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SOME MAXIMUM PRINCIPLES FOR A CLASS

OF ELLIPTIC BOUNDARY VALUE PROBLEMS

C. ENACHE AND G. A. PHILIPPIN

(communicated by V. Lakshmikantham)

Abstract. For a class of elliptic boundary value problems we construct, in this paper, some
general elliptic inequalities from which we derive maximum principles and we also give some
applications in physics and geometry of surfaces.

1. Introduction

The maximum principle is one of the most useful and best known tools employed
in the study of partial differential equations to obtain informations for such topics as
uniqueness, approximation and boundedness of solutions without any explicit knowl-
edge of solutions themselves.

The goal of this paper is to employ Hopf’s maximum principles [1], [2] to derive
bounds for some quantities related to the following class of nonlinear boundary value
problems: (

g
(
x, |∇u|2

)
u,i

)
,i
+ h(x)f (u) = 0, x ∈ Ω, (1.1)

u = 0, x ∈ ∂Ω, (1.2)

where Ω is a bounded domain in R
N , N � 2, with smooth boundary ∂Ω ∈ C2,ε , and

f , g and h are given functions assumed to satisfy the following conditions:

f , h � 0, g > 0, (1.3)

f , h ∈ C1, g ∈ C2. (1.4)

Moreover, we assume that (1.1) is uniformly elliptic, i.e. we impose throughout the
strong ellipticity condition

G(x, s) := g(x, s) + 2s
∂g
∂s

> 0, s > 0, x ∈ Ω. (1.5)

Under these assumptions, it then follows, from the maximumprinciple, that the solutions
u(x) of (1.1) assume their minima on ∂Ω .

For the class of nonlinear boundary problems (1.1)-(1.2), sufficient conditions on
f , g and h for the existence of classical solutions are known and have been well studied
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in the literature. For an account on these topics we refer, for instance, to Krylov [3] or
to Ladyzenskaya and Uraltzeva [4]. Consequently, we shall tacitly assume the existence
of classical solutions of the problems considered in this paper.

Some particular cases of our work have been considered and investigated in previ-
ous works, see for instance Payne [5], Payne and Phillipin [6], [7] Payne and Stakgold
[8], Philippin [9], [10], Schaeffer [12], Schaeffer and Sperb [13], [14]. In order to handle
our more general case, we make use of the techniques developed in these papers. The
main tools of our investigations are Hopf’s first and second maximum principles [1], [2].
We refer to the books of Protter and Weinberger [11] and of Sperb [17] for expository
texts on these topics.

In this paper, we consider only two particular cases for the function g, namely
g = g(|∇u|2) in Section 2, and g = g(x) in Section 3. In both cases, we shall
derive some maximum principles for appropriate combinations of u and |∇u|2 . These
combinations will be of the following form

Φ(x, a, b) :=

|∇u|2∫
0

G(s)ds + 2a

u∫
0

f (s)ds + bu2, (1.6)

in Section 2, with G(s) := g(s) + 2sg′(s) > 0, where a and b are some real positive
parameters to be appropriately chosen, and

Ψ(x,α, β) := |∇u|2 + 2α
u∫

0

f (s)ds + βu2, (1.7)

in Section 3, where α and β are also real positive parameters to be appropriately
chosen. Some possible applications in physics or geometry of surfaces will be given in
Section 4.

The notations u,i :=
∂u
∂xi

, u,ij :=
∂2u

∂xi∂xj
will be used throughout the paper and

summation from 1 to N is understood on repeated indices. Using these notations we
have, for instance,

u,iju,iu,j =
N∑

i=1

N∑
j=1

∂2u
∂xi∂xj

∂u
∂xi

∂u
∂xj

. (1.8)

2. Derivation of maximum principles for Φ

Since the particular case h ≡ const. has already been treated by Payne and

Philippin in [7], we consider only the general case h(x) �= const ., g = g
(
|∇u|2

)
.

From (1.6), we compute succesively

Φ,k = 2Gu,iku,i + 2af u,k + 2buu,k, (2.1)

Φ,kj = 4G′u,iku,iu,lju,l + 2G [u,ikju,i + u,iku,ij]
+ 2af ′u,ku,j + 2af u,kj + 2bu,ju,k + 2buu,kj,

(2.2)
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ΔΦ = 4G′u,iku,iu,lku,l + 2G
[
(Δu),i u,i + u,iku,ik

]
+ 2af ′ |∇u|2 + 2af Δu + 2b |∇u|2 + 2buΔu.

(2.3)

Next, we replace Δu and (Δu),i u,i in (2.3) using the differential equation (1.1) in
the equivalent form

Δu = −2
g′

g
u,lku,lu,k − f h

g
. (2.4)

Differentiating (2.4), we obtain

(Δu),i ui = − 4

(
g′

g

)′
(u,lku,lu,k)

2 − 2
g′

g
[u,iklu,iu,ku,l + 2u,lku,ku,liu,i]

− 2f h

(
1
g

)′
u,iju,iu,j − f ′h

g
|∇u|2 − f

g
h,iu,i.

(2.5)

Now, we would like to construct a second order elliptic differential inequality for
Φ that contains no third order derivatives of u . This will be achieved if we consider
the following operator

LΦ := ΔΦ+ 2
g′

g
Φ,kju,ku,j, (2.6)

for which we obtain after some reductions

LΦ = 4

[
G′ − Gg′

g

]
u,iku,iu,lku,l + 8

[
g′

g
G′ − G

(
g′

g

)′]
(u,lku,lu,k)

2

− 4Gf h

(
1
g

)′
u,iju,iu,j − 2

Gf ′h
g

|∇u|2 − 2
Gf
g

h,iu,i + 2Gu,iku,ik

+ 2af ′ |∇u|2 −2a
f 2h
g

+4b
g′

g
|∇u|4 +4a

f ′g′

g
|∇u|4 +2b |∇u|2 −2b

f h
g

u.

(2.7)

Making use of the Cauchy-Schwarz inequality in the following form

|∇u|2 u,iku,ik � u,iku,ku,iju,j, (2.8)

and of (2.1), we obtain

u,iku,ik � (af + bu)2

G2
+ ..., in Ω\ω . (2.9)

In (2.9), ω := {x ∈ Ω : ∇u(x) = 0} is the set of critical points of u and dots stand
for terms containing Φ,k . We also make use of (2.1) to obtain the following equations

u,iku,iu,k = − (af + bu)
G

|∇u|2 + · · · , (2.10)

(u,iku,iu,k)
2 =

(af + bu)2

G2
|∇u|4 + · · · , (2.11)

u,iku,iu,lku,l =
(af + bu)2

G2
|∇u|2 + · · · , (2.12)
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where dots have the same meaning as above.
Next, the insertion of (2.9), (2.10), (2.11) and (2.12) in (2.8) gives, after some

reductions,

LΦ + |∇u|−2 WkΦ,k � 2G
g

{
[(a −h)f ′ + b

] |∇u|2 − f h,iu,i

+
1
g

[
(af + bu)2 − f h (af + bu)

]}
,

(2.13)

valid in Ω\ω , where Wk is the k -th component of a vector field regular throughout
Ω . Now, we consider the following two inequalities:

(af + bu)2 − f h (af + bu) �
[(

a − h
2

)2

− h2

2

]
f 2, (2.14)

and [
b + (a − h)f ′] |∇u|2 − f h,iu,i � − |∇h|2 f 2

4 [b + (a − h)f ′]
, (2.15)

valid if b + (a − h)f ′ > 0. Inserting (2.14) and (2.15) in (2.13) we obtain, in Ω\ω ,
the following inequality

LΦ + |∇u|−2 WkΦ,k � 2G
g2

f 2

{(
a − h

2

)2

− h2

2
− |∇h|2 g

4 [b + (a − h)f ′]

}
. (2.16)

Consequently, we obtain

LΦ + |∇u|−2 WkΦ,k � 0, in Ω\ω , (2.17)

if the positive constants a and b are chosen to satisfy the following two conditions:

b + (a − h)f ′ > 0, (2.18)

a � max
Ω

⎛
⎝h(x)

2
+

√
h2(x)

2
+

|∇h|2 g
4 [b + (a − h)f ′]

⎞
⎠ := a1. (2.19)

The following result is nowa direct consequenceof Hopf’s first maximumprinciple
[1], [11]:

THEOREM 2.1. Let u(x) be a classical solution of (1.1) , with g = g
(
|∇u|2

)
,

in a bounded domain Ω ⊂ R
N , N � 2, and let Φ(x, a, b) be the function defined in

(1.6) . If the positive parameters a and b are chosen to satisfy (2.18) − (2.19) , then
the function Φ(x, a, b) takes its maximum value either on ∂Ω or at a critical point of
u (i.e. a point in Ω where ∇u = 0) .

REMARKS.
(i) In the case N = 2, we may replace the inequality (2.9) by the following

identity
u,iku,ik |∇u|2 = |∇u|2 (Δu)2 + 2u,iu,iju,ku,kj − 2Δuu,iju,iu,j. (2.20)

This identity leads to the same result if we replace the condition (2.19) by the following
one:
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a � max
Ω

⎛
⎝3h(x)

4
+

√
10h2(x)

16
+

|∇h|2 g
8 [b + (a − h)f ′]

⎞
⎠ := a2. (2.21)

(ii) a1 or a2 may be difficult to compute if g is not bounded.
(iii) Theorem 2.1 holds independently of the boundary conditions for u(x). How-

ever, in what follows, we will show that Φ(x, a, b) cannot take its maximum value on
∂Ω , if Ω is a convex domain in R

N .
Suppose that Φ(x, a, b) takes its maximum value at P on ∂Ω. Then, by Hopf’s

second maximum principle [2], [11] we must have Φ ≡ cte in Ω or
∂Φ
∂n

> 0 at P. We

now compute the outward normal derivative
∂Φ
∂n

at an arbitrary point of ∂Ω . Since
u = 0 on ∂Ω, we obtain

∂Φ
∂n

= 2Gununn + 2af un. (2.22)

From the differential equation (1.1), evaluated on ∂Ω ∈ C2,ε , we have

Gunn + g(N − 1)Kun + f h = 0. (2.23)

In (2.22) and (2.23), un and unn are the first and second outward normal derivatives
of u on ∂Ω, and K is the average curvature of ∂Ω . The insertion of (2.23) in (2.22)
leads to

∂Φ
∂n

= −2g(N − 1)Ku2
n + 2(a − h)f un, on ∂Ω. (2.24)

Clearly, if a satisfies (2.18) or (2.21), we have
∂Φ
∂n

� 0 on ∂Ω, so that Φ cannot take

its maximum on ∂Ω. Note that ∇u �= 0 on ∂Ω in view of Hopf’s second principle
[2], [11]. We formulate these results in the following theorem:

THEOREM 2.2. Let u(x) be a classical solution of (1.1) - (1.2) , with g = g(|∇u|2)
in a bounded convex domain Ω ⊂ R

N , N � 2, and let Φ(x, a, b) be the function
defined in (1.6) with a and b as in Theorem 2.1 . Then the function Φ(x, a, b) takes
its maximum value at a critical point of u .

3. Derivation of maximum principles for Ψ

In this section we will investigate the problem (1.1) - (1.2) with g = g(x). Starting
from (1.7), we compute succesively

Ψ,k = 2u,iku,i + 2αf u,k + 2βuu,k, (3.1)

∇ (g(x)∇Ψ)=2
{
gu,iku,ik+ (gu,ik),k u,i− (αf +βu) f h+βg |∇u|2+αf ′g |∇u|2

}
.

(3.2)
Next, we differentiate (1.1) to obtain

(g,iu,k + gu,ki),k = (gu,k),ki = −h,if − hf ′u,i, (3.3)

from which we compute
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(gu,ik),k u,i = −f ∇h∇u − hf ′ |∇u|2 − g,iku,ku,i − Δu∇g∇u. (3.4)

Inserting (3.4) in (3.2) and making use of (1.1), we obtain

1
2
∇ (g(x)∇Ψ) =gu,iku,ik − f ∇h∇u − g,iku,ku,i − Δu∇g∇u

− (αf + βu) f h + βg |∇u|2 + f ′ |∇u|2 (αg − h) .

(3.5)

Now, we consider the following two inequalities:

u,iku,ik � (Δu)2

N
, in Ω, (3.6)

and
u,iku,ik � |∇u|−2 u,iku,ku,iju,j = (αf + βu)2 + ..., in Ω\ω . (3.7)

In (3.7), ω is the set of critical points of u and dots stand for terms containing Ψ,k.
Combining (3.6) and (3.7) we obtain.

u,iku,ik � 1
2

(αf + βu)2 +
1

2N
(Δu)2 + |∇u|−2 WkΨ,k, in Ω\ω , (3.8)

where W := (W1, ..., WN) is a vector field regular throughout Ω . Insertion of (3.8) in
(3.5) gives

LΨ :=
1
2
∇ (g(x)∇Ψ) − |∇u|−2 WkΨ,k

�1
2
g (αf + βu)2 +

g
2N

(Δu)2 − f ∇h∇u − g,iku,ku,i

− Δu∇g∇u − (αf + βu) f h + βg |∇u|2 + f ′ |∇u|2 (αg − h) ,

(3.9)

valid in Ω\ω . Our computation makes use of the following relations

αβgf u � 0, (3.10)

1
2
gα2f 2 − αf 2h =

1
2
gf 2

[
α − h

g

]2

− h2f 2

2g
, (3.11)

1
2
gβ2u2 − βhuf =

1
2
gβ2

[
u − hf

βg

]2

− h2f 2

2g
� −h2f 2

2g
, (3.12)

g
2N

(Δu)2 − Δu∇g∇u =
g

2N

[
Δu − N∇g∇u

g

]2

− N (∇g∇u)2

2g

� −N (∇g∇u)2

2g
� −N |∇g|2 |∇u|2

2g
,

(3.13)

and
g,iku,iu,k � √

g,ikg,ik |∇u|2 , (3.14)

the last two inequalities being the consequence of the Cauchy-Schwarz inequality.
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From (3.13) and (3.14) we obtain

g
2N

(Δu)2 −Δu∇g∇u−g,iku,iu,k−f ∇h∇u+βg |∇u|2 � A |∇u|2 −f ∇h∇u

� − f 2 |∇h|2
4A

,

(3.15)

with
A := βg − N |∇g|2

2g
−√

g,ikg,ik > 0. (3.16)

Inserting (3.10) - (3.12) and (3.15) in (3.9), we obtain the inequality

LΨ � f 2

{
1
2
g

[
α − h

g

]2

− h2

g
− |∇h|2

4A

}
+ f ′ (αg − h) |∇u|2 , (3.17)

in Ω\ω . Consequently, we obtain

LΨ � 0, in Ω\ω , (3.18)

if the constants α and β are chosen to satisfy the following two conditions:

β > max
Ω

{
N |∇g|2

2g2
+

√
g,ikg,ik

g

}
, (3.19)

α � max
Ω

⎧⎨
⎩h

g
+

√
2h2

g2
+

|∇h|2
2gA

⎫⎬
⎭ , (3.20)

and the function f satisfies
f ′ � 0. (3.21)

The following result is nowa direct consequenceof Hopf’s first maximumprinciple
[1], [11]:

THEOREM 3.1. Let u(x) be a classical solution of (1.1), with g = g(x), in a
bounded domain Ω ⊂ R

N , N � 2, and let Ψ(x,α, β) be the function defined in
(1.7) . If the positive parameters α and β are chosen to satisfy (3.19) - (3.20) and f
satisf ies (3.21), then the function Ψ(x,α, β) takes its maximum value either on ∂Ω
or at a critical point of u (i.e. a point in Ω where ∇u = 0) .

Note that if g(x) is concave, we may omit the term −g,iku,iu,k in (3.9) so that the
condition (3.16) may be replaced by

A := βg − N |∇g|2
2g

> 0. (3.22)

As in Theorem2.1, we note that the conclusionof Theorem3.1 holds independently
of the boundary conditions for u(x) . We shall now establish a condition on the average
curvature K and on g which implies that the maximum of Ψ(x,α, β) cannot occur on
∂Ω .

Suppose that Ψ(x,α, β) takes its maximum value at P on ∂Ω. Then, by Hopf’s

second maximum principle [2], [11], we must have Ψ ≡ cte. in Ω or
∂Ψ
∂n

> 0 at P.
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We now compute the outward normal derivative
∂Ψ
∂n

at an arbitrary point of ∂Ω. Since
u = 0 on ∂Ω, we obtain

∂Ψ
∂n

= 2ununn + 2αf un. (3.23)

From the differential equation (1.1), evaluated on ∂Ω ∈ C2,ε , we have

g {unn + (N − 1)Kun} + ∇g∇u = −f h. (3.24)

In (3.23) and (3.24), un and unn are the first and second outward normal derivatives
of u on ∂Ω and K is the average curvature of ∂Ω . The insertion of (3.24) in (3.23)
leads to

∂Ψ
∂n

= −2
g

[
(N − 1)Kg +

∂g
∂n

]
|∇u|2 + 2unf

[
α − h

g

]
, on ∂Ω. (3.25)

Clearly, if α and β satisfy (3.19) and (3.20), and if the condition

(N − 1)Kg +
∂g
∂n

� 0, on ∂Ω, (3.26)

is satisfied, then we have
∂Ψ
∂n

� 0 on ∂Ω. It then follows that Ψ cannot take its

maximum on ∂Ω. Note that ∇u �= 0 on ∂Ω in view of Hopf’s second maximum

principle [2], [11]. Moreover, if
∂g
∂n

� 0 on ∂Ω , condition (3.26) is satisfied for

convex domains. We formulate these results in the following theorem:

THEOREM 3.2. Let u(x) be a classical solution of (1.1) - (1.2) , with g = g(x),
in a bounded domain Ω ⊂ R

N , N � 2, and let Ψ(x,α, β) be the function defined in
(1.7) with α, β and f as in Theorem 3.1. If the condition (3.26) is satisfied, then
the function Ψ(x,α, β) takes its maximum value at a critical point of u.

4. Applications

4.1. The Poisson equation

Let u(x) be the solution of the Poisson equation

Δu = −h(x), x ∈ Ω, (4.1)

subject to the Dirichlet boundary condition

u = 0, x ∈ ∂Ω, (4.2)

where Ω is a bounded convex domain in R
N , N � 2, with smooth boundary ∂Ω ∈

C2,ε , and h ∈ C1 (Ω) is a nonnegative function.
Here, we have g = 1, f = 1 , and the corresponding auxiliary function Φ(x, a, b)

defined in (1.6) is
Φ(x, a, b) = |∇u|2 + 2au + bu2. (4.3)

Theorem 2.2 implies that Φ(x, a, b) takes its maximum value in a critical point of u if
we choose

a � max
Ω

⎛
⎝h(x)

2
+

√
h2(x)

2
+

|∇h|2
4b

⎞
⎠ , (4.4)
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where b is an arbitrary positive constant. This leads to the following inequality

|∇u|2 � 2a (um − u) + b
(
u2

m − u2
)

= b

{(
um +

a
b

)2
−
(
u +

a
b

)2
}

, (4.5)

where um := max
Ω

u(x). Inequality (4.5) may be used to derive an upper bound for um.

To this end, let P be a point where u = um and Q a point on ∂Ω nearest to P. Let r
measure the distance from P along the ray connecting P and Q. Clearly, we have

− du
dr

� |∇u| . (4.6)

Integrating (4.6) from Q to P and making use of (4.5), we obtain∫ um

0

du√(
um +

a
b

)2
−
(
u +

a
b

)2
�

√
b
∫ Q

P
dr =

√
bδ �

√
bd, (4.7)

where δ = d(P, Q) and d is the radius of the largest ball inscribed in Ω.

Choosing now b (> 0) such that
√

bd <
π
2
, we obtain the inequality

a/b
um + a/b

� cos
(
d
√

b
)

, (4.8)

which leads to the following upper bound for um

um � a
b

⎛
⎝ 1

cos
(
d
√

b
) − 1

⎞
⎠ . (4.9)

For instance, taking

b :=
π2

16d2
, a =

hm

2
+

√
h2

m

2
+

4d2

π2
, (4.10)

with hm := max
Ω

h(x) , we obtain

um � a
b

(√
2 − 1

)
=

16d2

π2

(√
2 − 1

)⎛⎝hm

2
+

√
h2

m

2
+

4d2

π2

⎞
⎠ . (4.11)

4.2. The Saint-Venant equation

Let u(x) be the solution of the Saint-Venant equation

∇ (g(x)∇u) = −1, x ∈ Ω, (4.12)

subject to the Dirichlet boundary condition

u = 0, x ∈ ∂Ω, (4.13)

where Ω is a bounded convex domain in R
N , N � 2, with smooth boundary ∂Ω ∈

C2,ε , and g ∈ C2 (Ω) is a positive function satisfying the condition (3.26) and

max
Ω

{
N |∇g|2

2g2
+

√
g,ikg,ik

g

}
<

π2

4d2
, (4.14)
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where d is the radius of the largest ball inscribed in Ω . With f = 1, h = 1, the
auxiliary function Ψ(x,α, β) defined in (1.7) is

Ψ(x,α, β) = |∇u|2 + 2αu + βu2. (4.15)

Choosing the parameters α and β to satisfy the following conditions

α �
(
1 +

√
2
)

max
Ω

{
1

g (x)

}
, (4.16)

π2

4d2
> β > max

Ω

{
N |∇g|2

2g2
+

√
g,ikg,ik

g

}
, (4.17)

it then follows from Theorem 3.2 that Ψ(x,α, β) takes its maximum value at a critical
point of u. This leads to the inequality

|∇u|2 � 2α (um − u) + β
(
u2

m − u2
)

= β

{(
um +

α
β

)2

−
(

u +
α
β

)2
}

, (4.18)

where um := max
Ω

u(x) . In the same way as in Section 4.1, we obtain

um � α
β

⎛
⎝ 1

cos
(
d
√
β
) − 1

⎞
⎠ . (4.19)

For instance, with Ω :=
{
x ∈ R

N : |x| � R
}

and g(x) := 1 + |x|2 , we have

max
Ω

{
N |∇g|2

2g2
+

√
g,ikg,ik

g

}
� 2
(
NR2 +

√
N
)

, (4.20)

and we may choose α := 1 +
√

2, β := 2
(
NR2 +

√
N
)
. Then, the first inequality in

(4.17) will be satisfied if R �
{√

π2

8
− 1

4N
− 1

2
√

N

}1/2

.

4.3. The first eigenfunction of a semilinear operator

Let u(x) be the solution of the following semi-linear problem

∇ (g(x)∇u) + λ1u(x) = 0, u > 0, x ∈ Ω, (4.21)

with Dirichlet boundary condition

u = 0, x ∈ ∂Ω. (4.22)

Ω is a bounded convex domain in R
N , N � 2, with smooth boundary ∂Ω ∈ C2,ε ,

and g ∈ C2 (Ω) is a positive function satisfying the condition (3.26). Here we have
f (s) = s, g = g(x) and h = λ1, so that the auxiliary function Ψ(x,α, β) defined in
(1.7) is

Ψ(x,α, β) = |∇u|2 + (α + β) u2. (4.23)
Thus, if the parameters α and β are chosen to satisfy the following conditions:
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α �
(
1 +

√
2
)
λ1 max

Ω

{
1

g (x)

}
, (4.24)

β > max
Ω

{
N |∇g|2

2g2
+

√
g,ikg,ik

g

}
, (4.25)

then Theorem 3.2 implies that Ψ(x,α, β) takes its maximum value in a critical point
of u. This leads to the inequality

|∇u|2 � (α + β)
(
u2

m − u2
)
, (4.26)

where um := max
Ω

u(x). Let P be a point where u = um and Q a point on ∂Ω nearest to

P. Inequality (4.26) may be used, as in the previous applications, to find the inequality

π
2

=

um∫
0

du√
u2

m − u2
�
√
α + βδ, (4.27)

where δ = d(P, Q) . This shows that the critical points of u(x) are at distance

δ � π
2
√
α + β

from the boundary.

4.4. The equation of a surface of prescribed mean curvature Λ(x)

Let Λ be the mean curvature of a surface S given in nonparametric form by:

xN+1 = u(x1, x2, ..., xN), (x1, x2, ..., xN) ∈ Ω, (4.28)

where Ω is a bounded domain in R
N , N � 2, with smooth boundary ∂Ω ∈ C2,ε .

The differential equation of this surface is given by⎛
⎝ u,i√

1 + |∇u|2

⎞
⎠

,i

= −NΛ, x ∈ Ω. (4.29)

We are concerned with the homogeneous Dirichlet problem, i.e.

u = 0, on ∂Ω, (4.30)

and we consider the particular case N = 2 for simplicity. In this case Serrin’s existence
criterion [16] asserts that the curvature K of ∂Ω should satisfy

K(s) � 2Λ, (4.31)

at all points of ∂D .
Here g(s) =

1√
1 + s

, f = 1 and h = 2Λ so that the corresponding auxiliary

function Φ(x, a, b) is

Φ(x, a, b) = 2

⎛
⎝1 − 1√

1 + |∇u|2
+ au

⎞
⎠+ bu2. (4.32)

It follows from Theorem 2.2 that Φ(x, a, b) takes its maximum value in a critical point
of u if we choose
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a � max
Ω

⎛
⎝Λ(x)

2
+

√
Λ2(x)

2
+

|∇Λ|2
4b

⎞
⎠ , (4.33)

where b is an arbitrary positive constant. We are then led to the following inequality

1√
1+ |∇u|2

� 1−a (um−u)−b
2

(
u2

m−u2
)
=1−b

2

{(
um+

a
b

)2
−
(
u+

a
b

)2
}

, in Ω,
(4.34)

from which a lower bound may be obtained for |∇u|2 .

Acknowledgment. The first author thanks l’Institut des Sciences Mathématiques du
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