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PHRAGMÉN–LINDELÖF TYPE ALTERNATIVE

RESULTS FOR THE STOKES FLOW EQUATION

YAN LIU AND CHANGHAO LIN

Abstract. In this paper,we derive estimates for weighted energy expression for the solution of
the Stokes flow equation in a semi-infinite plane channel by means of a second order differential
inequality.From the estimates ,we establish Phragmén-Lindelöf alternative that the solutions
either grow or decay exponentially.In the case of decay,we also show how to bound the total
weighted energy.
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