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AN EXPLICIT REPRESENTATION AS QUASI–SUM OF SQUARES

OF A POLYNOMIAL GENERATED BY THE AG INEQUALITY

T. V. TARARYKOVA

(communicated by P. S. Bullen)

Abstract. An explicit representation of the difference (x1+· · ·+xn)n−nnx1 · · · xn for all natural
n � 2 is given as a sum of pij(xi − xj)2 over all 1 � i < j � n where pij = pij(x1, . . . , xn)
are homogeneous polynomials of degree n − 2 whose coefficients at all possible monomials of
degree n − 2 are positive.

1. Introduction

In paper [2] by I. Gusić it was proved that the homogeneous symmetric polynomial

(x1 + · · · + xn)n − nnx1 · · · xn (1)

of degree n � 2 is a quasi-sum of squares, i. e. it can be represented in the form

(x1 + · · · + xn)n − nnx1 · · · xn =
∑

1�i<j�n

pij(x1, . . . , xn)(xi − xj)2 , (2)

where pij are homogeneouspolynomials of degree n−2 with non-negative coefficients.
This representation clearly implies the inequality

(x1 + · · · + xn)n � nnx1 · · · xn

for all non-negative real numbers x1, . . . , xn with equality if and only if x1 = · · · = xn ,
which can be viewed as one of the algebraic versions of the arithmetic-geometric (AG)
inequality

x1 + · · · + xn

n
� n

√
x1 · · · xn .

(Another one is xn
1 + · · · + xn

n � n x1 · · · xn . )
In particular, the following formulas were derived

(x1 + x2 + x3)3 − 33x1x2x3

=
1
2

(
(x1+x2+7x3)(x1−x2)2+(x1+7x2+x3)(x1−x3)2+(7x1+x2+x3)(x2−x3)2

)
,

(3)
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(x1 + x2 + x3 + x4)4 − 44x1x2x3x4

=
1
3

(
(x2

1 + x2
2 + 11(x2

3 + x2
4) + 14x1x2 + 58x3x4)(x1 − x2)2 + · · · ), (4)

(x1 + x2 + x3 + x4 + x5)5 − 55x1x2x3x4x5

=
1
24

(
(6(x3

1 + x3
2) + 122(x3

3 + x3
4 + x3

5) + 132(x2
1x2 + x1x

2
2)

+361(x2
3x4 + x3x

2
4 + x2

3x5 + x3x
2
5 + x2

4x5 + x4x
2
5)

+362x1x2(x3 + x4 + x5) + 3606x3x4x5)(x1 − x2)2 + · · · ) .

(5)

Dots mean that the polynomial coefficient pij(x1, . . . , xn) at (xi − xj)2 is obtained
from the polynomial coefficient p12(x1, . . . , xn) at (x1 − x2)2 by swapping x1 and xi ,
x2 and xj respectively.

Even more complicated formula for n = 6 was also derived, however, no closed
general formula for the difference (1) for an arbitrary natural n � 2 was given.

In this paper we derive a general representation of the difference (1) as a quasi-sum
of squares for an arbitrary natural n � 2 . For n = 3 it coincides with (3), but for
n = 4, 5 it differs from (4) and (5).

2. Non-uniqueness of the representation as quasi-sum of squares

We note that representations (3), (4) and (5) are representations of type (2) where
the polynomial coefficients pij at (xi − xj)2 satisfy the following conditions:

(c1) pij is obtained from p12 by swapping x1 and xi and also x2 and xj ,
and

(c2) p12 is symmetric in x1, x2 and also in x3, . . . , xn .
With these assumptions for n = 3 representation (3) is defined uniquely: see

Corollary 1 below.
However there is no uniqueness for n > 3 . For example, for n = 4 all represen-

tations (2) satisfying conditions (c1) and (c2) have the form

(x1 + x2 + x3 + x4)4 − 44x1x2x3x4

=
1
3

(
(x2

1 + x2
2 + 11(x2

3 + x2
4) + 14x1x2 + 58x3x4

−α(2x1x2 − (x1 + x2)(x3 + x4) + x2
3 + x2

4))(x1 − x2)2 + · · · )
=

1
3

(
x2
1 + x2

2 + (11 − α)(x2
3 + x2

4) + (14 − 2α)x1x2

+α(x1 + x2)(x3 + x4) + 58 x3x4
)
(x1 − x2)2 + · · · ), where 0 α ∈ R

(6)

0Note that, for n = 3 , condition (c1) implies condition (c2) , because by (c1)

(x1 + x2 + x3)3 − 33x1x2x3

= p12(x1, x2, x3)(x1 − x2)2 + p12(x1, x3, x2)(x1 − x3)2 + p12(x2, x3, x1)(x2 − x3)2

and the polynomial p12(x1, x3, x2)(x1 − x3)2 + p12(x2, x3, x1)(x2 − x3)2 is symmetric in x1, x2 .
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All coefficients of p12 are non-negative if and only if 0 � α � 7 and in this case
this is a quasi-sum-of-squares representation. For α = 0 (6) coincides with (4). In the
other limit case α = 7 it takes the form

(x1 + x2 + x3 + x4)4 − 44x1x2x3x4

=
1
3

(
x2
1 + x2

2 + 4(x2
3 + x2

4) + 7(x1 + x2)(x3 + x4) + 58 x3x4
)
(x1 − x2)2 + · · · ). (7)

In the limit cases the coefficients of the polynomial p12 at some monomials of
degree 2 are equal to 0. In all non-limit cases, when 0 < α < 7 , all coefficients of p12

at all monomials of degree 2 are positive. Representation (6) follows by equating the
coefficients at all monomials of degree 4 in (2) (due to symmetry it suffices to consider
the monomials x4

1, x
3
1x2, x2

1x
2
2, x

2
1x2x3, x1x2x3x4 ) and solving the corresponding system

of 5 linear equations in 4 unknowns.)
Moreover, if one omits conditions (c1) and (c2) , then there is no uniqueness also

for n = 3 . For n = 3 all representations (2) have the form

(x1 + x2 + x3)3 − 33x1x2x3

=
1
2

(
(αx1 + βx2 + (9 − α − β)x3)(x1 − x2)2

+(2 − α)x1 + (6 + 2α − β)x2 + (1 − α + β)x3)(x1 − x3)2

+(6 − α + 2β)x1 + (2 − β)x2 + (1 + α − β)x3)(x2 − x3)2
)
, where α ∈ R.

(8)

All coefficients are non-negative if and only if 0 � α, β � 2 and |α − β | � 1
and in this case this is a quasi-sum-of-squares representation. If α = β = 1 , then (8)
coincides with (3). If α = 1, β = 2 it takes the form

(x1 + x2 + x3)3 − 33x1x2x3

=
1
2

(
(x1+2x2+6x3)(x1−x2)2+(x1+6x2+2x3)(x1−x3)2+9x1(x2−x3)2

)
.

(9)

In all limit cases, when (α, β) belongs to the boundary of the hexagon defined by
0 � α, β � 2 and |α −β | � 1 at least one of the coefficients at x1, x2 or x3 of at least
one of the polynomials p12, p13 or p23 is equal to 0, as for example in (9). In all non-
limit cases, when (α, β) is inside that hexagon, all coefficients at x1, x2 and x3 of all
polynomials p12, p13 and p23 are positive. Representation (8) also follows by equating
the coefficients at all monomials of degree 3 in (2) and solving the correspondingsystem
now of 10 linear equations in 9 unknowns.

LEMMA 1. Assume that for a polynomial qd(x1, x2, x3) of degree d symmetric in
x1, x2

qd(x1, x2, x3)(x1−x2)2+qd(x1, x3, x2)(x1−x3)2+qd(x2, x3, x1)(x2−x3)2 = 0 (10)

for all x1, x2, x3 ∈ R .
If d < 2 , then qd ≡ 0 . If d = 2 , then q2 is defined uniquely up to a constant

multiple:
q2(x1, x2, x3) = c(x1 − x2)(x2 − x3) , (11)
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where1 c ∈ R . If d > 2 , then

qd(x1, x2, x3) = (x1 − x2)(x2 − x3)qd−2(x1, x2, x3) , (12)

where the polynomial qd−2 , which is also symmetric in x1, x2 , satisfies the equation

qd−2(x1, x2, x3)(x1−x2)−qd−2(x1, x3, x2)(x1−x3)+qd−2(x2, x3, x1)(x2−x3)=0 (13)

for all x1, x2, x3 ∈ R .

Proof. Equality (10) with x2 = x3 implies that qd(x1, x2, x2) = 0. Therefore, for
some polynomial qd−1 of degree d − 1 , qd(x1, x2, x2) = (x2 − x3)qd−1(x1, x2, x3) . By
(10)

qd−1(x1, x2, x3)(x1 − x2)2 − qd−1(x1, x3, x2)(x1 − x3)2

−qd−1(x2, x3, x1)(x1 − x3)(x2 − x3) = 0
(14)

for all x1, x2, x3 ∈ R . If x1 = x3 , this equality implies that, for some polynomial qd−2

of degree d−2 , qd−1(x1, x2, x2) = (x1 − x3)qd−2(x1, x2, x3) and equality (12) follows.
Moreover equality (14) implies that

(x1 − x3)qd−2(x1, x2, x3)(x1 − x2)2 − (x1 − x2)qd−2(x1, x3, x2)(x1 − x3)2

−(x2 − x1)qd−2(x2, x3, x1)(x1 − x3)(x2 − x3) = 0

and, hence, (13) for all x1, x2, x3 ∈ R . �

REMARK 1. Equation (13) is satisfied by any polynomial qd−2 of the form

qd−2(x1, x2, x3) = q(1)
d−2(x1, x2, x3) + x3q

(2)
d−3(x1, x3, x2), (15)

where q(1)
d−2, q

(2)
d−3 are polynomials of degrees d − 2 , d − 3 respectively, symmetric

in x1, x2, x3 . This easily follows since (x1 − x2) − (x1 − x3) + (x2 − x3) = 0 and
x3(x1 − x2) − x2(x1 − x3) + x1(x2 − x3) = 0 .

COROLLARY 1. For n = 3 representation (2) where homogeneous polynomials
pij, 1 � i < j � 3, of degree 1 satisfy condition (c1) is unique and has form (3) .

Proof. If there are two such representations with polynomials p(1)
ij and p(2)

ij , then

by subtracting we obtain equation (10) with the polynomial q1 = p(1)
12 − p(2)

12 . Hence

q1(x1, x2, x3) ≡ 0 =⇒ p(1)
12 = p(2)

12 =⇒ p(1)
ij = p(2)

ij for all 1 � i < j � 3. �

COROLLARY 2. Let n � 4 , qn−4, qn−5 be symmetric polynomials of orders n−4 ,
n − 5 respectively (if n = 4 it is assumed that qn−5 ≡ 0) , and

qn−2(x1, . . . , xn)

= ((n−2)x1x2 − (x1+x2)(x3+ · · ·+xn)+x2
3+ · · ·+x2

n)qn−4(x1, . . . , xn)

+(x1x2(x3+ · · ·+xn)−(x1+x2)(x2
3+ · · ·+x2

n)+x3
3+ · · ·+x3

n)qn−5(x1, . . . , xn).

(16)

1 In this paper we only consider polynomials of real-valued variables with real-valued coefficients.
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Then
∑

1�i<j�n

qn−2(xi, xj . . . , xi−1, x1, xi+1, . . . , xj−1, x2, xj+1, . . . , xn)(xi − xj)2 = 0 . (17)

REMARK 2 . If n = 4 , then

q2(x1, x2, x3, x4) = c(2x1x2 − (x1 + x2)(x3 + x4) + x2
3 + x2

4) ,

where c ∈ R , which is the polynomial that enters formula (6) .

Proof. By linearity it suffices to prove equality (17) with qn−2 replaced by q(1)
n−2

and by q(2)
n−2 , where

q(1)
n−2(x1, . . . , xn)=((n−2)x1x2−(x1+x2)(x3+ · · ·+xn)+x2

3+ · · ·+x2
n)qn−4(x1, . . . , xn)

and

q(2)
n−2(x1, . . . , xn)

= (x1x2(x3 + · · · + xn) − (x1 + x2)(x2
3 + · · · + x2

n) + x3
3 + · · · + x3

n)qn−5(x1, . . . , xn) .

By Lemma 1 and Remark 1

∑
1�i<j<k�n

[
(xi − xk)(xj − xk)qn−4(x1, . . . , xn)(xi − xj)2

+ (xi − xj)(xk − xj)qn−4(x1, . . . , xn)(xi − xk)2

+ (xj − xi)(xk − xi)qn−4(x1, . . . , xn)(xj − xk)2
]

= 0 .

Splitting this sum into three sub-sums, swapping k and j in the second sub-sum
and replacing i by k , j by i and k by j in the third sub-sum, we get

( ∑
1�i<j<k�n

+
∑

1�i<k<j�n

+
∑

1�k<i<j�n

)
(xi − xk)(xj − xk)qn−4(x1, . . . , xn)(xi − xj)2

=
∑

1�i<j�n

(∑
k �=i,j

(xi − xk)(xj − xk)
)
qn−4(x1, . . . , xn)(xi − xj)2

=
∑

1�i<j�n

((n − 2)xixj − (xi + xj)(x3 + · · · + xi−1 + xi+1 + · · · + xj−1 + xj+1 + · · · + xn)

+x2
3 + · · · + x2

i−1 + x2
i+1 + · · · + x2

j−1 + x2
j+1 + · · · + x2

n)qn−4(x1, . . . , xn)(xi − xj)2

=
∑

1�i<j�n

q(1)
n−2(xi, xj . . . , xi−1, x1, xi+1, . . . , xj−1, x2, xj+1, . . . , xn)(xi − xj)2 = 0.
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The proof for q(2)
n−2 is similar. One should only note that

∑
k �=i,j

(xi − xk)(xj − xk)xk

= xixj(x3 + · · · + xi−1 + xi+1 + · · · + xj−1 + xj+1 + · · · + xn)

−(xi + xj)(x2
3 + · · · + x2

i−1 + x2
i+1 + · · · + x2

j−1 + xj+1 + · · · + x2
n)

+x3
3 + · · · + x3

i−1 + x3
i+1 + · · · + x3

j−1 + x3
j+1 + · · · + x3

n. �

COROLLARY 3. For n > 3 there exist infinitely many representations (2) where
homogeneous polynomials pij, 1 � i < j � n, of degree n − 2 satisfy conditions (c1)
and (c2) and all coefficients of the polynomial p12 at all possible monomials of degree
n − 2 are positive.

Proof. Existence of such polynomials will be proved in Section 3 (see Theorem 1
and Remark 4). If representation (2) holds with some polynomial satisfying the stated
conditions, then by Corollary 2 it also holds if the polynomial p12 is replaced by the
polynomial

p12(x1, . . . , xn)+ε((n−2)x1x2−(x1+x2)(x3+· · ·+xn)+x2
3+· · ·+x2

n)(x1+· · ·+xn)n−4,

satisfying condition (c2) , and all other polynomials are defined via it by condition (c1) .
It suffices to note that for sufficiently small ε > 0 all coefficients of this polynomials
pij are positive. �

3. Explicit representations as quasi-sum of squares

We start with two general observations.

LEMMA 2. For all natural n � 2 and all representations (2) the sum of all

coefficients of the polynomials pij is equal to nn−1

2 for all 1 � i < j � n .

Proof. In (2) let x1 = 1 + ξiε, i = 1, . . . , n, with arbitrary ε, ξ1, . . . , ξn ∈ R .
Then

nn
[(

1 +
1
n
(ξ1 + · · · + ξn)ε

)n − (1 + ξ1ε) · · · (1 + ξnε)
]

= ε2
∑

1�i<j�n

pij(1 + ξ1ε, . . . , 1 + ξnε)(ξi − ξj)2.

Dividing by ε2 and passing to the limit as ε → 0 , we get

nn
[

n−1
2n (ξ1 + · · · + ξn)2 − (ξ1ξ2 + · · · + ξn−1ξn)

]
=

∑
1�i<j�n

pij(1, . . . , 1)(ξi − ξj)2.

Since this equality holds for all ξ1, . . . , ξn ∈ R , equating coefficients at ξiξj , we get
nn( n−1

n − 1) = −2pij(1, . . . , 1) . Hence, the sum of all coefficients of the polynomial

pij is equal to pij(1, . . . , 1) = nn−1

2 . �
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LEMMA 3. For all natural n � 2 and all representations (2) with polynomials
pij satisfying conditions (c1) and (c2) , in the polynomial p12 the coefficients at xn−2

1

and xn−2
2 are equal to 1

n−1 and the coefficient at x3 · · · xn is equal to nn−1−(n−1)!
n−1 .

REMARK 3 . If n = 2, 3 , these properties, together with the property of Lemma
2, uniquely define representation (2) with polynomials pij satisfying conditions (c1)
and (c2) . If n = 4 , then in the polynomial p12(x1, x2, x3, x4) the coefficients at x2

1 and
x2
2 are always equal to 1

3 , the coefficient at x3x4 is always equal to 58
3 , and the sum of

all coefficients is equal to 32 (as in formulas (4), (6), (7), and formula (20) below). If
respectively n = 5 , then in the polynomial p12(x1, x2, x3, x4, x5) the coefficients at x2

1
and x2

2 are always equal to 1
4 , the coefficient at x3x4x5 is always equal to 601

4 , and the
sum of all coefficients is equal to 625

2 (as in formula (5) and formula (21) below).
For n = 3 in representation (8) for any α, β ∈ R the sums of all coefficients of

the polynomials p12, p13 and p23 , which do not satisfy conditions (c1) and (c2) if
(α, β) �= (1, 1) , are equal to 9

2 which conforms with Lemma 2.

Proof. Let

p12(x1, . . . , xn) = α1x
n−2
1 + α2x

n−2
2 + · · · + βx3 · · · xn.

Then, for 1 � j � n ,

p1j(x1, . . . , xn) = α1x
n−2
1 + · · · + βx2 · · · xj−1xj+1 · · · xn.

and, for 1 < i < j � n ,

pij(x1, . . . , xn) = α1x
n−2
j · · · + βx2 · · · xi−1xi+1 · · · xj−1xj+1 · · · xn.

Next we equate in (2) the coefficients at xn
1 . In the right-hand side we should

only consider the summands with i = 1, 2 � j � n , hence 1 = α1(n − 1) . Similarly
1 = α2(n − 1) . So α1 = α2 = 1

n−1 .

Equating coefficients at x1 · · · xn , we get n! − nn = −2β
(n
2

)
, hence β =

nn−1−(n−1)!
n−1 . �

Let s0 ≡ 1 , for k = 1, . . . , n

sk(x1, . . . , xn) = x1 · · · xk−1xk + x1 · · · xk−1xk+1 + · · · + xn−k+1 · · · xn−1xn

be the standard symmetric polynomial in variables x1, . . . , xn and, for 1 � i < j � n ,

s(ij)
k (x1, . . . , xn) = sk(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn) .

THEOREM 1. For all natural n � 2 representation (2) holds with

pij =
n−2∑
k=0

nk

(
n − 1
k + 1

)−1

sn−2−k
1 s(ij)

k . (18)
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REMARK 4 . Note that in the polynomials pij all coefficients at all possible mono-
mials of degree n − 2 are positive. Moreover, all of them are greater than or equal to

1
n−1 .

Proof. First we note that for any natural m � n − 1

s1(x1, . . . , xn)sm(x1, . . . , xn)

= αm

∑
1�i<j�n

sm−1(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn)(xi − xj)2

+βmsm+1(x1, . . . , xn) ,

(19)

where
αm =

1
n − m

, βm =
n(m + 1)
n − m

.

This follows since the polynomials under consideration only contain monomials of the
forms xk1xk2 · · · xkm+1 where all k1, k2 . . . , km+1 are distinct and x2

k1
xk2 · · · xkm where all

k1, k2 . . . , km are distinct. Due to symmetry equating coefficients at these monomials
implies that equality (19) holds if and only if

m + 1 = −2

(
m + 1

2

)
αm + βm , 1 = (n − m)αm.

By (19) with m = 1

s2
1(x1, . . . , xn) = α1

∑
1�i<j�n

(xi − xj)2 + β1s2(x1, . . . , xn).

Multiplying this equality by s1(x1, . . . , xn) and applying (19) with m = 2 we get

s3
1(x1, . . . , xn)

=
∑

1�i<j�n

(
α1s1(x1, . . . , xn) + β1α2s

(ij)
1 (x1, . . . , xn)

)
(xi − xj)2 + β1β2s3(x1, . . . , xn) .

Similarly

s4
1(x1, . . . , xn) =

∑
1�i<j�n

(
α1s

2
1(x1, . . . , xn) + β1α2s1(x1, . . . , xn)s

(ij)
1 (x1, . . . , xn)

+ β1β2α3s
(ij)
2 (x1, . . . , xn)

)
(xi − xj)2 + β1β2β3s4(x1, . . . , xn),

and so on. Thus we get

sn
1(x1, · · · , xn) =

∑
1�i<j�n

( n−2∑
k=0

β1 · · · βkαk+1s
n−2−k
1 (x1, . . . , xn)s

(ij)
k (x1, . . . , xn)

)
(xi−xj)2

+ β1 · · ·βn−1sn(x1, . . . , xn).

If k = 0 , we assume that β1 · · · βkαk+1

∣∣∣
k=0

= α1 .



AN EXPLICIT REPRESENTATION OF A POLYNOMIAL GENERATED BY THE AG INEQUALITY 657

Finally we note that

β1 · · ·βn−1 =
2n

n − 1
· 3n
n − 2

· · · (n − 1)n
2

· n · n
1

= nn

and, for k = 0, 1, . . . , n − 2 ,

β1 · · · βkαk+1 =
2n

n − 1
· 3n
n − 2

· · · (k + 1)n
n − k

· 1
n − k − 1

=
nk(k + 1)!

(n − 1) · · · (n − k + 1)
= nk

(
n − 1
k + 1

)−1

,

hence the statement follows. �
Let us consider several particular cases of (18). If n = 3 , then formula (18)

coincides with (3) (which should be by Corollary 1).
If n = 4 , then

(x1 + x2 + x3 + x4)4 − 44x1x2x3x4

=
1
3

(
((x1+x2+x3+x4)2+4(x1+x2+x3+x4)(x3+x4)+48x3x4)(x1−x2)2+ · · · )

=
1
3

(
(x2

1 + x2
2 + 5(x2

3 + x2
4) + 2x1x2+6(x1+x2)(x3+x4)+58x3x4)(x1−x2)2+ · · · ),

(20)
which coincides with (6) if there α = 6 .

If n = 5 , then

(x1 + x2 + x3 + x4 + x5)5 − 55x1x2x3x4x5

=
1
24

(
6(x1+x2+x3+x4+x5)3+20(x1+x2+x3+x4+x5)2(x3+x4+x5)

+150(x1+x2+x3+x4+x5)(x3x4+x3x5+x4x5)+3000x3x4x5)(x1−x2)2+ · · · )
=

1
24

(
6(x3

1 + x3
2) + 26(x3

3 + x3
4 + x3

5) + 18(x2
1x2 + x1x

2
2)

+228(x2
3x4 + x3x

2
4 + x2

3x5 + x3x
2
5 + x2

4x5 + x4x
2
5)

+76x1x2(x3+x4+x5)+38(x2
1+x2

2)(x3+x4+x5)+58(x1+x2)(x2
3+x2

4+x2
5)

+266(x1 + x2)(x3x4 + x3x5 + x4x5) + 3606x3x4x5)(x1 − x2)2 + · · · ) .

(21)

We conclude by deriving a corollary of Theorem 1 which may be of independent
interest.

THEOREM 2. For all natural n � 2

(x1 + · · · + xn)n − nnx1 · · · xn � 1
n−1 (x1 + · · · + xn)n−2

∑
1�i<j�n

(xi − xj)2 (22)

for all non-negative x1, . . . , xn .
If n � 3 , then, for non-negative x1, . . . , xn , equality holds if and only if all

x1, . . . , xn are equal or all of them but one are equal to 0 .
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Proof. For non-negative x1, . . . , xn inequality (22) follows by equality (2) where
pij are defined by (18) because all summands in the right-hand side of (2) are non-
negative and the summands corresponding to k = 0 have the form∑

1�i<j�n

1
n−1 (x1 + · · · + xn)n−2(xi − xj)2 .

Next assume that n � 3 , all x1, . . . , xn are non-negative and equality holds in
(22). By (2) and (18) this can happen if and only if

( n−2∑
k=1

nk

(
n − 1
k + 1

)−1

(x1 + · · · + xn)n−2−ks(ij)
k (x1, . . . , xn)

)
(xi − xj)2 = 0 (23)

for all 1 � i < j � n . This is clearly satisfied if all x1, . . . , xn are equal. Let not
all of them be equal, say x1 �= x2 . Then, by (23) with i = 1, j = 2 and k = 1 ,
x3 + · · · + xn = 0 , hence x3 = · · · = xn = 0 . Next, by (23) with i = 2, j = 3 and
k = 1 , (x1 + x4 + · · · + xn)x2

2 = 0 , hence x1x2 = 0 . So either x1 = 0 or x2 = 0 ,
in which case equalities (23) are satisfied for all 1 � i < j � n . Indeed, if say
x2 = · · · = xn = 0 , then for i �= 1 (xi − xj)2 = 0 , and for i = 1 s1j

k (x1, . . . , xn) = 0
for all 1 � k � n − 2 . �

REMARK 5. Recall that an explicit representation as quasi-sum of squares of the
polynomial xn

1 + · · ·+ xn
n − n x1 · · · xn related to the second algebraic version of the AG

inequality, mentioned in the Introduction, was obtained long ago by A. Hurwitz [3] . In
[3] it was proved that

xn
1 + · · · + xn

n − n x1 · · · xn =
∑

1�i<j�n

qij(x1, . . . , xn)(xi − xj)2, (24)

where

qij(x1, . . . , xn)

= 1
(n−1)!

n−1∑
k=1

αk,n(xn−k−1
i + xn−k−2

i xj + · · · + xn−k−1
j )x1 · · · xi−1xi+1 · · · xj−1xj+1 · · · xk+1

and
αk,n = (k − 1)! (n − k − 1)! .

In particular,

x3
1 + x3

2 + x3
3 − 3 x1x2x3 =

1
2
(x1 + x2 + x3)

(
(x1 − x2)2 + (x1 − x3)2 + 9x2 − x3)2

)
,

x4
1 + x4

2 + x4
3 + x4

4 − 4 x1x2x3x4

=
1
6

(
(2(x2

1 + x1x2 + x2
2) + (x1 + x2)x3 + 2x3x4)(x1 − x2)2 + · · · ) ,

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − 5 x1x2x3x4x5

=
1
12

(
(3(x3

1 + x2
1x2 + x1x

2
2 + x3

2) + (x2
1 + x1x2 + x2

2)x3

+(x1 + x2)x3x4 + 2x3x4x5)(x1 − x2)2 + · · · ).
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See also book [1] by P. S. Bullen where on page 87 the proof of inequality (24)
is reproduced amongst 74 proofs of the AG inequality.
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