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THE STABILITY OF A WILSON TYPE
AND A PEXIDER TYPE FUNCTIONAL EQUATION

YONG-S00 JUNG AND KIL-WOUNG JUN

(communicated by Th. M. Rassias)

Abstract. In this paper we study the stability of the Wilson type functional equation f (x +y) —
f(x—y) =2g(x)g(y) and the Pexider type functional equation f (x+y—xy) = (1 —x)%g(y) +
(1 — y)*h(x) , respectively.

1. Introduction

Given an approximately homomorphism, is it possible to approximate it by a true
homomorphism? This problem is called the stability of functional equations which was
originally raised by S. M. Ulam [25]. For Banach spaces, the problem was first solved
by D. H. Hyers [9] which states thatif 6 > 0 and f : X — Y is a mapping with X, Y
Banach spaces, such that

f (e +3) =f () =f I <

forall x, y € X, then there exists a unique additive mapping 7 : X — Y such that

If () =Tl < &

for all x, y € X. In connection with these results, we say that the additive functional
equation f(x +y) = f(x) +f(y) is stable in the sense of Hyers and Ulam. This
terminology is also applied to other functional equations.

Th. M. Rassias [16] generalized the theorem of Hyers by considering the case when
the inequality is not bounded. The Rassias type results obtained by modifying the result
can be found in [5, 7, 11, 13, 17-22]. Afterwards, the stability problem of functional
equations has been extended in various directions (see, for example, [4, 8, 19, 20]). In
particular, the stability of trigonometric and related maps was investigated by J. Baker
[3], P. W. Cholewa [4], and R. Ger and P. Semrl [8], etc.

We now introduce the following Wilson type functional equation

flx+y)—fx—y) =2g(x)gy) (1)
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which is a special case of the Wilson’s functional equation
fx+y) +gk—y) =h(x)k(y)
(see [1]). It is easy to see that the hyperbolic functions
f = cosh, g=sinh

satisfy the functional equation (1). We here deal with the stability of the functional
equation (1).

Recently Gy. Maksa and Zs. Piles [15] obtained the stability result for the following
functional equation on the unit interval (0, 1]:

[ Oy) =x°F () +¥°F (%), (2)
where o is a fixed real number. The Hyers-Ulam stability of the equation (2) for the
case o0 = 1 was proposed by Gy. Maksa [14] and was established by J. Tabor [24].

In this note we also examine the Hyers-Ulam stability of the following Pexider
type functional equation on the unit interval [0, 1) inspired by the above equation:

flety—xy) = (1-x)%1) + (1 —y)%hx). (3)

2. Stability of the equation (1)

Throughout this section, G will represent an Abelian group with the group opera-
tion denoted by + in which division by 2 is uniquely determined, and C will denote
a complex field.

Our first result is

THEOREM 2.1. Let f, g : G — C be functions satisfying the inequality

fx+y) =fx—y) —28(x)g)| < 6 4)
forall x, y € G and some 8§ > 0. Then either g is bounded (equivalently, f is
bounded) or g solves the sine functional equation

s(x+ y)s(x —y) = s(x)> — s(y)*.

Proof. Let g be bounded. Putting y = x in (4) yields
If (20) = £ (0) — 2g(x)*| < 8,

forall x € R and then setting x = £, we get
) -1 -2(3)] <5
for all x € R. Hence it follows that
@I = e —r0) —25(3) +r0) +2¢(%) ]
<Jrw —ro —2¢(5) ]+ ron+2s(3)[

for all x € R which implies that f is bounded.
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Conversely, suppose that f is bounded, i.e, there exists a K > 0 such that
If (x)] < K forall x € G. By the above inequality |f (2x) —f(0) — 2g(x)?| < &, we
have

28(x)°| < [28(x)* — f (2%) +£ (0)| + |f (2x)| + | (0)]
<S+K+f(0)] =M
for all x € G which reduces to
vV2M
80l < 5=

for all x € G, thatis, g is bounded. Therefore, f is bounded if and only if g is
bounded. On the other words, g is unbounded if and only if f is unbounded.

Assume that g : G — C is an unbounded solution of inequality (4). Putting
y = 0 in (4) and dividing the result by 2|g(z)], it follows that g(0) = O since g is
unbounded. Since g is unbounded, we also choose an xq in G with |g(xp)| = 2. Now
let h: G — C be a function defined by

h(x) _ g(X+X()) *g(X*X())

] 2g(xo)
forall x € G. For convenience, set
P(x,y) = [glx +y) +glx —y) — 2g(x)h(y)] (5)
for all x € G. We claim that for all x, y € G,
o(x,y) < 6. (6)

Utilizing the definition of % and (4), we see that

2[g(x0)[@(x, y) =|2g(x + y)g(x0) + 28(x — y)g(xo) — 4g(x0)g(x)(y)]
<|28(x +y)g(x0) —f (x+y +x0) +f (x +y — x0)|
+28(x = y)g(xo) —f (x =y +x0) +f (x =y — xo

+[28(x)g(y —x0) —f (x +y —x0) +f (x =y +x0
+ [2¢(x)(g(y + x0) — g(y — x0)) — 4g(x0)g(x)h(y)
<46>

which gives the inequality ¢(x,y) < 0 forall x, y € G since |g(xo)| > 2.
Making use of (4), (5) and (6), we have for all x, y, z € G,

2|g(2)|p(x,y) =|28(2)g(x + ) + 2g(2)g(x — y) — 4g(x)g(2)h(y)|
<28(z)g(x+y) —fz+x+y) +f(z—x—Y)

+2¢(2)g(x —y) —f(z+x—y) +f(z—x+V)|
+fz+x+y) —flz—x+y) —28(z+y)g)|

+fz+x—y) —flz—x—y) —28(z—y)g(x)|

+ 2(g(z+y) + gz — ¥))g(x) — 4g(2)h(y)g(x)]

<48 +20(z,y)|g(x)|

<46 +268|g(v)],

)l
+f (x+y+x0) —f(x =y —x0) —2g(x)g(y + x0)|

)l

\

2
2 X
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that is,
8(2)[@(x,y) <28 + 8[g(x)] (7)

forall x,y,z € G. Let x and y be arbitrary but fixed while z ranges over G. Dividing
two-sided of (7) by |g(z)|, it follows from the unboundedness of g that ¢(x,y) =0
for all x,y € G which yields the functional equation

glx+y) +glx—y) =2g(x)h(y). (8)

Letting x = 0 in (8), we obtain that g(—y) = —g(y) forall y € G. If we make
the change of variables x = “T” , Yy = % in (8), then we get

gl +50) = 26 (“2 (1),

forall u,v € G. Thus, for all x,y € G, we obtain that

gl +9) = gl+3) +80) = 28 (2 )n(*5 ),

and that

g0 =) = lx =) +50) =25 (*57 )0 (*52).

Consequently, we get

e = (e )]
forall x,y € G. Hence, by (8), we have

gx+y)glx—y) = [g(x) +&gM)llg(x) + g(=y)]
= [¢(x) + g()]lg(x) — g(v)]
=g(x)* - g(y)?
forall x,y € G, thatis, g is a solution of the sine functional equation.

This completes the proof of the theorem. [

REMARK. Let f, g : G — C be unbounded solutions of the equation (1). Take the
functions f, g defined on a group G with values in the algebra
M, (C) of all complex 2 x 2-matrices given by

f(x):<fg€) g) and g<x>=(g(<f) 2)

for all x € G, where ¢ and d is the positive real constants. Then

If (x+y) —f (x —y) — 2g(x)g(y)|| = constant > 0

forall x, y € G. Hence this difference is bounded but g is neither bounded nor satisfies
the sine functional equation. This example shows that the stability of the equation (1)
fails to hold in the case of vector-valued functions.

Nevertheless, we obtain a vector-valued analogue of Theorem 2.1.
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THEOREM 2.2. Let B be a semisimple commutative Banach algebra and let f, g :
G — B be functions satisfying the inequality

If (e 4y) =f(x—y) = 28(x)g)] < & ©)
forall x, y € G and some 6 > 0. Then

glx+y)glx —y) = g(x)* — (),
provided that for an arbitrary multiplicative linear functional 7* € B* the superposition
z* o g fails to be bounded (equivalently, the superposition z* o f fails to be bounded).

Proof. The arguments used in [6, p. 6, Theorem 3] carry over almost verbatim.

In fact, we assume that the inequality (9) is fulfilled for all x,y € G and that we
are given an arbitrary fixed multiplicative linear functional z* € B*.

Since ||z*|| = 1, we have, for all x,y € G,

62 [If (x+y) —f(x—y) — 28(x)s)ll
= S (o +y) = f(x—y) = 28(x)g ()]
Z*||=1

Z [ (f (e +y) =27 (F(x = y)) = 227 (e(x))z" ()],
which shows that the superpositions z* of and z* o g are solutions of the inequality (4).
As in the proof of Theorem 2.1 with the above inequality, the superposition z* o g is
unbounded if and only if the superposition z* o f is unbounded. Since, by hypothesis,
the superposition z* o g is unbounded, z* o g satisfies the sine functional equation in
view of Theorem 2.1. Since z* was arbitrary in B*, we see that

gx+)glr =) — g(x)* + 8(»)* € () kerz"
7*eB*
forall x,y € G. Since [ .gkerz" is the Jacobson radical of B and B is semisimple,
we conclude that

gl +y)glx —y) —g(x)’ +8(»)* =0
forall x,y € G, as claim and the proof is complete. [

3. Solutions and stability of the equation (3)

Throughout this section, X will denote a real (or complex) vector space.
We will first find out the general solution of the functional equation (3).

THEOREM 3.1. Let o be any fixed real number. The functions f,g,h:[0,1) — X
satisfy the equation (3) for all x, y € [0,1) if and only if, for all x, y € [0,1),

Fx)=(1—x)[(1 —x) +£(0)] (10)

g(x) = (1 —x)*[e(1 — x) + g(0)] (11)
and

h(x) = (1 —x)%[£(1 — x) + h(0)], (12)

where £ : (0,1] — X is a logarithmic function and f (0) = g(0) + h(0).
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Proof. (=) Define the functions f, g and % on (0, 1] by
Fx) =x"%(1—x), gx)=x%(1—x) and h(x) = x *h(1 — x),
respectively. Then the equation (3) yields the well-known Pexider equation

fly) =h(x) +0)

forall x,y € (0, 1]. By applying [2, p. 43, Theorem 9], we easily obtain (10), (11) and
(12).
(<) This is obvious. O

Let us now investigate the Hyers-Ulam stability of the equation (3).

DEFINITION. A function g : [0,00) — [0, 00) is called exponentially increasing if
it is increasing and there exist constants ¥ > 1 and & € [0, c0) such that

glx+h) > vglx)

forall x € [0,00).

First, we state a result of J. Tabor [24] concerning the stability of the additive
functional equation f (x 4+ y) = f (x) + f (y) on the interval [0, c0).

THEOREM 3.2. Assume that g : [0,00) — [0, 00) is exponentially increasing with
y and h asin Definition and g(0) > 0. Let K = 2% + % Let X be a sequentially
complete topological vector space and V be a closed convex, bounded and symmetric
with respect to zero subset of X. If f : [0,00) — X is a function such that

flety) =) =f) gl +y)V
forall x € [0,00), then there exists a unique additive function A : [0,00) — X such
that A(h) = f (h) and that
f(x) —Alx) € Kg(x)V
forall x € [0,00).
Our stability result concerning the equation (3) is

THEOREM 3.3. Let X be a Banach space and o be any fixed real number. Let
f,8,h:[0,1) = X be functions satisfying the inequality

If (x+y—xy) — (1 —x)%(y) — (1 =»)*h(x)|| < € (13)

forall x,y € [0,1) and some € > 0. Then there exist functions ®,¥,A : [0,1) — X
satisfying the functional equation (3) such that

If (x) = @(x)[| < ke, (14)
lg(x) = ¥(@)[| < (K +1)e (15)

and
[2(x) = A < (k + 1), (16)

forall x € [0,1), where k :=3 if a=0and k:=9+6V2 if a#0.
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Proof. Let us define functions p,q,r: [0,1) — X by
h
10 )

S (-xe SRS

forall x € [0, 1), respectively. Then the inequality (13) yields the inequality

plx) = (

1—x)’

3

lpx+y =) = a0) =N < T—ger =)=

forall x, y € [0,1).
Assume that o > 0. Then the functions P, Q, R : [0,00) — X defined by

Pw) = p(1—¢™), Q) = q(1— ™) and R(u) = r(1 — ™)

forall u € [0, 00) satisfy the inequality
1P(u+v) = Q) = RW)|| = lIp(1 — e ™)) —gq(1 —e™) = r(1 —e™)|

713

=lp(1=e)+ (1 —-e") = (1-e)(1—e™)

(
—q(l—e™) —r(l—e™)]
(

Eeoc u+v)

which is
1P(u+v) — Q) = R()|| < ee*)
forall u, v € [0,00). Putting v =0 in (18), we get
1P(u) = O(u) = RO)|| < ee”
forall u € [0,00). Letting u = 0 in (18), we have
IP(v) = Q(0) — R(v)|| < ee”
forall v € [0, 00). We now define a function F : [0,00) — X by
F(u) = P(u) — Q(0) — R(0)
forall u € [0, 00). We assert that
IF(u+v) = F(u) — F()|| < 3ge**)

forall u, v € [0,00).
Indeed, it follows from (18), (19), (20) and (21) that

[F(u+v) = F(u) = F)|| = [[P(u+v) = P(u) = P(v) + G(0) + R(0)]|

<P +v) = Q@) = RO)[| + [1Q(u) = P(u) + RO

+ [R(v) = P(v) + Q(0)]|

< Sea(u+v) 4 ge™ 4 g™

Hence we have
|F(u+v) — F(u) — F(v)|| < 3ge™+)

forall u, v € [0,00).
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In the case o0 = 0 in (22), by employing Skof’s result [23], we see that there exists
a unique additive function A; : R — X such that

[F(u) — Ar(u)]] < 3e (23)

forall u € [0,00).

Let o > 0 in (22). Note that the exponential function el) is exponentially

increasing with 7 := —In(1 — z), y := e*" = g 1Z 7, where z € (0,1) in Theorem

3.2. Therefore, by applying (22) to Theorem 3.2, we see that there exists an additive
function A; : [0, 00) — X such that

1F(u) = Aa(w)]] < (9+6f) “ (24)
forall u € [0, 00) since the minimal value of K = =7 2)0‘ + W in (0, 1), in view
of Theorem 3.2, is equal to 3 + V2 when z=1— (2- \/_)1/0‘.

Now we suppose that o < 0. Defining the functions P,Q,R : [0,00) — X by
P(u) =p(l —¢"), Ou) =q(l —¢*) and R(u) =r(l —€")

forall u € [0, 00), the inequality (17) gives the inequality

1P(+v) — Q) = R()| < ge™ 1+

forall u, v € [0,00). If we pass through the same process as in (19) ~ (22), then we
also get the inequality

1F(u+v) = F(u) = F(v)]| < 3ge ) (25)

forall u, v € [0,00), and so it follows from (25) with Theorem 3.2 that there exists an
additive function Aj : [0, 00) — X such that

IF(u) — As(u)]| < (9 + 6V2)ge " (26)

forall u € [0,00) as in the case & > 0.
For the sake of convenience, letus k := 3 if a =0 and Kk := 9 + 612 if
o # 0. Now the inequalities (23), (24) and (26) can be rewritten to the form

1F () = AQw)]| < xee (27)

forall u € [0,00), where f:=a, A:=Aj(orAy)if ¢ >0 and f:= —x, A := A3
if a<0.

Let 3 :=—1if a >0 and ¥ := 1 if a < 0. With the definition of F and P,
the inequality (27) implies that

Ip(x) = ADIn(1 =) = 4(0) = O] < (7= 5z
that is
’ f(x) Ke
H (1 7)6)05 _A(ﬂln(l —.X)) - g(O) - h(O)H < (1 7)6)05
which gives
If () = (1 = x)*[A(DIn(1 — x)) + g(0) + h(0)]|| < e (28)

forall x € [0,1).
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On the other hand, the inequalities (19), (21) and (27) yield that
10(v) —A(v) = Q(0)[| = [Q(v) = A(v) + F(v) — P(v) + R(0)]|
<EE) =AW+ [P(v) = Q(v) = RO)|
< (K + 1)ee”
forall v € [0,00), and so this and the definition of Q, ¢ imply that

H (1g(xi) —A(8n(1 —x)) H

that is,
18(x) = (1 =x)*[A(BIn(1 —x)) + g(O)]|| < (k + 1)e (29)
forall x € [0,1). We use the inequalities (20), (21) and (27) to obtain the inequality
[R(v) = A(v) = ROO)[| = [[R(v) = A(v) + F(v) = P(v) + Q(0)]|
<F(v) - A(V)II + [1P(v) = R(v) — Q(0)]]
< (k+1)ee
for all v € [0, 00), and hence from this and the definition of Q, ¢, it follows that
h(x) (x+1)e
hatis =g~ tomt = =0l < =g
1A(x) = (1 = x)*[A(BIn(1 —x)) + hO)]|| < (K + 1)e (30)

forall x € [0,1).
Finally, for all x € [0, 1), setting

D(x) = (1 —x)*[A(DIn(1 — x)) + g(0) + A (0)],
Y(x) = (1 = x)“ADn(1 - x)) + g(0)]
and
Alx) = (1 —x)%[A(Sn(1 — x)) + h(0)],
we see that the functions @, ¥ and A satisfy the functional equation (3), that is,
Px+y—axy) =1 =x)"¥() + (1 -y)*Alx)

forall x,y € [0, 1), and the inequalities (28), (29) and (30) give the inequalities (14),
(15) and (16), respectively. The proof of the theorem is complete. [J
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