — hoi(5),1 — g (1), ... (53)
u(s — ho(s),t — ggn(t))} dtds.

Applying (50), (51) to (55) and changing the variables we obtain

oi(x Bui(y
| (x, )P / / (s, 1) |u(s, 0)|P~ drds
i 1i (o)

/ / (s,0)|u(s, 2)|Pdrds
aj(x0)  Baj (o)

An application of Corollary 2.2 to (56) yields (52).0
The next theorem is about the uniqueness of solutions of (46)-(47).
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THEOREM 3.2. Let My;, Nvi, Maj, Noj, ai, bj, oui, Oy, Pui, Boy (i=1,....m;
j=1,...,n), al,b be as in Theorem 3.1. Suppose that the function F in (46) sansﬁes
the condltlon

|F(X Y, Uity oo Ulm, U215 - - - Mzn) *F(X Y, Vil - .- 7V1m,V21,-~-,V2n)\
m

57
Zalxy |ull Vllj1|+zb X,y ‘MZJ J" ( )

Then the problem (46) - (47) has at most one solution on A

Proof. Let u(x,y) and v(x,y) be two solutions of (46)-(47) on A, then we have

w(x,y) =V (x,y) = c1(x) + 2(y) + /x /y {F{s, tyu(s — hyi(s),t — gn(2),. ..,

X0 Yo

u(s — hym(s),t — gum(0)), u(s — ho1(s), ¢ — g21(2)), . . . ,u(s — hon(s), 1t — ggn(t))}

—F|s,t,v(s — h11(s),t — g11(2)), - .., v(s — hym(s), t — g1m(2)),

v(s — hai(s),t — g21(2)), ..., v(s — hau(s),t — ggn(t))} }dtds.
From (58) and (57), making the changing of variables we get

oi(x Buiy
[P (x,y) — / / (s, 1)U (s,8) — VP (s, 1)|drds
aui(xo)

1i \0

/ / (s, 0)|ul (s,8) — VP (s,1)|drds.
052] x0) BZ] o)

An application of Corollary 2.5 to the function |1 (x,y) — v (x,y) |% shows that
#(x.y) =P y)|F <0
forall (x,y) € A. Hence u(x,y) =v(x,y). O

Finally, we investigate the continuous dependence of the solutions of problems of
(46)-(47) on the function F and the boundary data ¢; and ¢, .

THEOREM 3.3. Let u(x,y) and v(x,y) be the solutions of (46) with the given
initial boundary data

u(x,yo0) = c1(x), u(xo,y) = c2(y), c1(x0) = c2(yo) =0, (60)

u(x,y()) = dl(x)a M(X(),y) = dz(y),dl(X()) = dz(yo) = Ov (61)
respectively,where ci,d; € C'(I,R),c2,d» € C'(I,R). Suppose that the function F
satisfies the condition (57) in Theorem 3.2. Let

(e1(x) = di(x)) + (e2(y) — ()| < € (62)
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where € is an arbitrary positive number. Let My;, Ny;, M, Ny, a;, bj, i, Oy,
Bii, By (i=1,...,m;j=1,...,n), a;, bj be as in Theorem 3.1. Then

[uf (x,y) — VW (x,y)| < €exp ( ZAI’ x,) I%Zng(x,y)) (63)
=1

for (x,y) € A, where Ay;(x,y) and Byj(x,y) are defined as in (53) and (54) respec-
tively. Hence u’ depends continuously on ¢y and cy. In particular, if u does not
change sign, it dependents continuously on the initial boundary data.

Proof. Let u(x,y) and v(x,y) be solutions of (46)-(60) and (46)-(61), respec-
tively. Then we have

¢ ) )= -+ 0) -0+ [ [ {Flsnatshn).-en0)
Ju(s—him(s), t—g1m(1)), u(s—hai (s), t—g21 (7)), . . ., u(s—ha(s), t—gz,,(t))}
— F[s,t, V(s — hiy(s), 1 — g1(6))s -+ o V(s — him(s),t — gim(?)),

v(s — hai(s),t — g21(2)), ..., v(s — hau(s),t — ggn(t))} }dtds

(64)
for (x,y) € A. From (64), (62) and (57), making change of variables we have

ani(x Bui(y
[t (x,y) — V' (x,y)| < & + / / (s,0)|u” (s,8) — VP (s,1)|dtds
aui(xo)

1i(yo)

aZJ BZ]
/ / (s, )| (s,8) — V7 (s, 1)|deds.
(XZJ X0) 32] yo)

An application of Corollary 2.5 to the function |u”(x,y) — v (x,y) |# shows that

(65)

|u” (x,y) — V' (x,y)| < eexp < ZAI’ X,¥) ;ZEzj(x,y)) (66)
=1

for (x,y) € A, where Ay;(x,y) and By;(x, y) aredefined asin (53) and (54) respectively.
Now if the functions Ay;(x,y) and By;(x,y) are bounded for (x,y) € A, so

W (x,y) = (xy)| <e-K

for some K > 0 forall (x,y) € A. Hence «” dependents continuously on ¢; and
C. O

In conclusion, we note that the inequalities and applications can be extended easily
to functions involving many independent variables.
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