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NEIGHBORHOODS OF A NEW CLASS OF P-VALENTLY
STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

MUHAMMET KAMALI

(communicated by S. Owa)

Abstract. A certain subclass 7™ (n,p, o, A) of p-valently starlike functions in the unit disk is
introduced. By making use of the familiar concept of neigborhoods of p-valent functions, the
author proves coefficient bounds and distortion inequalities, and associated inclusion relations
for the (n,8) — neighborhoods of functions belonging to the class 7" (n,p, o, A), which is
defined by means of a certain nonhomogeneous Cauchy-Euler differential equation.

1. Introduction

Let T(n,p) denote the class of functions f (z) of the form:

- > ad (@=0pneN:={1,23..1}) e
k=n+p

which are analytic in the open unitdisk U = {z € C: |z] < 1}.
Following the earlier investigations by Goodman [7], Ruscheweyh [6] and Altintag
etal. [5], we define the (n,§) — neighborhood of a function f (z) € T(n,p) by

N,s(f) =1 g(z) Zbkz €T(n,p): Zk\ak br| < (2)

k=n+p k=n-+p

so that, obviously,

Nps(h) =< g(z) = Z bk € T(n, p) Z k|| < (3)

k=n+p k=n+p

where, and in what follows,
h(z) =2(p € N). (4)
We denote by S (p, o) and C,(p, @) the classes of p-valently starlike functions of order

o in U (0 < a < p) and p-valently convex functions of order o in U (0 < @ < p),
respectively.
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Thus, by definition, we have

S (p, o) := {f eT(n,p): R (Z}N(S)> >a(zelU;0< a <p)} (5)
and
Culp, ) := {f eT(n,p): R (1 + Zj::;i?) >a(zelU;0<a <p)}. (6)

An unification of the function classes S*(p, o) and C,(p, o) is provided by the class
T,(p, o, A) of functions f (z) € T(n,p), which also satisfy the following inequality:

§R< of'(z) + A2 (2)
A () + (1= A) (2)

The class T,(p, a, A) was investigated by Altintas et al. [2] .
Using the Salagean operator [8]; we can write the following equalities for the
functions f (z) belong to the class T(n,p)

D’ (z) =f(2),

>>O¢, (zeU0<a<p;0<ALI). (7)

D@ =06 =3 (0 =2 = Y S,

k=n+p
)
DY () =D(Df (D) =2 — 3 Sa,
k=n+p p
m m—1 = k™ k
D'f(2) =DD"'f(2) =& = Y —ad.
k=n+p

Here we also consider the new class 7" (n,p, o, A). A function f (z) € T(n,p) is said
to be in the class 7™ (n,p, a, A) if it satisfies the inequality:

§)%{(1 — N)z(D"f (2)) + Az (D'”“f(Z))/} -

(=MD (@) + AP () ®

forsome a(0 < a <p), A(0<A < 1) and m € Ny :=NU {0} and forall z € U.
Let A(n) be the class of functions of the form

f@=z2-Y & (@>0neN={1,23,.})
k=n+1

which are analytic in the open unit disk U = {z € C: |z| < 1}. Let S;(ct) denote the
subclass of A(n) consisting of functions which satisfy

' (2)
?R{f(z)}>a(Z€U) 9)
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for some o (0 < o < 1) . A function f(z) in S;() is said to be starlike of order o
in U
A function f (z) € A(n) is said to be convex of order « if it satisfies

" (2)
8%{1+f,(z) }>oc (zeU) (10)

for some o (0 < a < 1). We denote by C, () the subclass of A(n) consisting of all
such functions [3] .
Clearly, we have

T(n,1) = A(n), T°(n,1,0,A) = T,(1, 00, A), T°(n, p, &0, 0) = S’ (p, @)

T(n,p,a, 1) = Cu(p, @), T°(n, 1, ,,0) = S () and T%(n, 1, &1, 1) = Cy(x)
in terms of the simpler classes S (p, @), C,(p, @), T,(p,a,A), T"(n,p, o, A), Si(a)
and C, (o) defined by (1.5), (1.6), (1.7), (1.8), (1.9) and (1.10).

The main object of the present sequel to the aforementioned recent works is to
derive several coefficient bounds and distortion inequalities, and associated inclusion
relations for the (n,d) — neighborhood of functions in the subclass x,(p, &, A, u) of
the class T'(n,p), which consists of functions f € T(n,p) satisfying the following
nonhomogeneous Cauchy-Euler differential equation:

2 o e it D = (- 1)+ 1+ Dg(2)

(w=f(z) € T(n,p); g € T"(n,p,a,A); u > —p(u € R)).
2. Coefficient bounds and distortion inequalities for the class 7" (n,p, o, 1)

In our present investigation of the class 7" (n, p, &, A), we shall require Theorem
2.1 and Theorem 2.2 below.

THEOREM 2.1. A function f (z) € T(n,p)is in the class T" (n,p, o0, A) if and only
if
> Kk — a)(p+ Ak — Ap)ax < p" (p — @)
k=n+p (21)
O<Loa<p,0<KALSLILp"p—a);peN;neNmeN).
The result is sharp with the extremal function given by

m-+1 _
1O =2 e o P e e, (13

Proof. Suppose that f (z) € T"(n,p, o, A). Then from (1.8) we find that

p — > f):—ii(p + Ak — Ap)ay
R k=n+p
P N A+ k- Apad
k=n+p

0<oa<p,0<KALSLILp"p—a);peN;neNmeN).

> o
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If we choose z to be real and let z — 17 ; we get

m+1

-5 gt (p + Ak — Ap)ay

k=n+p

L= 3 e (p+ Ak — Ap)ay

k:n+p
0<a<p0<KALSL1IL<p"(p—a);peN;ne N;me Ny)

or, equivalently,

R

o0 k}n+
> = (p+ Ak — Ap)ar — Z —(p+ Ak —Ap)ax < (p — )

k=n+p k= n+p
0<a<p, 0K A< LILP"(p—0a);peN;neN;meNy).

Thus we obtain

i K"(k — o) [p+ Ak — Aplay < p™'(p — )

k=n-+p
0<a<p,0<KA< LI (p—a);peN;neN;meNy).
Conversely, suppose that the inequality (2.1) holds true and let
z€0U={z:2€C,|7 =1}.
Then, from the definition (1.1) we find that

(1= A)z(D"f (2)) + Az (D"1f (2))]

_om+l _
—apf@ e P T

PP = > Lm(p+ 2k — Ap)at
= |—= A )

- Z m+l (P + Ak — A'p)akz

k:n+p

pm+l{p_pm+l (p_a)} Zp_Z {kl?1+1 (p—&—)tk—lp)—pmﬂ (p—oc)km(p—k/lk—/lp)} aka

_ k=n+p
perlZp _ Z km(p + Ak — Ap)akzk
k=n-+p

|pm+1 {p—p"'(p-a }ZP|+Z |{[ —p" M p— )] km([)+ﬂ,kfﬂ,p)}llkzk|

k=n+p

<
P = S R + Ak — Ap)aid
k=n+p
pm+1 p *Pm+1(17 o a)| +kz |k*[)m+l([) _ a)| km([) +A,k _ Ap)ak
n+p

prtl— Z k"(p + Ak — Ap)ak

k=n+p
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P = p—p -]} + S {k—p" I (p— @)} K (p + Ak — Ap)as

k=n+p

prtl— Z k" (p + Ak — Ap)ag

k=n+p

Pt ()} + S Aptkp) " (p-0) | K (ptAR—Ap)ay

k= n+p

m+1 Z km(p_’_lk A’p)

k=n+p

Pt o - @)+ {p—p" T o)} 3 K+ Ak = Ap)ay
=n+p

prtl— ST km(p + Ak — Ap)ay
k=n+p

S (k= p)K"(p + Ak — Ap)ax

k=n-+p

m+1 Z km(p+xk Ap)

k=n+p

{—p—‘rpmﬂ(p—a)}{ m+1 Z km(p—l—)tk )kp) }

k=n+p

prtl — z k" (p + Ak — Ap)ay
k=n-+p
> k—o+o—plk"(p+ Ak —Ap)ak
k=n+p

prtl — z k™ (p + Ak — Ap)ag

k=n+p

(0=p) 3 K"(prAk—Ap)art S K(k—ax)(p+Ak—Ap)ax

k=n+p k=n+p

prtl— Z k" (p+Ak—Ap)ay
k=n+p
(v —p) S k"(p+ Ak —Ap)ar +p"p — @)
<—p+p"p—a)+ LA

prtl— S km(p + Ak — Ap)ay
k=n+p

_ _p+pi71+l(p_a)+

="' p—a)-pt+p-a
::pm+10747a)47
0<a<p,0<ALSL1L<p"(p—a);peN;neNym e Ny)

provided that the inequality (2.1) is satisfied. Hence, by the maximum modulus theorem,
we have

f(z) € T"(n,p, 00, ).
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Finally, we note that the assertion (2.1) of Theorem 2.1 is sharp, the extremal
function being

B [)erl([)*OC) . .
f@ =7~ (n+p)y"(ntp—a)(p+An) 5 (pym € Nim € Ro).

THEOREM 2.2. Let the function f (z) given by (1.1) be in the class T™(n,p, ot,A).

Then
m+1 _
Z U Gk +(p—;))( + An) (14)
k=n+p }’l p p p n
and
0 pn1+1(p o OC)
kay < . 15
2 S e T - 7 A 13)

Proof. By using Theorem 2.1, we find from (2.1) that

(n+p)"(n+p—oa)(p+Ain) Zak kak a)(p+ Ak —Ap) ax
k=n+p k=n+p
< pm+1 (P o Oﬂ),
which immediately yields the first assertion (2.3) of Theorem 2.2.
On the other hand, by appealing to (2.1), we also have

o0

(p+An) (n+p)" Y (k= o)ax < p"(p — ),
that is, k=ntp
(p+ An) (n Zkaképm“(p o)+ (p+An) (n Zak
k=n+p k=n+p

which, in view of the coefficient inequality (2.3), can be put in the form:

m = m+ m pm+l(p—a)
e y) k;rfak ST e () H o) (ntp—at) (p+An)

or, equivalently,

m+1(p )
2 kai s (n+pym=tn+p—a)(p+in)

k=n+p

THEOREM 2.3. If f € T(n,p) is in the class K,(p,a, A, L), then

p pm+1(p706)([)+u)(p+‘u+l) n+p
SIS T p- @ p+ At p i o €Y 10

and
P pm+l(p_a)(P+H)(P+H+l) n+p
e R e T [ R
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Proof. Suppose that f € T(n,p) is given by (1.1). Also let the function g €
T"(n,p, o, A), occurring in the nonhomogeneous Cauchy-Euler differential equation
(1.11), be given as in the definitions (1.2) and (1.3) with, of course,

by 20 (k=n+pn+p+1Lin+p+2..).
Then we readily find from (1.11) that

_ W +u+1)
(k) Hp 1)

by k=n+pn+p+ln+p+2..) (18)

so that
NS P+uw)p+u+1)
7) =72 k;p na Z TEIETES )bkzk (19)
and
P n+p - (p+u)(p+u+ )
If (2)] < |2° + |2 k;p CENIETES )bk (z € U). (20)

Next, since g € T™"(n,p, a, A), the first assertion (2.3) of Theorem 2.2 yields the
coefficient inequality:

pm+l(p_ OC) (k
(mn+pn+p—0o)(p+An)

which, in conjunction with (2.9), yields

=n+pn+p+Ln+p+2,..) (21)

by <

m+1 e
— —HL)(p—l—/.L + 1) n+, 1
< 2P 4P (p—a)(p P cU).
P& < b+ = i p—a) (ram) 2 G GV
(22)
Finally, in view of the telescopic sum:
- 1 - 1 1
> - )
Sty k) k 1) S Rkt u) (k)
q
1 1
= lim ( - )
g—00 k:t;rp (k + ,bL) (k + U+ 1) (212)
1 1
= lim ( - )
g n+p+u g+u+1
1
= eR—{-p—n,—p—n—1,...}),
niprn {=p—n,—p—n )
the first assertion (2.5) of Theorem 2.3 follows at once from (2.11).
Similarly, we can write
wip =~ PHW)Pp+u+1
@Iz - Y PERPERY L, ey

S, k) (k1)
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Since g € T"(n,p, ct, 1), the first assertion (2.3) of Theorem 2.2 yields the coeffi-
cients inequality:

pm+l(p _ OC)
(n+p)"(n+p—a)(p+An)

which, in conjunction with (2.13), yields

by < (k=n+pn+p+Lin+p+2,..) (25

» PP — Op WP +RED) | !
PO S i+ = @) (p + An) | kZ; b ety ©€ Y
(26)
Finally, in view of the telescopic sum:
> 1 > 1 1
k_zn;p (k+uw)(k+u+1) :k:Z ((k+u) - (k+u+1))
" lim 1 2.16
= lim Z S e )) (2.16)

k=n+p

1
= ER—{—p—n—p—-n—1,..
— (u {-p—n,—p—n )

the second assertion (2.6) of Theorem 2.3 follows at once from (2.15).
By setting m = 0,4 = 0 in Theorem 2.3, we arrive to Corollary 2.1.

COROLLARY 2.1. If the functions f and g satisfy the nonhomogeneous Cauchy-
Euler differential equation (1.11) with g € S¥(p, o), then

(P—)(p+u) (pAu+1) | (p—0)(p+) (p+u+1) |
2l — — " <If ()] <2 + = 2"
(ntp—a)(nt+p+u) (ntp—a)(nt+p+u)
By setting m = 0, A = 1 in Theorem 2.3, we arrive to Corollary 2.2.

COROLLARY 2.2. If the functions f and g satisfy the nonhomogeneous Cauchy-
Euler differential equation (1.11) with g € C,(p, &), then
Pp—a)(p+i)(p+pu+1) | p(p—0)(p+u)(p+u+1) |\ n
2l — -~ " <If () < el + -~ 2"
(n+p) (n+p—a)(ntp+u) (n+p)(n+p—0a)(ntp+u)

3. Neighborhoods for the classes 7" (n,p, a,A) and k,(p, a, A, )
In this section, we determine inclusion relations for the classes 7" (n, p, o, A) and
K. (p, a, A, u) involving the (n, 8) — neighborhoods defined by (1.2) and (1.3).
THEOREM 3.1. If f € T(n,p) is in the class T"(n,p, o, A), then
T"(n,p, 00, A) C N, s(h), (28)
where h(z) is given by (1.4) and

_ perl(p_a)
(n+p)y"~tn+p—a)lp+in)
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Proof. The assertion (3.1) would follow easily from the definition (1.3) of
N, s(h) and the second assertion (2.4) of Theorem 2.2.

THEOREM 3.2. If f € T(n,p) is in the class K,(p,a, A, 1), then

K"(p> OC,A,,H) CN",S(g)7 (29)
where
o p"p—a) n+ (p+up) (p+u+2)
= et p— ) (p ¥ Am) { (it pri) } -89

Proof. Suppose that f € K,(p, &, A, ). Then upon substituting from (2.7) into
the coefficient inequality:

7 klar— b < Y k(lar + 1bel) < D kae+ Y kby (ap > 0:b > 0),
k=n+p k=n+p k=n+p k=n+p

we obtain

S kla—nl< S Eiiﬁigiﬁﬂi"b” S kb (1)

k=n+p k=n+p k=n+p

Next, since g € T"(n,p, o, A), the second assertion (2.4) of Theorem 2.2 yields
pm+1(p _ OC)
(n+p)y=tn+p—a)lp+in)

Finally, by making use of (2.4) as well as (3.5) on the right-hand side of (3.4), we
find that

kb <

(k=n+pn+p+1,..). (32)

0 mtl(p o o 1
Z (n+p)y"~tn+p—a)(p+Ain) — (k+p)k+u+1)
=n+p k=n+p
(33)
which, by virtue of the telescopic sum (2.12), immediately yields
& m+1 _
S ko — byl < =) {1+(p+u)(p+u+1)}
Pl (n+p)tn+p—a)(p+Ain) (n+p+u)
_ P — o) {n + (p+1) (p+1+2) }
(n+p)tn+p—a)(p+Ain) (n+p+u)
=34.

Thus, by the definition (1.2), f € N,s(g). This evidently completes the proof of
Theorem 3.2.

By setting m = 0,p = 1,4 = 0 in Theorem 3.1, we arrive to Corollary 3.1 [3].

COROLLARY 3.1. If f € T(n,1) = A(n) is in the class T°(n, 1, ,0) = Sk (o),
then
Sy (a) C Ny s5(h),
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where h(z) is given by h(z) = z and

(n+1)(1 —a)

0= (n+1-0o)

By setting m = 0,p = 1,A = 1 in Theorem 3.1, we arrive to Corollary 3.2 [3].

COROLLARY 3.2. If f € T(n,1) = A(n) is in the class T’(n,1,,1) = C, (&),
then
C, (a) C Nys(h),
where h(z) is given by h(z) = z and
(1-a)
n+l-—oa)
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