
Mathematical
Inequalities

& Applications
Volume 9, Number 4 (2006), 707–716

THE STABILITY OF A WILSON TYPE

AND A PEXIDER TYPE FUNCTIONAL EQUATION

YONG-SOO JUNG AND KIL-WOUNG JUN

(communicated by Th. M. Rassias)

Abstract. In this paper we study the stability of the Wilson type functional equation f (x + y) −
f (x− y) = 2g(x)g(y) and the Pexider type functional equation f (x+ y− xy) = (1− x)αg(y) +
(1 − y)αh(x) , respectively.

1. Introduction

Given an approximately homomorphism, is it possible to approximate it by a true
homomorphism? This problem is called the stability of functional equations which was
originally raised by S. M. Ulam [25]. For Banach spaces, the problem was first solved
by D. H. Hyers [9] which states that if δ > 0 and f : X → Y is a mapping with X , Y
Banach spaces, such that

||f (x + y) − f (x) − f (y)|| � δ

for all x, y ∈ X , then there exists a unique additive mapping T : X → Y such that

||f (x) − T(x)|| � δ

for all x, y ∈ X . In connection with these results, we say that the additive functional
equation f (x + y) = f (x) + f (y) is stable in the sense of Hyers and Ulam. This
terminology is also applied to other functional equations.

Th. M. Rassias [16] generalized the theorem of Hyers by considering the case when
the inequality is not bounded. The Rassias type results obtained by modifying the result
can be found in [5, 7, 11, 13, 17-22]. Afterwards, the stability problem of functional
equations has been extended in various directions (see, for example, [4, 8, 19, 20]). In
particular, the stability of trigonometric and related maps was investigated by J. Baker
[3], P. W. Cholewa [4], and R. Ger and P. Šemrl [8], etc.

We now introduce the following Wilson type functional equation

f (x + y) − f (x − y) = 2g(x)g(y) (1)
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which is a special case of the Wilson’s functional equation

f (x + y) + g(x − y) = h(x)k(y)

(see [1]). It is easy to see that the hyperbolic functions

f = cosh, g = sinh

satisfy the functional equation (1). We here deal with the stability of the functional
equation (1).

Recently Gy.Maksa andZs. Páles [15] obtained the stability result for the following
functional equation on the unit interval (0, 1] :

f (xy) = xα f (y) + yα f (x), (2)

where α is a fixed real number. The Hyers-Ulam stability of the equation (2) for the
case α = 1 was proposed by Gy. Maksa [14] and was established by J. Tabor [24].

In this note we also examine the Hyers-Ulam stability of the following Pexider
type functional equation on the unit interval [0, 1) inspired by the above equation:

f (x + y − xy) = (1 − x)αg(y) + (1 − y)αh(x). (3)

2. Stability of the equation (1)

Throughout this section, G will represent an Abelian group with the group opera-
tion denoted by + in which division by 2 is uniquely determined, and C will denote
a complex field.

Our first result is

THEOREM 2.1. Let f , g : G → C be functions satisfying the inequality

|f (x + y) − f (x − y) − 2g(x)g(y)| � δ (4)

for all x, y ∈ G and some δ � 0 . Then either g is bounded (equivalently, f is
bounded) or g solves the sine functional equation

s(x + y)s(x − y) = s(x)2 − s(y)2.

Proof. Let g be bounded. Putting y = x in (4) yields

|f (2x) − f (0) − 2g(x)2| � δ,

for all x ∈ R and then setting x = x
2 , we get∣∣∣f (x) − f (0) − 2g

(x
2

)2∣∣∣ � δ

for all x ∈ R . Hence it follows that

|f (x)| =
∣∣∣f (x) − f (0) − 2g

( x
2

)2
+ f (0) + 2g

( x
2

)2∣∣∣
�

∣∣∣f (x) − f (0) − 2g
( x

2

)2∣∣∣ + |f (0)| + 2
∣∣∣g( x

2

)∣∣∣2
for all x ∈ R which implies that f is bounded.
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Conversely, suppose that f is bounded, i.e, there exists a K > 0 such that
|f (x)| � K for all x ∈ G . By the above inequality |f (2x) − f (0) − 2g(x)2| � δ , we
have

|2g(x)2| � |2g(x)2 − f (2x) + f (0)| + |f (2x)| + |f (0)|
� δ + K + |f (0)| := M

for all x ∈ G which reduces to

|g(x)| �
√

2M
2

for all x ∈ G , that is, g is bounded. Therefore, f is bounded if and only if g is
bounded. On the other words, g is unbounded if and only if f is unbounded.

Assume that g : G → C is an unbounded solution of inequality (4). Putting
y = 0 in (4) and dividing the result by 2|g(z)| , it follows that g(0) = 0 since g is
unbounded. Since g is unbounded, we also choose an x0 in G with |g(x0)| � 2 . Now
let h : G → C be a function defined by

h(x) =
g(x + x0) − g(x − x0)

2g(x0)
for all x ∈ G . For convenience, set

ϕ(x, y) := |g(x + y) + g(x − y) − 2g(x)h(y)| (5)

for all x ∈ G . We claim that for all x, y ∈ G ,

ϕ(x, y) � δ. (6)

Utilizing the definition of h and (4), we see that

2|g(x0)|ϕ(x, y) =|2g(x + y)g(x0) + 2g(x − y)g(x0) − 4g(x0)g(x)h(y)|
�|2g(x + y)g(x0) − f (x + y + x0) + f (x + y − x0)|

+ |2g(x − y)g(x0) − f (x − y + x0) + f (x − y − x0)|
+ |f (x + y + x0) − f (x − y − x0) − 2g(x)g(y + x0)|
+ |2g(x)g(y − x0) − f (x + y − x0) + f (x − y + x0)|
+ |2g(x)(g(y + x0) − g(y − x0)) − 4g(x0)g(x)h(y)|

�4δ,

which gives the inequality ϕ(x, y) � δ for all x, y ∈ G since |g(x0)| � 2 .
Making use of (4), (5) and (6), we have for all x, y, z ∈ G ,

2|g(z)|ϕ(x, y) =|2g(z)g(x + y) + 2g(z)g(x − y) − 4g(x)g(z)h(y)|
�|2g(z)g(x + y) − f (z + x + y) + f (z − x − y)|

+ |2g(z)g(x − y) − f (z + x − y) + f (z − x + y)|
+ |f (z + x + y) − f (z − x + y) − 2g(z + y)g(x)|
+ |f (z + x − y) − f (z − x − y) − 2g(z − y)g(x)|
+ |2(g(z + y) + g(z − y))g(x) − 4g(z)h(y)g(x)|

�4δ + 2ϕ(z, y)|g(x)|
�4δ + 2δ |g(x)|,
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that is,
|g(z)|ϕ(x, y) � 2δ + δ |g(x)| (7)

for all x, y, z ∈ G . Let x and y be arbitrary but fixed while z ranges over G . Dividing
two-sided of (7) by |g(z)| , it follows from the unboundedness of g that ϕ(x, y) = 0
for all x, y ∈ G which yields the functional equation

g(x + y) + g(x − y) = 2g(x)h(y). (8)

Letting x = 0 in (8), we obtain that g(−y) = −g(y) for all y ∈ G . If we make
the change of variables x = u+v

2 , y = u−v
2 in (8), then we get

g(u) + g(v) = 2g
(u + v

2

)
h
(u − v

2

)
.

for all u, v ∈ G . Thus, for all x, y ∈ G , we obtain that

g(x + y) = g(x + y) + g(0) = 2g
(x + y

2

)
h
(x + y

2

)
,

and that
g(x − y) = g(x − y) + g(0) = 2g

(x − y
2

)
h
(x − y

2

)
,

Consequently, we get

g(x + y)g(x − y) =
[
2g

(x + y
2

)
h
(x − y

2

)][
2g

(x − y
2

)
h
(x + y

2

)]
.

for all x, y ∈ G . Hence, by (8), we have

g(x + y)g(x − y) = [g(x) + g(y)][g(x) + g(−y)]
= [g(x) + g(y)][g(x) − g(y)]

= g(x)2 − g(y)2

for all x, y ∈ G , that is, g is a solution of the sine functional equation.
This completes the proof of the theorem. �

REMARK. Let f , g : G → C be unbounded solutions of the equation (1). Take the
functions f , g defined on a group G with values in the algebra
M2(C) of all complex 2 × 2 -matrices given by

f (x) =
(

f (x) 0
0 c

)
and g(x) =

(
g(x) 0
0 d

)

for all x ∈ G , where c and d is the positive real constants. Then

‖f (x + y) − f (x − y) − 2g(x)g(y)‖ = constant > 0

for all x, y ∈ G . Hence this difference is bounded but g is neither bounded nor satisfies
the sine functional equation. This example shows that the stability of the equation (1)
fails to hold in the case of vector-valued functions.

Nevertheless, we obtain a vector-valued analogue of Theorem 2.1.
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THEOREM 2.2. Let B be a semisimple commutative Banach algebra and let f , g :
G → B be functions satisfying the inequality

‖f (x + y) − f (x − y) − 2g(x)g(y)‖ � δ (9)

for all x, y ∈ G and some δ � 0 . Then

g(x + y)g(x − y) = g(x)2 − g(y)2,

provided that for an arbitrary multiplicative linear functional z∗ ∈ B∗ the superposition
z∗ ◦ g fails to be bounded (equivalently, the superposition z∗ ◦ f fails to be bounded).

Proof. The arguments used in [6, p. 6, Theorem 3] carry over almost verbatim.
In fact, we assume that the inequality (9) is fulfilled for all x, y ∈ G and that we

are given an arbitrary fixed multiplicative linear functional z∗ ∈ B∗ .
Since ‖z∗‖ = 1 , we have, for all x, y ∈ G ,

δ � ‖f (x + y) − f (x − y) − 2g(x)g(y)‖
= sup

‖z∗‖=1
|z∗(f (x + y) − f (x − y) − 2g(x)g(y))|

� |z∗(f (x + y)) − z∗(f (x − y)) − 2z∗(g(x))z∗(g(y))|,
which shows that the superpositions z∗ ◦ f and z∗ ◦g are solutions of the inequality (4).
As in the proof of Theorem 2.1 with the above inequality, the superposition z∗ ◦ g is
unbounded if and only if the superposition z∗ ◦ f is unbounded. Since, by hypothesis,
the superposition z∗ ◦ g is unbounded, z∗ ◦ g satisfies the sine functional equation in
view of Theorem 2.1. Since z∗ was arbitrary in B∗ , we see that

g(x + y)g(x − y) − g(x)2 + g(y)2 ∈
⋂

z∗∈B∗
ker z∗

for all x, y ∈ G . Since
⋂

z∗∈B∗ker z∗ is the Jacobson radical of B and B is semisimple,
we conclude that

g(x + y)g(x − y) − g(x)2 + g(y)2 = 0

for all x, y ∈ G , as claim and the proof is complete. �

3. Solutions and stability of the equation (3)

Throughout this section, X will denote a real (or complex) vector space.
We will first find out the general solution of the functional equation (3).

THEOREM 3.1. Let α be any fixed real number. The functions f , g, h : [0, 1) → X
satisfy the equation (3) for all x, y ∈ [0, 1) if and only if , for all x, y ∈ [0, 1) ,

f (x) = (1 − x)α [�(1 − x) + f (0)] (10)

g(x) = (1 − x)α [�(1 − x) + g(0)] (11)
and

h(x) = (1 − x)α [�(1 − x) + h(0)], (12)
where � : (0, 1] → X is a logarithmic function and f (0) = g(0) + h(0) .
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Proof. (⇒ ) Define the functions ˜f , g̃ and h̃ on (0, 1] by

˜f (x) = x−α f (1 − x), g̃(x) = x−αg(1 − x) and h̃(x) = x−αh(1 − x),

respectively. Then the equation (3) yields the well-known Pexider equation

˜f (xy) = h̃(x) + g̃(y)

for all x, y ∈ (0, 1] . By applying [2, p. 43, Theorem 9], we easily obtain (10), (11) and
(12).

(⇐ ) This is obvious. �
Let us now investigate the Hyers-Ulam stability of the equation (3).

DEFINITION. A function g : [0,∞) → [0,∞) is called exponentially increasing if
it is increasing and there exist constants γ > 1 and h ∈ [0,∞) such that

g(x + h) � γ g(x)

for all x ∈ [0,∞) .
First, we state a result of J. Tabor [24] concerning the stability of the additive

functional equation f (x + y) = f (x) + f (y) on the interval [0,∞).

THEOREM 3.2. Assume that g : [0,∞) → [0,∞) is exponentially increasing with
γ and h as in Definition and g(0) > 0 . Let K = 2 g(h)

g(0) + γ
γ−1 . Let X be a sequentially

complete topological vector space and V be a closed convex, bounded and symmetric
with respect to zero subset of X . If f : [0,∞) → X is a function such that

f (x + y) − f (x) − f (y) ∈ g(x + y)V

for all x ∈ [0,∞) , then there exists a unique additive function A : [0,∞) → X such
that A(h) = f (h) and that

f (x) − A(x) ∈ Kg(x)V

for all x ∈ [0,∞) .

Our stability result concerning the equation (3) is

THEOREM 3.3. Let X be a Banach space and α be any fixed real number. Let
f , g, h : [0, 1) → X be functions satisfying the inequality

‖f (x + y − xy) − (1 − x)αg(y) − (1 − y)αh(x)‖ � ε (13)

for all x, y ∈ [0, 1) and some ε � 0 . Then there exist functions Φ,Ψ,Λ : [0, 1) → X
satisfying the functional equation (3) such that

‖f (x) −Φ(x)‖ � κε, (14)

‖g(x) −Ψ(x)‖ � (κ + 1)ε (15)

and
‖h(x) − Λ(x)‖ � (κ + 1)ε, (16)

for all x ∈ [0, 1) , where κ := 3 if α = 0 and κ := 9 + 6
√

2 if α 
= 0 .
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Proof. Let us define functions p, q, r : [0, 1) → X by

p(x) =
f (x)

(1 − x)α
, q(x) =

g(x)
(1 − x)α

and r(x) =
h(x)

(1 − x)α

for all x ∈ [0, 1) , respectively. Then the inequality (13) yields the inequality

‖p(x + y − xy) − q(y) − r(x)‖ � ε
(1 − x)α(1 − y)α

(17)

for all x, y ∈ [0, 1) .
Assume that α � 0 . Then the functions P, Q, R : [0,∞) → X defined by

P(u) = p(1 − e−u), Q(u) = q(1 − e−u) and R(u) = r(1 − e−u)

for all u ∈ [0,∞) satisfy the inequality

‖P(u + v) − Q(u) − R(v)‖ = ‖p(1 − e−(u+v)) − q(1 − e−u) − r(1 − e−v)‖
= ‖p((1 − e−u) + (1 − e−v) − (1 − e−u)(1 − e−v))

− q(1 − e−u) − r(1 − e−v)‖
� εeα(u+v)

which is
‖P(u + v) − Q(u) − R(v)‖ � εeα(u+v) (18)

for all u, v ∈ [0,∞) . Putting v = 0 in (18), we get

‖P(u) − Q(u) − R(0)‖ � εeαu (19)

for all u ∈ [0,∞) . Letting u = 0 in (18), we have

‖P(v) − Q(0) − R(v)‖ � εeαv (20)

for all v ∈ [0,∞) . We now define a function F : [0,∞) → X by

F(u) = P(u) − Q(0) − R(0) (21)

for all u ∈ [0,∞) . We assert that

‖F(u + v) − F(u) − F(v)‖ � 3εeα(u+v)

for all u, v ∈ [0,∞) .
Indeed, it follows from (18), (19), (20) and (21) that

‖F(u + v) − F(u) − F(v)‖ = ‖P(u + v) − P(u) − P(v) + G(0) + R(0)‖
� ‖P(u + v) − Q(u) − R(v)‖ + ‖Q(u) − P(u) + R(0)‖

+ ‖R(v) − P(v) + Q(0)‖
� εeα(u+v) + εeαu + εeαv.

Hence we have
‖F(u + v) − F(u) − F(v)‖ � 3εeα(u+v) (22)

for all u, v ∈ [0,∞) .



714 YONG-SOO JUNG AND KIL-WOUNG JUN

In the case α = 0 in (22), by employing Skof’s result [23], we see that there exists
a unique additive function A1 : R → X such that

‖F(u)− A1(u)‖ � 3ε (23)

for all u ∈ [0,∞) .
Let α > 0 in (22). Note that the exponential function e(·) is exponentially

increasing with h := −ln(1 − z) , γ := eαh = 1
(1−z)α , where z ∈ (0, 1) in Theorem

3.2. Therefore, by applying (22) to Theorem 3.2, we see that there exists an additive
function A2 : [0,∞) → X such that

‖F(u)− A2(u)‖ � (9 + 6
√

2)εeαu (24)

for all u ∈ [0,∞) since the minimal value of K = 2
(1−z)α + 1

1−(1−z)α in (0, 1), in view

of Theorem 3.2, is equal to 3 +
√

2 when z = 1 − (2 −√
2)1/α .

Now we suppose that α < 0 . Defining the functions P, Q, R : [0,∞) → X by

P(u) = p(1 − eu), Q(u) = q(1 − eu) and R(u) = r(1 − eu)

for all u ∈ [0,∞) , the inequality (17) gives the inequality

‖P(u + v) − Q(u) − R(v)‖ � εe−α(u+v)

for all u, v ∈ [0,∞) . If we pass through the same process as in (19) ∼ (22), then we
also get the inequality

‖F(u + v) − F(u) − F(v)‖ � 3εe−α(u+v) (25)

for all u, v ∈ [0,∞) , and so it follows from (25) with Theorem 3.2 that there exists an
additive function A3 : [0,∞) → X such that

‖F(u) − A3(u)‖ � (9 + 6
√

2)εe−αu (26)

for all u ∈ [0,∞) as in the case α � 0 .
For the sake of convenience, let us κ := 3 if α = 0 and κ := 9 + 6

√
2 if

α 
= 0 . Now the inequalities (23), (24) and (26) can be rewritten to the form

‖F(u)− A(u)‖ � κεeβu (27)

for all u ∈ [0,∞) , where β := α , A := A1(or A2 ) if α � 0 and β := −α , A := A3

if α < 0 .
Let ϑ := −1 if α � 0 and ϑ := 1 if α � 0 . With the definition of F and P ,

the inequality (27) implies that

‖p(x) − A(ϑ ln(1 − x)) − q(0) − r(0)‖ � κε
(1 − x)α

,

that is, ∥∥∥ f (x)
(1 − x)α

− A(ϑ ln(1 − x)) − g(0) − h(0)
∥∥∥ � κε

(1 − x)α

which gives

‖f (x) − (1 − x)α [A(ϑ ln(1 − x)) + g(0) + h(0)]‖ � κε (28)

for all x ∈ [0, 1) .
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On the other hand, the inequalities (19), (21) and (27) yield that

‖Q(v) − A(v) − Q(0)‖ = ‖Q(v) − A(v) + F(v) − P(v) + R(0)‖
� ‖F(v) − A(v)‖ + ‖P(v) − Q(v) − R(0)‖
� (κ + 1)εeαv

for all v ∈ [0,∞) , and so this and the definition of Q , q imply that∥∥∥ g(x)
(1 − x)α

− A(ϑ ln(1 − x)) − g(0)
∥∥∥ � (κ + 1)ε

(1 − x)α
,

that is,
‖g(x) − (1 − x)α [A(ϑ ln(1 − x)) + g(0)]‖ � (κ + 1)ε (29)

for all x ∈ [0, 1) . We use the inequalities (20), (21) and (27) to obtain the inequality

‖R(v) − A(v) − R(0)‖ = ‖R(v) − A(v) + F(v) − P(v) + Q(0)‖
� ‖F(v) − A(v)‖ + ‖P(v) − R(v) − Q(0)‖
� (κ + 1)εeαv

for all v ∈ [0,∞) , and hence from this and the definition of Q , q , it follows that∥∥∥ h(x)
(1 − x)α

− A(ϑ ln(1 − x)) − h(0)
∥∥∥ � (κ + 1)ε

(1 − x)α
,

that is,
‖h(x) − (1 − x)α [A(ϑ ln(1 − x)) + h(0)]‖ � (κ + 1)ε (30)

for all x ∈ [0, 1) .
Finally, for all x ∈ [0, 1) , setting

Φ(x) = (1 − x)α [A(ϑ ln(1 − x)) + g(0) + h(0)],
Ψ(x) = (1 − x)α [A(ϑ ln(1 − x)) + g(0)]

and
Λ(x) = (1 − x)α [A(ϑ ln(1 − x)) + h(0)],

we see that the functions Φ , Ψ and Λ satisfy the functional equation (3), that is,

Φ(x + y − xy) = (1 − x)αΨ(y) + (1 − y)αΛ(x)

for all x, y ∈ [0, 1) , and the inequalities (28), (29) and (30) give the inequalities (14),
(15) and (16), respectively. The proof of the theorem is complete. �
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