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HOW DEVIANT CAN YOU BE?

THE COMPLETE SOLUTION

AGNIESZKA GORONCY AND TOMASZ RYCHLIK

(communicated by I. Olkin)

Abstract. We consider the problem of optimal deterministic lower and upper bounds on arbitrary
linear combinations of order statistics centered about the sample mean in units generated by the
sample central absolute moments of various orders. The signs of the evaluations depend merely
on the coefficients of the linear combinations. Hitherto all the positive upper and negative lower
bounds have been established as well as a few exceptional positive lower and negative upper
ones. In the paper, we complete the solution by presenting all the positive lower bounds and
negative upper bounds and respective samples attaining them. We also specify the general results
by considering several important examples.

1. Introduction

In his famous paper, Samuelson (1968) stated the following problem: How a single
observation can be deviant from the sample mean in the standard deviation units s2 ,
for a fixed deterministic sample x̃ = (x1, . . . , xn) of size n , with the sample mean

x̄ = 1
n

n∑
i=1

xi and positive sample variance s2
2 = 1

n

n∑
i=1

(xi − x̄)2 ? Samuelson (1968)

presented the following solution

sup
x̃

max
1�i�n

|xi − x̄|
s2

= sup
x̃

xn:n − x̄
s2

=
√

n − 1, (1.1)

with the respective attainability conditions

x1:n = . . . = xn−1:n = x̄ − s2/
√

n − 1 < xn:n = x̄ + s2

√
n − 1.

Here and later on x1:n � . . . � xn:n denote the order statistics based on the sample
x1, . . . , xn . This immediately implies the following lower bound

inf
x̃

x1:n − x̄
s2

= −√
n − 1,

which is attained by

x1:n = x̄ − s2

√
n − 1 < x2:n = . . . = xn:n = x̄ + s2/

√
n − 1.
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The paper stimulated extensive investigations on the subject. Some earlier results,
including Thompson (1935), Scott (1936), Nair (1948), David et al. (1954), and
Thomson (1955), were rediscovered, and bound (1.1) was found in Thompson (1935)
and Scott (1936). Alternative proofs and various generalizations were presented in
Mallows and Richter (1969), Boyd (1971), Hawkins (1971), Koop (1972), Beesack
(1973, 1976), Arnold (1974, 1985), Arnold and Groeneveld (1974, 1978, 1979, 1981),
Dwass (1975), O’Reilly (1975, 1976), Prescott (1977), Loynes (1979), Wolkowicz and
Styan (1979), Smith (1980), Fahmy and Proschan (1981), Nagaraja (1981), Groen-
eveld (1982), Mărgĕritescu and Vŏda (1983), Gonzacenco and Mărgăritescu (1987),
Mărgăritescu (1987), David (1988), Mărgăritescu and Nicolae (1990), Gonzacenco,
Mărgăritescu and Vŏda (1992), Olkin (1992), and Rychlik (1992, 1993). Comprehen-
sive reviews can be found in Arnold and Balakrishnan (1989) and Rychlik (1998). The
most natural generalizations consist in extending the results to other linear combinations
of order statistics, called L -statistics and replacing the standard deviation units s2 by
more general ones

sp =

(
1
n

n∑
i=1

|xi − x̄|p
)1/p

, � p < +∞, (1.2)

with the limiting value

s∞ = max
1�i�n

|xi − x̄| = max{x̄ − x1:n, xn:n − x̄}. (1.3)

Except for (1.1), Scott (1936) established s2 -bounds for xn−1:n − x̄ . Respective results
for arbitrary order statistics were derived independently by Boyd (1971) and Hawkins
(1971). The sample range and the difference between the second greatest order statistic
and the sample minimum were examined by Nair (1948), and David et al. (1954),
respectively. Fahmy and Proschan (1981) solved the problem for arbitrary differences
of order statistics. Mallows andRichter (1969) studied selection differentials, andDavid
(1988) considered L -statistics with nondecreasing coefficients c1 � . . . � cn . Bounds
for single order statistics in general dispersion units, including (1.2), were presented
by Beesack (1973, 1976). Results for specific L -statistics, expressed in terms of scale
units different from the standard deviation were derived by Arnold and Groeneveld
(1981), Groeneveld (1982), Arnold (1985), and Mărgăritescu and Nicolae (1990).

The most general hitherto known deterministic bounds on L -statistics are due
to Rychlik (1992). They are based on the projection of the coefficient vector c̃ =
(c1 . . . , cn) ∈ Rn onto the convex cone of nondecreasing vectors in the n -dimensional
Euclidean space norm. Given c̃ ∈ Rn , we define the subset of indices {j1, . . . , jM} ⊂
{1, . . . , n} and the nondecreasing vector of projection c̃ = (c1, . . . , cn) ∈ Rn by means
of the following algorithm

j0 = 0,

jm = min

⎧⎨
⎩jm−1 < j�n :

1
j−jm−1

j∑
r=jm−1+1

cr = min
jm−1<k�n

1
k−jm−1

k∑
r=jm−1+1

cr

⎫⎬
⎭, (1.4)

m = 1, . . . , M , for some 1 � M � n such that jM = n , and
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ci =
1

jm − jm−1

jm∑
r=jm−1+1

cr, i = jm−1 + 1, . . . , jm, m = 1, . . . , M. (1.5)

In the first step, the algorithm determines the smallest partial mean of the first
elements of c̃ , and the smallest index j1 which attains the minimum. It defines the
first identical j1 elements of c̃ as the minimal partial mean. In the next step, the
procedure is performed for the truncated sequence (cj1+1, . . . , cn) . It is terminated in
1 � M � n steps if jM = n . Alternative graphical construction of c̃ consists in drawing

the greatest convex minorant of the points (0, 0), (1, c1), . . . , (j,
j∑

r=1
cr), . . . , (n,

n∑
r=1

cr) .

The minorant is a broken line with the breaking points at some integers contained
in {j1, . . . , jM−1} , and ci amounts to the slope of the line in the interval (i − 1, i)
for i = 1, . . . , n . Algorithm (1.4), (1.5) is a particular form of the pool adjacent
violators algorithm (PAVA) of isotonic regression, which has numerous applications in
order restricted statistical inference (see, e.g., Barlow et al (1972), and Robertson et al
(1988)). Rychlik (1992) proved that for arbitrary c̃, x̃ ∈ Rn , we have

n∑
i=1

cixi:n �
n∑

i=1

cixi:n (1.6)

and the equality holds in (1.6) iff

xjm−1+1:n = . . . = xjm , m = 1 . . . , M. (1.7)

He applied (1.6) for establishing general bounds

n∑
i=1

ci(xi:n − x̄) � ‖c̃ − c∗1̃‖∗‖x̃ − x̄1̃‖, (1.8)

where ‖·‖ and ‖·‖∗ denote arbitrary permutation invariant norm in Rn and its conjugate,
respectively, x̃− x̄1̃ = (x1− x̄, . . . , xn− x̄) , c̃−c∗1̃ = (c1−c∗, . . . , cn−c∗) , where c∗1̃
is the projection of c̃ defined by (1.4) and (1.5) onto the subspace of constant vectors
in the conjugate norm. In particular, combining (1.6) with the Hölder inequality (see,
e.g., Mitrinović (1970, Theorem 2.8.1, pp. 50–51)), we obtain

n∑
i=1

ci(xi:n − x̄) �
n∑

i=1

ci(xi:n − x̄) =
n∑

i=1

(ci − cq)(xi:n − x̄)

�
(

n∑
i=1

|ci − cq|q
)1/q( n∑

i=1

|xi:n − x̄|p
)1/p

= n1/p

(
n∑

i=1

|ci − cq|q
)1/q

sp

= Up(c̃)sp,

(1.9)
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say, where 1 < p < ∞ , q = p/(p − 1) , and cq minimizes ‖c̃ − c1̃‖q
q =

n∑
i=1

|ci − c|q ,
c ∈ R . If

min
1�j�n−1

1
j

j∑
r=1

cr <
1
n

n∑
r=1

cr, (1.10)

then M � 2 , and the projection vector c̃ is nonconstant. Furthermore, cq ∈ (c1, cn) is
the unique solution to n∑

i=1

|ci − c|q−1sgn{ci − c} = 0,

and the upper bound in (1.9) is positive. The equality in the latter inequality of (1.9)
holds iff

xi:n = x̄ + spn
1/p |ci − cq|q−1sgn{ci − cq}(

n∑
r=1

|cr − cq|q
)1/p

, i = 1 . . . , n, (1.11)

for arbitrary choices of x̄ ∈ R and sp � 0 . Also, (1.11) satisfy conditions (1.7)
providing the equality in the former inequality as well. In the case

1
j

j∑
r=1

cr � 1
n

n∑
r=1

cr, j = 1, . . . , n − 1, (1.12)

opposite to (1.10), the projection is constant equal to c̃ = c̄1̃ = (c̄, . . . , c̄) . Then
clearly c∗ = cq = c̄ , and the projection bounds of (1.8) and (1.9) amount to 0.
Moreover, (1.11) cannot be defined, because the denominator of the right-hand side
vanishes then. Therefore the projection method provides the sharp strictly positive
upper bounds (1.9) with the unique attainability conditions (1.11) up to arbitrary choice
of location and scale parameters x̄ ∈ R and sp � 0 . It can also be noticed that the
method provides all the negative lower bounds Lp(c̃) . Indeed, setting yi = 2x̄ − xi ,
c′i = cn+1−i , i = 1, . . . , n , for arbitrary x̃, c̃ ∈ Rn , we obtain ȳ = x̄, sp(ỹ) = sp(x̃) ,
yi:n = 2x̄ − xn+1−i:n , i = 1, . . . , n , so that

n∑
i=1

ci
yi:n − ȳ
sp(ỹ)

=
n∑

i=1

ci
x̄ − xn+1−i:n

sp(x̃)
= −

n∑
i=1

cn+1−i
xi:n − x̄
sp(x̃)

and
Lp(c̃) = −Up(c̃) (1.13)

hold. Accordingly Lp(c̃) < 0 iff

min
1�j�n−1

1
j

n∑
r=n+1−j

cr <
1
n

n∑
r=1

cr.

The purpose of this paper is to determine all the nonpositive upper bounds and
nonnegative lower bounds for centered L -statistics in sp units defined in (1.2) and
(1.3). Since (1.13) holds for arbitrary vectors of coefficients, we restrict our theoretical
investigations to the upper bounds. General results are presented in Section 2, and they
are specified for some important examples in Section 3. We also mention that optimal
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negative upper and positive lower bounds for some particular L -statistics were already
presented in the literature. Boyd (1971) and Hawkins (1971) determined negative upper
bound on the sample minimum, and corresponding positive lower bound for the sample
maximum in the standard deviation units. Analogous lower bound on the sample range is
due to Thomson (1955). A generalization to the lower and upper selection differentials
and their differences can be found Mallows and Richter (1969). Fahmy and Proschan
(1981) noted that the zero lower bound for the differences of order statistics cannot be
improved except for the sample range. All the particular inequalities can be concluded
from the statements presented below. Finally, we point out that, independently of the
statistical interpretations, our results provide sharp analytic evaluations for arbitrary
linear combinations of elements of monotone sequences.

2. Main results

Throughout this section we assume that c̃ ∈ Rn is fixed so that (1.12) holds. Let

X = {x̃ = (x1, . . . , xn) : sp > 0} = {x̃ : x1:n < xn:n} ⊂ Rn (2.1)

denote the set of all nonconstant vectors in Rn . We aim at evaluating

Up(c̃) = sup
x̃∈X

n∑
i=1

ci
xi:n − x̄

sp
, 1 � p � +∞.

We show that the bounds are attained by some x̃ with arbitrarily fixed location x̄ ∈ R
and scale sp > 0 . We first consider 1 � p < ∞ .

THEOREM 1. Set

U(j)
p (c̃) =

[
np+1

j(n − j)p + jp(n − j)

]1/p j∑
i=1

(ci − c̄), j = 1, . . . , n − 1, (2.2)

and take x̃(j) ∈ X , j = 1, . . . , n − 1 , satisfying

x(j)
i:n =

⎧⎪⎨
⎪⎩

x̄ − sp(n − j)
[

n
j(n−j)p+jp(n−j)

]1/p
, i = 1, . . . , j,

x̄ + spj
[

n
j(n−j)p+jp(n−j)

]1/p
, i = j + 1, . . . , n,

(2.3)

for some fixed x̄ ∈ R and sp > 0 . Suppose that 1 � j∗ � n− 1 minimizes (2.2). Then

Up(c̃) = sup
x̃∈X

n∑
i=1

ci
xi:n − x̄

sp
=

n∑
i=1

ci
x(j∗)
i:n − x̄

sp
= −U(j∗)

p (c̃). (2.4)

Proof. We easily check that all x̃(j) defined in (2.3) have the sample mean x̄ and
p th absolute central moment sp

p . We also have

n∑
i=1

ci
x(j)
i:n − x̄
sp

=

⎡
⎣−(n − j)

j∑
i=1

ci + j
n∑

i=j+1

ci

⎤
⎦[ n

j(n − j)p + jp(n − j)

]1/p

= −U(j)
p (c̃) � −U(j∗)

p (c̃) � 0,
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by definition and (1.12). Thus it suffices to show that

n∑
i=1

ci
xi:n − x̄

sp
� −U(j∗)

p (c̃), x̃ ∈ X . (2.5)

If

1
j∗

j∗∑
i=1

ci =
1
n

n∑
i=1

ci (2.6)

for some 1 � j∗ � n − 1 , then U(j∗)
p (c̃) = 0 . On the other hand, (1.6) and (1.12)

imply
n∑

i=1

ci
xi:n − x̄

sp
�

n∑
i=1

(ci − c̄)
xi:n − x̄

sp
= 0, x̃ ∈ X , (2.7)

because ci = c̄ , i = 1, . . . , n .
More elaborate arguments are necessary in the case

1
j

j∑
i=1

ci >
1
n

n∑
i=1

ci, j = 1, . . . , n − 1. (2.8)

We obtain (2.7) as well, but here algorithm (1.4) and (1.5) terminates in one step, and,
by (1.7), the equality is attained iff x1:n = . . . = xn:n . Therefore we have

Tc̃(x̃) =
n∑

i=1

ci
xi:n − x̄

sp
=

n∑
i=1

di
xi:n − x̄

sp
< 0, x̃ ∈ X , (2.9)

with di = ci − c̄ , i = 1, . . . , n , such that

j∑
i=1

di >
n∑

i=1

di = 0, j = 1 . . . , n − 1. (2.10)

Consider the closed and bounded subset

X0 =

{
x̃ ∈ Rn :

n∑
i=1

xi = 0,
n∑

i=1

|xi|p = n

}
(2.11)

of standardized elements of (2.1). Continuous function (2.9) restricted to (2.11) takes
on the form

Tc̃(x̃) =
n∑

i=1

dixi:n, x̃ ∈ X0, (2.12)

and attains its finite and strictly negative extremes there. Evidently, these extremes
coincide with the general ones −∞ < Lp(c̃) � Up(c̃) < 0 , because Tc̃(x̃) = Tc̃(x̃0)
for arbitrary x̃ ∈ X with x̃0 = ((x1 − x̄)/sp, . . . , (xn − x̄)/sp) ∈ X0 . Accordingly, it
suffices to maximize (2.12) over (2.11).



HOW DEVIANT CAN YOU BE? THE COMPLETE SOLUTION 639

Take arbitrary a ∈ [−Up(c̃);−Lp(c̃)] ⊂ (0, +∞) . For every x̃ ∈ X0 satisfying
Tc̃(x̃) = −a , define a nondecreasing sequence ỹ ∈ Rn by yi = yi(x̃) = xi:n/a ,
i = 1, . . . , n . Then

n∑
i=1

yi = 0, (2.13)

n∑
i=1

diyi = −1, (2.14)

and
n∑

i=1

|yi|p =
n
ap

∈
[

n
|Lp(c̃)|p ,

n
|Up(c̃)|p

]
⊂ (0, +∞).

Our original problem will be solved once we determine

max

{
n∑

i=1

|yi|p : ỹ ∈ Y

}
(2.15)

(which amounts to n/|Up(c̃)|p ), where

Y =

{
ỹ ∈ Rn : y1 � . . . � yn,

n∑
i=1

yi = 0,
n∑

i=1

diyi = −1

}

for fixed d1, . . . , dn satisfying (2.10). To this end, we change the variables

z0 = y1 ∈ R,

zi = yi+1 − yi � 0, i = 1, . . . , n − 1.

The inverse transformation is

yi =
i−1∑
r=0

zr, i = 1, . . . , n. (2.16)

Combining (2.16) with (2.10), (2.13), and (2.14), yields

n∑
i=1

yi =
n−1∑
i=0

(n − i)zi = 0 (2.17)

n∑
i=1

diyi =
n−1∑
i=0

(
n∑

r=i+1

dr)zi = −
n∑

i=1

Dizi = −1,

where

Di = −
n∑

r=i+1

dr =
i∑

r=1

dr =
i∑

r=1

(cr − c̄) > 0, i = 1, . . . , n − 1. (2.18)
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By (2.16) and (2.17) we get

⎡
⎢⎢⎢⎢⎣

y1

·
·
·
yn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−n
n

2−n
n

3−n
n . . . . . . j−n

n
j−n+1

n . . . − 2
n − 1

n

1
n

2−n
n

3−n
n . . . . . . j−n

n
j−n+1

n . . . − 2
n − 1

n

1
n

2
n

3−n
n . . . . . . j−n

n
j−n+1

n . . . − 2
n − 1

n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . j−n
n . . . . . . . . . . . . . . . . . . .

1
n

2
n

3
n . . . j−1

n
j
n

j−n+1
n . . . − 2

n − 1
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
n

2
n

3
n . . . . . . j

n
j−n+1

n . . . n−2
n

n−1
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

z1

·
·
·

zn−1

⎤
⎥⎥⎥⎥⎦

We denote the n× (n−1) matrix by A , and its columns by A1, . . . , An−1 , respectively.
We restate problem (2.15) as

max

{
‖Az̃‖p

p =
n∑

i=1

|(Az)i|p : z̃ ∈ Z

}

where

Z =

{
z̃ ∈ Rn−1 : zi � 0, i = 1, . . . , n − 1,

n∑
i=1

Dizi = 1

}
, (2.19)

and Di, i = 1, . . . , n − 1 , are fixed positive numbers defined in (2.18). Obviously
z̃ �→ ‖Az̃‖p is a convex function, and (2.19) is a closed convex and bounded body
in Rn−1 . A convex function attains its maximum over a closed bounded and convex
set at some extreme point of the set (see, e.g., Rockafellar (1970, p. 344, Corollary
32.3.1)). Here the function is nonnegative so that raising it to power p does not
affect the maximizers. We also easily see that the extreme points of (2.19) amount to
1
Di

ẽi, i = 1, . . . , n − 1 , where ẽi denotes the i th standard versor in Rn−1 . Therefore

n
|Up(c̃)|p = max

z̃∈Z
‖Az̃‖p

p

= max
1�j�n−1

‖ 1
Dj

Aj‖p
p

= max
1�j�n−1

[
j(n − j)p + (n − j)jp

(nDj)p

]
.

This, together with (2.2) and (2.18), establish (2.5) and complete the proof. �
In contrast to evaluations (1.9), valid under (1.10), ordered samples attaining

bounds (2.4) are not necessarily uniquely defined. Firstly, we observe that (2.2) can be
minimized by different 1 � j � n−1 . It is easy to determine coefficients c1, . . . , cn so
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that all the U(j)
p (c̃) , j = 1, . . . , n − 1 , have arbitrarily chosen nonnegative values. We

first use (2.2) to define respective Dj =
j∑

i=1
(ci − c̄) , j = 1, . . . , n−1 , then calculate the

increments ci − c̄ , i = 1, . . . , n , and possibly add an arbitrary constant c̄ at the end.
Maximizers different from (2.3) are possible under (2.6) provided that at least two
extreme points (2.3) attain the zero bound. Then M > 2 and (2.2) amounts to zero for
all j∗ = j1, . . . , jM−1 . The bound is attained by any x̃ ∈ X satisfying

xjm−1+1:n = . . . = xjm:n = am, m = 1, . . . , M, (2.20)

with

a1 � . . . � am, (2.21)
M∑

i=1

(jm − jm−1)am = nx̄, (2.22)

M∑
i=1

(jm − jm−1)|am − x̄|p = nsp
p. (2.23)

If M = 2 , then (2.20) to (2.23) determine a unique solution.
Negative bounds in case (2.8) cannot be achieved by points different from (2.3).

This were possible for convex combinations of extreme maximizers under condition
that ∥∥∥∥ αDi

Ai +
1 − α

Dj
Aj

∥∥∥∥
p

=
α
Di

‖Ai‖p +
1 − α

Dj
‖Aj‖p (2.24)

for some i 	= j and 0 < α < 1 . If p > 1 , the equality conditions in the Minkowski
inequality (cf, e.g., Mitrinović (1970, Theorem 2.9.1, p. 55)) force Ai and Aj to
be proportional. This is impossible, because each Aj has the first j values equal to
j−n
n < 0 , and the other n − j ones are j

n > 0 . In the case p = 1 , (2.24) holds if
the signs of consecutive elements of Ai coincide with their counterparts for Aj , which
is also impossible. Observe that (2.2) has much simpler representations in the most
interesting cases p = 1 and p = 2

U(j)
1 (c̃) =

n2

2j(n − j)

j∑
i=1

(ci − c̄), j = 1, . . . , n − 1,

U(j)
2 (c̃) =

n√
j(n − j)

j∑
i=1

(ci − c̄), j = 1, . . . , n − 1.

Slightly modifying arguments of the proof, we derive analogous bounds for p =
+∞ . Verification of details is left to the reader.

THEOREM 2. Put

U(j)
∞(c̃) =

n
max{j, n − j}

j∑
i=1

(ci − c̄), j = 1, . . . , n − 1, (2.25)
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and choose x̃(j) ∈ X , j = 1, . . . , n − 1 , satisfying

x(j)
i:n =

{
x̄ − s∞, i = 1, . . . , j,
x̄ + s∞ j

n−j , i = j + 1, . . . , n,
1 � j � n

2
, (2.26)

x(j)
i:n =

{
x̄ − s∞ n−j

j , i = 1, . . . , j,
x̄ + s∞, i = j + 1, . . . , n,

n
2

� j � n − 1. (2.27)

If 1 � j∗ � n − 1 minimizes (2.25), then

U∞(c̃) = sup
x̃∈X

n∑
i=1

xi:n − x̄
s∞

=
n∑

i=1

ci
x(j∗)
i:n − x̄
s∞

= −U(j∗)
∞ (c̃). (2.28)

If (2.6) holds, the attainability conditions of zero bound are (2.20) to (2.22) with
(2.23) replaced by

max{x̄ − a1, am − x̄} = s∞.

Under (2.8), we should check the requirements for (2.24) with p = ∞ . The supremum
normof the sum of two vectors amounts to the sumof the norms iff both the vectors attain
their maximal absolute value at a common coordinate, and the signs of the respective
values coincide. In particular, this property holds for the pairs Ai, Aj if either i, j � n

2
or i, j � n

2 . This means that if (2.25) is minimized at some 1 � j∗1 < . . . < j∗k � n−1 ,
then bound (2.28) is attained by convex combinations of (2.26) for some 1 � j∗i � n

2
and those of (2.27) with n

2 � j∗i � n − 1 .

3. Special cases

We specify the general results for some exemplary L -statistics of significant in-
terest. We confine ourselves to presenting lower bounds, because positive L -statistics,
especially ones used in estimating dispersion parameters, are more popular than negative
ones.

EXAMPLE 1. Samplemaximum xn:n with the coefficient vector c̃ = ẽn = (0, . . . , 0, 1) .

In order to get the lower bounds, we transform it into c̃′ = ẽ1 = (1, 0, . . . , 0) and
determine

L(j)
p (ẽn) = U(j)

p (ẽ1) =
[

n(n − j)p

j(n − j)p + jp(n − j)

]1/p

, 1 � p < ∞,

L(j)
∞(ẽn) = U(j)

∞(ẽ1) = min

{
n − j

j
, 1

}
.

The former is decreasing in j , and so

xn:n − x̄
sp

�
[

n
(n − 1)p + n − 1

]1/p

, 1 � p < +∞, (3.1)
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and the equality is achieved by (2.3) with j∗ = n − 1 . The latter implies

xn:n − x̄
s∞

� 1
n − 1

, (3.2)

and the equality holds for (2.27) with any n
2 � j � n − 1 . Especially, for p = 1 and

p = 2 we have

xn:n − x̄
s1

� n
2(n − 1)

, (3.3)

xn:n − x̄
s2

� 1√
n − 1

. (3.4)

Negatives of (3.1) to (3.4) are the respective upper bounds for the sample minimum.
Inequality (3.1) was derived by Beesack (1973), whereas (3.4) independently by Boyd
(1971) and Hawkins (1971).

EXAMPLE 2.Differences of order statistics xk:n − xj:n , 1 � j < k � n .

Here c̃ = ẽk − ẽj , c̃′ = ẽn+1−k − ẽn+1−j , c̄ = 0 , and so

D′
i =

i∑
r=1

c′r =

⎧⎨
⎩

0, i = 1, . . . , n − k,
1, i = n + 1 − k, . . . , n − j,
0, i = n + 1 − j, . . . , n − 1.

(3.5)

It follows that if either n − k � 1 or n + 1 − j � n − 1 , i.e. for all pairs except for
(j, k) = (1, n) we have

sup
x̃∈X

xk:n − xj:n

sp
= 0, 1 � p � +∞,

and the zero bound is attained by (2.3) and (2.26), (2.27), respectively, with either
j∗ < j or j∗ > k . It is also easily deduced once we realize that the dual problem is to
maximize ‖x̃− x̄1̃‖p under the constraint xk:n − xj:n = 1 . If either j > 1 or k < n , we
can remove one of the extremes arbitrarily far increasing the norm to infinity without
affecting the restriction. It was firstly noted by Fahmy and Proschan (1981).

In the exceptional case of the sample range, (3.5) rewrites into Di = 1 , for
i = 1, . . . , n − 1 . Therefore

L(j)
p (ẽn − ẽ1) =

[
np+1

j(n − j)p + jp(n − j)

]1/p

, 1 � p < ∞, (3.6)

L(j)
∞(ẽn − ẽ1) =

n
max{j, n − j} (3.7)

are to be minimized with respect to 1 � j � n − 1 . Analysis of (3.6) and (3.7) is
of special interest due to the fact that these are the common factors independent of the
coefficient vector c̃ which appear in evaluations of all L -statistics. For solving the first
problem, we maximize

f p(x) = x(1 − x)p + xp(1 − x), 0 � x � 1, (3.8)
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for fixed p � 1 . This is a positive function symmetric about 1
2 , and vanishing at

the ends. It has an odd number of extremes located symmetrically about 1
2 . Simple

calculus arguments show that 1
2 is a local maximum point for 1 � p � 3 , and it is

a minimum for p > 3 . We claim that this is the global maximum in the first case,
and otherwise there is a unique symmetric pair of maximizers x1,p = 1 − x2,p ∈ (0, 1

2 )
determined by the equation

f ′
p(x) = (1 − x)p − px(1 − x)p−1 + pxp−1(1 − x) − xp = 0. (3.9)

We shall have established the claim once we show that the derivative has less than five
zeros in (0, 1) . Dividing it by (1 − x)p and introducing a new variable y = x

1−x ∈
(0, +∞) , we derive function

gp(y) = 1 − py + pyp−1 − yp, 0 < y < ∞,

with the same number of zeros. We easily check that this is strictly convex on (0, p−2)
and strictly concave on (p − 2,∞) . It can have two zeros at most in each interval, and
there are no more than three altogether. If 1 � p � 3 , then x = 1

2 is the maximum
point of (3.8) and so there are no other extremes elsewhere. If p > 3 , then x = 1

2 is a
minimum and it has to be a symmetric pair of (global) maxima uniquely determined by
(3.9). For instance, x1,4 = 1 − x2,4 = 1

2 − 1√
12

. Since

L(j)
p (ẽn − ẽ1) = f −1/p

p

(
j
n

)
,

we arrive at the following conclusions. If 1 � p � 3 and n is even, then

xn:n − x1:n

sp
� 2, 1 � p < ∞,

and the bound is attained for the symmetric sample (2.3) with j∗ = n
2 . If n is odd, then

xn:n − x1:n

sp
�
{

(2n)p+1

(n2 − 1)[(n + 1)p−1 + (n − 1)p−1]

}1/p

.

For p > 3 , (3.6) is minimized at either of integer neighbors j = 
nxi,p�, �nxi,p of
nxi,p , i = 1, 2 . We exclude j = 0 and j = n in the case x1,p < 1

n . We can see that xi,p

approach the borders of the domain, as p increases. For p = ∞ , (3.7) implies

xn:n − x1:n

s∞
� n

n − 1

with j∗ equal either to 1 or n − 1 .

EXAMPLE 3.Gini mean differences

1
n(n − 1)

n∑
i,j=1

|xi − xj| =
2

n(n − 1)

n∑
i=1

(2i − n − 1)xi:n.
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Here we have

c′i = −ci =
2(n + 1 − 2i)

n(n − 1)
, i = 1, . . . , n,

c̄ = 0 , and

D′
j =

j∑
i=1

c′i =
2j(n − j)
n(n − 1)

, j = 1, . . . , n − 1.

Out objective is to minimize

L(j)
p (c̃) =

2n1/pj(n − j)
(n − 1)[j(n − j)p + jp(n − j)]1/p

, 1 � p < ∞,

and

L(j)
∞(c̃) =

2j(n − j)
(n − 1) max{j, n − j}

for j = 1, . . . , n − 1 . Both sequences are symmetric about n
2 , and first increasing and

then decreasing. Therefore

1
n(n − 1)

n∑
i,j=1

|xi − xj|
sp

� L(1)
p (c̃) = L(n−1)

p (c̃) = 2

[
n

(n−1)p+n−1

]1/p

, 1�p<+∞,

1
n(n − 1)

n∑
i,j=1

|xi − xj|
s∞

� L(1)
∞ (c̃) = L(n−1)

∞ (c̃) =
2

n − 1
.

EXAMPLE 4.Mean absolute median deviation

1
n

n∑
i=1

|xi − med(x̃)| =
1
n

∑
i� n

2 +1

xi:n − 1
n

∑
i� n

2

xi:n.

For 1 � p < ∞ , we have

L(j)
p (c̃) =

n1/p min{j, n − j}
[j(n − j)p + jp(n − j)p]1/p

if j � n
2

and j � n
2

+ 1, (3.10)

and

L((n+1)/2)
p (c̃) =

{
2n(n − 1)p−1

(n + 1)[(n − 1)p−1 + (n + 1)p−1]

}1/p

(3.11)

for the sample median in the odd sized samples. Sequence (3.10) is symmetric about
n
2 and has the minimal value

L(1)
p (c̃) = L(n−1)

p =
[

n
(n − 1)p + n − 1

]1/p

.
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This is equal to (3.11) for n = 3 (which is obvious since n+1
2 = n − 1 then), and

strictly less for all odd n > 3 . Therefore

1
n

n∑
i=1

|xi − med(x̃)|
sp

�
[

n
(n − 1)p + n − 1

]1/p

, 1 � p < ∞. (3.12)

We can check in a similar manner that

1
n

n∑
i=1

|xi − med(x̃)|
s∞

� 1
n − 1

. (3.13)

Both (3.12) and (3.13) are attained when all the elements of the sample except for one
are identical.

Note that all these bounds are identical with the respective ones for the sample maximum
and twice less than the bounds for the Gini mean differences. All they vanish at the
rate O(n−(1−1/p)) , as n → ∞ . For p = +∞ , the convergence rate is O(n−1) , and
the limits are strictly positive for p = 1 . For the sample range, the limits of the lower
bounds range between 1 and 2 for all 1 � p � +∞ .
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