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Abstract. The objective of the present paper is to study the local existence, global existence,
uniqueness, continuous dependence, asymptotic stability and other properties of solutions of
a nonlinear Volterra integrodifferential equation in Banach spaces of more general type. The
technique employed in our analysis is based on treating the equation in the domain of the
infinitesimal generator of semigroups of linear operators in a Banach space with graph norm and
using results from linear semigroup theory.

1. Introduction

Let X be a general Banach space with norm ‖ ‖ . In this paper, we investigate an
abstract nonlinear Volterra integrodifferential equation of the type

x′(t) = Ax(t) +
∫ t

0
{a(t, s)f (s, x(s)) + g(t, s, x(s))}ds + f 0(t), t � 0; (1)

x(0) = x0 ∈ X; (2)

where A is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators T(t) , t � 0 in X, nonlinear functions f : R+ × X → X, g: R+ × R+ ×
X → X, f 0: R+ → X and the kernel a: R+ × R+ → R are continuous and x0 is a given
element of X.

The equations of these types or their special forms arise naturally in many areas
of applied mathematics as mathematical model of physical process such as heat flow in
materials with memory, see [1, 2, 8, 10] and some of the references listed therein. Many
recent papers and monographs have dealt with the existence, uniqueness, continuation
and other properties of solutions of special forms of the equations (1.1) − (1.2), see
[6, 7, 11, 12] and references given therein. In an interesting paper [12] G.F.Webb has
studied the special form of (1.1) − (1.2) by using linear semigroup theory and the
well-known Banach fixed-point theorem. Our general formulation of (1.1) − (1.2) is
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an attempt to generalize the results of G.F.Webb [12] and is motivated by the model of
integrodifferential equation studied by M.L.Heard [5] and Dhakne and Pachpatte [3, 4].

In the present paper, we study the basic problems such as the local existence,
global existence, uniqueness, continuous dependence upon initial values and asymptotic
stability of solutions of the equations (1.1) − (1.2) . The main tool employed in our
analysis is based on treating the equation in the domain of A with graph norm and using
results from linear semigroup theory.

The paper is organized as follows. In section 2, we present the preliminaries and
statement of our main results. Section 3 deals with the proofs of Theorems. Finally in
section 4 we give an example to illustrate the applications of main results.

2. Preliminaries and statements of results

Before proceeding to the statements of our main results, we setforth some prelim-
inaries from [6, 7] and hypotheses that will be used in our further discussion.

DEFINITION 1. A function x: [0, t1] → X, for some t1 > 0, is said to be a local
solution of (1.1) − (1.2) if

(i) x: [0, t1] → X is continuous from [0, t1] to D(A);
(ii) x: [0, t1] → X is differentiable

and satisfies (1.1) − (1.2). If the closed interval [0, t1] replaced by R+ then the local
solution of (1.1) − (1.2) is called global solution.

DEFINITION 2. The solutions x1(t) and x2(t) of (1.1)with x1(0) = x∗0 and x2(0) =
x∗∗0 respectively are called exponentially asymptotically stable in the graph norm if

‖x1(t) − x2(t)‖A � ‖x∗0 − x∗∗0 ‖A eδ t, t � 0;

where δ � 0.
Let A be the infinitesimal generator of a C0 − semigroup of bounded linear

operators T(t), t � 0 in Banach Space X satisfying ‖T(t)‖ � eω t, t � 0, where ω is
a real constant. Let D(A) and [D(A)] denote the domain of A and the Banach space
with graph norm defined by ‖x‖A = ‖x‖ + ‖Ax‖ , x ∈ D(A) respectively.

We need the following Lemma proved in [6, p. 486].

LEMMA 2.1. Let k: [0, t1] → X be continuously differentiable. If for 0 � t �
t1, q(t) is defined by

q(t) =
∫ t

0
T(t − s)k(s)ds

then q(t) ∈ D(A), q is continuously differentiable and

q′(t) = Aq(t) + k(t) =
∫ t

0
T(t − s)k′(s)ds + T(t)k(0).

For convenience, we list the following hypotheses used in our subsequent discussion.
(H1) The function f 0: R+ → X is continuously differentiable.
(H2) The kernel function a: R+ × R+ → R is continuous, and continuously

differentiable in the first argument.
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(H3) The function f : R+ × D → X where D is an open subset of [D(A)],
is continuous and for each x0 ∈ D there exists a neighborhood Dx0 about x0 and
continuous function b: R+ → R+ such that

‖f (t, x1) − f (t, x2)‖ � b(t) ‖x1 − x2‖A , (3)

for all t ∈ R+, x1, x2 ∈ Dx0.
(H4) The function g: R+×R+×D → X is continuously differentiablewith respect

to its first argument and for each x0 ∈ D there exists a neighborhood Dx0 about x0

and continuous functions c: R+ × R+ → R+ and d: R+ × R+ → R+ such that

‖g(t, s, x1) − g(t, s, x2)‖ � c(t, s) ‖x1 − x2‖A ; (4)

‖g1(t, s, x1) − g1(t, s, x2)‖ � d(t, s) ‖x1 − x2‖A , (5)

for all t, s ∈ R+, x1, x2 ∈ Dx0.
Our main results are established in the following theorems.

THEOREM 2.2. Suppose that the hypotheses (H1) − (H4) hold. For each x0 ∈ D
there exist t1 > 0 and a unique solution x: [0, t1] → X of the equations (1.1) − (1.2).
Further, if D = Dx0 = [D(A)], then the solution x of (1.1) − (1.2) exists on R+.

THEOREM 2.3. Suppose that the hypotheses (H1) − (H4) hold and x0 ∈ D.
Suppose that x1 and x2 satisfy the equation (1.1) for 0 � t � t1 with x1(0) = x∗0 and
x2(0) = x∗∗0 respectively and x1(t), x2(t) ∈ Dx0 then there exist continuous functions
α, β , γ : R+ → R+ such that

‖x1(t) − x2(t)‖A � ‖x∗0 − x∗∗0 ‖Aexp {(β(t) + γ (t) + M + ω)t} ; 0 � t � t1

where M =
∫ t1

0 α(s)ds.

COROLLARY 2.4. Suppose the hypotheses of Theorem 2.3 hold with D = Dx0 =
[D(A)]. Assume there exist constants α0, β0, γ0 such that

∫ t

0
e−w(t−s){|a(t, s)| b(s) + c(t, s) + |a1(t, s)| b(s) + d(t, s)}ds � α0;

e−w(t−s) {|a(t, s)| b(s) + c(t, s)} � β0;

|a(t, t)| b(t) + c(t, t) � γ0;

for t � 0 and α0 +β0+γ0 +ω = δ � 0. Then the solutions of (1.1) are exponentially
asymptotically stable in the graph norm, in the sense : if x1(t), x2(t) are the solutions
of (1.1) with x1(0) = x∗0 , x2(0) = x∗∗0 respectively, then

‖x1(t) − x2(t)‖A � ‖x∗0 − x∗∗0 ‖A eδ t, t � 0.

THEOREM 2.5. Suppose that the hypotheses (H1)−(H4) hold. Let f (t, x), g(t, s, x)
and g1(t, s, x) be Lipschitz continuous on bounded sets of x0 in D uniformly in finite
intervals of t . If x0 ∈ D and x is a noncontinuable solution of (1.1)− (1.2) on [0, l),
then either l = +∞ or given any closed bounded set U in D there exist a sequence
tk → l− such that x(tk) /∈ U.
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COROLLARY 2.6. Suppose that the hypotheses of Theorem 2.5 hold. Let D =
[D(A)]. If x0 ∈ D and x is a noncontinuable solution of (1.1) − (1.2) on [0, l) then

either l = +∞ or lim
t→l− ‖x(t)‖A = +∞ .

3. Proofs of Theorems

First, we prove the existence of a solution of equations (1.1)− (1.2). Let x0 ∈ D
and let N be a neighborhood about x0 in [D(A)] such that N ⊂ Dx0. Let t1 > 0 and
C = C([0, t1]; N). Define the mapping K on C by

(Kx)(t) = T(t)x0 +
∫ t

0
T(t − s)

∫ s

0
{a(s, τ)f (τ, x(τ)) + g(s, τ, x(τ))} dτds

+
∫ t

0
T(t − s)f 0(s)ds, x ∈ C, 0 � τ � s � t � t1.

(3.1)

Define

k(s) =
∫ s

0
{a(s, τ)f (τ, x(τ)) + g(s, τ, x(τ))} dτ, 0 � τ � s � t1.

We show that k(s) is continuously differentiable from [0, t1] to X. Now,

k(s + h) − k(s)
h

=h−1
∫ s+h

s
{a(s + h, τ)f (τ, x(τ)) + g(s + h, τ, x(τ))} dτ

+
∫ s

0
{
[
a(s + h, τ) − a(s, τ)

h

]
f (τ, x(τ))

+
[
g(s + h, τ, x(τ)) − g(s, τ, x(τ))

h

]
}dτ.

(3.2)

Taking limit as h → 0 on both sides of (3.2), we obtain

k′(s) = {a(s, s)f (s, x(s)) + g(s, s, x(s))}
+

∫ s

0
{a1(s, τ)f (τ, x(τ)) + g1(s, τ, x(τ))} dτ.

(8)

From hypotheses (H2)− (H4), it follows that k′(s) is continuous and therefore k(s) is
continuously differentiable. For x ∈ C, 0 � s � t � t1 from the Lemma 2.1, we have

∫ t

0
T(t − s)k(s)ds,

∫ t

0
T(t − s)f 0(s)ds ∈ D(A)

and by Theorem (2.2.1)(b) in [7] it follows that

(Kx)(t) = T(t)x0 +
∫ t

0
T(t − s)k(s)ds +

∫ t

0
T(t − s)f 0(s)ds ∈ D(A).
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Now, from equations (3.1), (3.3) and Lemma 2.1, we get

(AKx)(t) =AT(t)x0 +
∫ t

0
T(t − s) {a(s, s)f (s, x(s)) + g(s, s, x(s))} ds

+
∫ t

0
T(t − s)

∫ s

0
{a1(s, τ)f (τ, x(τ)) + g1(s, τ, x(τ))} dτds

−
∫ t

0
{a(t, s)f (s, x(s)) + g(t, s, x(s))} ds

+
∫ t

0
T(t − s)f ′

0(s)ds + T(t)f 0(0) − f 0(t).

(3.4)

For x ∈ C, from (3.1), (3.4) and the hypotheses (H1)− (H4), it is clear that (Kx) and
(AKx) are both continuous from [0, t1] to X. If t1 is chosen sufficiently small then K
maps C into C.
Using (3.1), hypotheses (H1) − (H3) and (2.2), we get

‖(Kx)(t) − (Ky)(t)‖ �
∫ t

0
eω(t−s)

∫ s

0
{|a(s, τ)| b(τ) + c(s, τ)} ‖x(τ) − y(τ)‖A dτds.

(10)
Similarly by using (3.4), hypotheses (H1) − (H4), we obtain

‖(AKx)(t)−(AKy)(t)‖ �
∫ t

0
eω(t−s) {|a(s, s)| b(s) + c(s, s)} ‖x(s) − y(s)‖A ds

+
∫ t

0
eω(t−s)

∫ s

0
{|a1(s, τ)| b(τ)+d(s, τ)} ‖x(τ)−y(τ)‖A dτds

+
∫ t

0
{|a(t, s)| b(s) + c(t, s)} ‖x(s) − y(s)‖A ds

(3.6)
Using the definition of graph norm and equations (3.5) and (3.6), we obtain

‖(Kx)(t)−(Ky)(t)‖A �
∫ t

0
eω(t−s) {|a(s, s)| b(s) + c(s, s)} ‖x(s) − y(s)‖A ds

+
∫ t

0
eω(t−s)

∫ s

0
{|a(s, τ)| b(τ) + c(s, τ)} ‖x(τ) − y(τ)‖A dτds

+
∫ t

0
eω(t−s)

∫ s

0
{|a1(s, τ)| b(τ) + d(s, τ)} ‖x(τ) − y(τ)‖A dτds

+
∫ t

0
{|a(t, s)| b(s) + c(t, s)} ‖x(s) − y(s)‖A ds.

(3.7)
Since b: [0, t1] → R+ , c: [0, t1] × [0, t1] → R+ and d: [0, t1] × [0, t1] → R+ are
continuous functions on compact domain, the functions b, c and d are bounded i.e.
there exists constants M1 , M2 and M3 such that

b(t) � M1, c(t, s) � M2 and d(t, s) � M3, f or 0 � s � t � t1. (13)
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Also a(t, s) is continuous and continuously differentiable for 0 � s � t � t1, there
exists positive constants N1 and N2 such that

|a(t, s)| � N1 and |a1(t, s)| � N2, for 0 � s � t � t1. (14)

It is clear that
eω(t−s) � e|ω|t1 , for 0 � s � t � t1. (15)

Using the results (3.8) − (3.10) in (3.7), we obtain

‖(Kx)(t) − (Ky)(t)‖A � λ ‖x(t) − y(t)‖A ; (16)

where

λ = e|ω|t1 {N1M1 + M2 + N2M1 + M3} t21
2

+
{

(e|ω|t1 + 1)(N1M1 + M2)
}

t1.

We observe that if t1 is chosen sufficiently small then λ satisfies 0 < λ < 1. Therefore
K is a contractionmapping on C. By contractionmapping theorem there exists a unique
x ∈ C such that Kx = x. From (3.1) and Lemma 2.1 we have x: [0, t1] → [D(A)] is
continuous, x: [0, t1] → X is differentiable and x satisfies (1.1) − (1.2).

If D = Dx0 = [D(A)], then N can be chosen as [D(A)]. In this case t1 does not
depend on x0 nor on f 0(t) and the solution x can be continued to +∞ i.e. we observe
that a solution x of (1.1) − (1.2) defined on a closed interval [0, t1] can be extended
to a larger interval [0, t1 + η], η > 0 by defining x(t + t1) = u(t) where u(t) is a
solution of

u′(t) = Au(t)+
∫ t+t1

0
{a(t + t1, s)f (s, u(s)) + g(t + t1, s, u(s))}ds + f 0(t + t1); (17)

u(0) = x(t1). (18)

Above discussion guarantees the existence of the solution of equations (3.12)− (3.13)
on an interval of positive length η > 0. Repeating this process, we observe that x
exists on R+ and the proof the of Theorem 2.2 is complete.

Define continuous functions α, β , γ : R+ → R+ as follows

α(t) = max
0�s�t e−ω(t−s){|a(t, s)| b(s) + c(t, s) + |a1(t, s)| b(s) + d(t, s)}, (19)

β(t) = max
0�s�t e−ω(t−s) {|a(t, s)| b(s) + c(t, s)} (20)

and
γ (t) = max

0�s�t {|a(s, s)| b(s) + c(s, s)} . (21)

Let
p1(t) = e−ω t ‖x1(t) − x2(t)‖ , (22)

p2(t) = e−ω t ‖A(x1(t) − x2(t))‖ (23)

and
p(t) = p1(t) + p2(t) = e−ω t ‖x1(t) − x2(t)‖A . (24)
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The functions x1(t) and x2(t) satisfy the equation (1.1) for 0 � t � t1 with
x1(0) = x∗0 and x2(0) = x∗∗0 respectively. Then by using Theorem 2.2, equations (3.1)
and (3.4); we obtain

x1(t) = T(t)x∗0 +
∫ t

0
T(t − s)

∫ s

0
{a(s, τ)f (τ, x1(τ)) + g(s, τ, x1(τ))} dτds

+
∫ t

0
T(t − s)f 0(s)ds,

(3.20)

x2(t) = T(t)x∗∗0 +
∫ t

0
T(t − s)

∫ s

0
{a(s, τ)f (τ, x2(τ)) + g(s, τ, x2(τ))} dτds

+
∫ t

0
T(t − s)f 0(s)ds,

(3.21)

Ax1(t) = AT(t)x∗0 +
∫ t

0
T(t − s){a(s, s)f (s, x1(s)) + g(s, s, x1(s))}ds

+
∫ t

0
T(t−s)

∫ s

0
{a1(s, τ)f (τ, x1(τ))+g1(s, τ, x1(τ))} dτds

−
∫ t

0
{a(t, s)f (s, x1(s)) + g(t, s, x1(s))} ds

+
∫ t

0
T(t − s)f ′

0(s)ds + T(t)f 0(0) − f 0(t)

(3.22)

and

Ax2(t)=AT(t)x∗∗0 +
∫ t

0
T(t − s) {a(s, s)f (s, x2(s)) + g(s, s, x2(s))} ds

+
∫ t

0
T(t−s)

∫ s

0
{a1(s, τ)f (τ, x2(τ))+g1(s, τ, x2(τ))} dτds

−
∫ t

0
{a(t, s)f (s, x2(s)) + g(t, s, x2(s))} ds

+
∫ t

0
T(t − s)f ′

0(s)ds + T(t)f 0(0) − f 0(t).

(3.23)

Using (3.20) and (3.21) in (3.17), and making use of hypotheses (H1) − (H3), (2.2)
and (3.19), we get

p1(t) � ‖x∗0 − x∗∗0 ‖ +
∫ t

0

∫ s

0
e−ω(s−τ) {|a(s, τ)| b(τ) + c(s, τ)} p(τ)dτds. (29)

Similarly, using (3.22) and (3.23) in (3.18), and also using hypotheses (H1) − (H4)
and equation (3.19), we obtain
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p2(t) � ‖Ax∗0 − Ax∗0‖ +
∫ t

0
{|a(s, s)| b(s) + c(s, s)} p(s)ds

+
∫ t

0

∫ s

0
e−ω(s−τ) {|a1(s, τ)| b(τ) + d(s, τ)} p(τ)dτds

+
∫ t

0
e−ω(t−s) {|a(t, s)| b(s) + c(t, s)} p(s)ds.

(3.25)

Adding (3.24), (3.25) and using the definitions of α(t), β(t) and γ (t), we obtain

p(t) � ‖x∗0 − x∗∗0 ‖ + ‖Ax�
0 − Ax��

0 ‖ +
∫ t

0
{|a(s, s)| b(s) + c(s, s)} p(s)ds

+
∫ t

0

∫ t

τ
e−ω(s−τ)[{|a(s, τ)| b(τ)+c(s, τ)}+ {|a1(s, τ)| b(τ)+d(s, τ)}]p(τ)dsdτ

+
∫ t

0
e−ω(t−s) {|a(t, s)| b(s) + c(t, s)} p(s)ds

� ‖x∗0 − x∗∗0 ‖A + {β(t) + γ (t) + M}
∫ t

0
p(s)ds.

(3.26)
Thanks to Gronwall’s inequality and applying it to the equation (3.26), we get

p(t) � ‖x�
0 − x��

0 ‖A exp({β(t) + γ (t) + M} t),

which yields

‖x1(t) − x2(t)‖A � ‖x∗0 − x∗∗0 ‖A exp({β(t) + γ (t) + M + ω} t). (32)

Thus, the proof of the Theorem 2.3 is complete.
Using definitions of continuous functions α(t), β(t), γ (t) and hypotheses of

Corollary 2.4, it is clear that

∫ t

0
α(s)ds � α0, β(t) � β0 and γ (t) � γ0 for t � 0.

Then by using (3.27), we have

‖x1(t) − x2(t)‖A � ‖x∗0 − x∗∗0 ‖A exp({α0 + β0 + γ0 + ω} t)
� ‖x∗0 − x∗∗0 ‖A exp(δ t),

(3.28)

and the proof of the Corollary 2.4 is complete.
We prove the Theorem 2.5 by method of contradiction. Suppose that l < ∞ and

conclusion of the theorem is false. Then there exists a closed bounded set U in D such
that x(t) ∈ U for 0 � t < l. For 0 < t + h < l and using Theorem 2.2, we have
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‖x(t+h)−x(t)‖ � ‖T(t + h)x0 − T(t)x0‖

+ ‖
∫ t+h

0
T(t+h−s)

∫ s

0
{a(s, τ)f (τ, x(τ))+g(s, τ, x(τ))} dτds

−
∫ t

0
T(t−s)

∫ s

0
{a(s, τ)f (τ, x(τ)) + g(s, τ, x(τ))} dτds‖

+

∥∥∥∥∥
∫ t+h

0
T(t + h − s)f 0(s)ds −

∫ t

0
T(t − s)f 0(s)ds

∥∥∥∥∥ .

(3.29)

Now, by substitution, we get
∫ t+h

0
T(t+h−s)

∫ s

0
{a(s, τ)f (τ, x(τ)) + g(s, τ, x(τ))} dτds

=
∫ 0

−h
T(t − s)

∫ s+h

0
{a(s + h, τ)f (τ, x(τ)) + g(s + h, τ, x(τ))}dτds

+
∫ t

0
T(t − s)

∫ s+h

0
{a(s + h, τ)f (τ, x(τ)) + g(s + h, τ, x(τ))}dτds

(3.30)

Similarly, we have
∫ s+h

0
{a(s + h, τ)f (τ, x(τ)) + g(s + h, τ, x(τ))} dτ

=
∫ 0

−h
{a(s+h, τ+h)f (τ+h, x(τ+h))+g(s+h, τ+h, x(τ+h))}dτ

+
∫ s

0
{a(s+h, τ+h)f (τ+h, x(τ+h))+g(s+h, τ+h, x(τ+h))}dτ

(3.31)

Using (3.30) and (3.31), we obtain

‖
∫ t+h

0
T(t + h − s)

∫ s

0
{a(s, τ)f (τ, x(τ)) + g(s, τ, x(τ))} dτds

−
∫ t

0
T(t − s)

∫ s

0
{a(s, τ)f (τ, x(τ)) + g(s, τ, x(τ))} dτds‖

�
∫ 0

−h
‖T(t − s)‖

∫ 0

−h
{|a(s + h, τ + h)| ‖f (τ + h, x(τ + h))‖

+ ‖g(s + h, τ + h, x(τ + h))‖}dτds

+
∫ 0

−h
‖T(t − s)‖

∫ s

0
{|a(s + h, τ + h)| ‖f (τ + h, x(τ + h))‖

+ ‖g(s + h, τ + h, x(τ + h))‖}dτds

+
∫ t

0
‖T(t − s)‖

∫ 0

−h
{|a(s + h, τ + h)| ‖f (τ + h, x(τ + h))‖

+ ‖g(s + h, τ + h, x(τ + h))‖}dτds

+
∫ t

0
‖T(t−s)‖

∫ s

0
{‖a(s+h, τ+h)f (τ+h, x(τ+h))−a(s, τ)f (τ, x(τ))‖

+ ‖g(s + h, τ + h, x(τ + h)) − g(s, τ, x(τ))‖}dτds

(3.32)
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Using the same technique as above, we get∥∥∥∥∥
∫ t+h

0
T(t + h − s)f 0(s)ds −

∫ t

0
T(t − s)f 0(s)ds

∥∥∥∥∥
�

∫ 0

−h
‖T(t − s)‖ ‖f 0(s + h)‖ ds +

∫ t

0
‖T(t − s)‖ ‖f 0(s + h) − f 0(s)‖ ds.

(3.33)

Since T(t) and f 0(t) are continuous for 0 � t < t + h < l

‖T(t + h) − T(t)‖ → 0 as h → 0 (39)

‖f 0(t + h) − f 0(t)‖ → 0 as h → 0 (40)

From (3.32) − (3.35) and (3.29), we obtain

‖x(t + h) − x(t)‖

�
∫ 0

−h
‖T(t − s)‖

∫ 0

−h
{|a(s + h, τ + h)| ‖f (τ + h, x(τ + h))‖

+ ‖g(s + h, τ + h, x(τ + h))‖}dτds

+
∫ 0

−h
‖T(t − s)‖

∫ s

0
{|a(s + h, τ + h)| ‖f (τ + h, x(τ + h))‖

+ ‖g(s + h, τ + h, x(τ + h))‖}dτds

+
∫ t

0
‖T(t−s)‖

∫ 0

−h
{|a(s+h, τ+h)| ‖f (τ+h, x(τ+h))‖

+ ‖g(s + h, τ + h, x(τ + h))‖}dτds

+
∫ t

0
‖T(t−s)‖

∫ s

0
{|a(s+h, τ+h)| ‖f (τ+h, x(τ+h)) − f (τ+h, x(τ))‖

+ ‖a(s + h, τ + h)f (τ + h, x(τ)) − a(s, τ)f (τ, x(τ))‖
+ ‖g(s + h, τ + h, x(τ + h)) − g(s + h, τ + h, x(τ))‖
+ ‖g(s + h, τ + h, x(τ)) − g(s, τ, x(τ))‖}dτds

+
∫ 0

−h
‖T(t − s)‖ ‖f 0(s + h)‖ ds

(3.36)

For each t, T(t) is bounded operator, therefore there exists a constant M0 such that
‖T(t)‖ � M0. The functions f (t, .), g(t, ., ), g1(t, ., .), f 0(t) and f ′

0(t) are continuous
for 0 � s � t � l, there exists constants L1, L2, L3, L4 and L5 such that

‖f (t, .)‖ � L1, ‖g(t, ., .)‖ � L2, ‖g1(t, ., .)‖ � L3, ‖f 0(t)‖ � L4, and ‖f ′
0(t)‖ � L5.

(42)
Since f (t, x), g(t, s, x) and g1(t, s, x) are Lipschitz continuous on bounded sets

of x0 uniformly in finite intervals of t, there exists constants M1, M2 and M3 such
that

‖f (t, x1) − f (t, x2)‖ � M1 ‖x1 − x2‖A ; (43)
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‖g(t, s, x1) − g(t, s, x2)‖ � M2 ‖x1 − x2‖A (44)
and

‖g1(t, s, x1) − g1(t, s, x2)‖ � M3 ‖x1 − x2‖A . (45)
Using (3.37) − (3.40) in equation (3.36), we get

‖x(t + h) − x(t)‖ � L(h) + M
∫ t

0
‖x(s + h) − x(s)‖A ds (46)

where

M = M0 {N1M1 + M2} l and L(h) = M0 {N1L1 + L2}
{

3h2

2
+ lh

}
+ M0L4h.

From equation (3.4), we obtain

‖Ax(t+h)−Ax(t)‖ � ‖T(t + h)Ax0 − T(t)Ax0‖

+ ‖
∫ t+h

0
T(t+h−s)[{a(s, s)f (s, x(s))+g(s, s, x(s))}

+
∫ s

0
{a1(s, τ)f (τ, x(τ)) + g1(s, τ, x(τ))} dτ]ds

−
∫ t

0
T(t − s)[{a(s, s)f (s, x(s)) + g(s, s, x(s))}

+
∫ s

0
{a1(s, τ)f (τ, x(τ)) + g1(s, τ, x(τ))} dτ]ds‖

+ ‖
∫ t+h

0
{a(t + h, s)f (s, x(s)) + g(t + h, s, x(s))} ds

−
∫ t

0
{a(t, s)f (s, x(s)) + g(t, s, x(s))} ds‖

+

∥∥∥∥∥
∫ t+h

0
T(t + h − s)f ′

0(s)ds −
∫ t

0
T(t − s)f ′

0(s)ds

∥∥∥∥∥
+ ‖T(t + h)f 0(0) − T(t)f 0(0)‖ + ‖f 0(t + h) − f 0(t)‖ .

(3.42)

By using substitution, we get

‖Ax(t + h) − Ax(t)‖ � ‖T(t + h)Ax0 − T(t)Ax0‖

+
∫ 0

−h
‖T(t − s)‖ {|a(s + h, s + h)| ‖f (s + h, x(s + h))‖

+ ‖g(s + h, s + h, x(s + h))‖}ds

+
∫ 0

−h
‖T(t − s)‖

∫ 0

−h
{|a1(s + h, τ + h)| ‖f (τ + h, x(τ + h))‖

+ ‖g1(s + h, τ + h, x(τ + h))‖}dτds

+
∫ 0

−h
‖T(t − s)‖

∫ s

0
{|a1(s + h, τ + h)| ‖f (τ + h, x(τ + h))‖

+ ‖g1(s + h, τ + h, x(τ + h))‖}dτds
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+
∫ t

0
‖T(t − s)‖

∫ 0

−h
{|a1(s + h, τ + h)| ‖f (τ + h, x(τ + h))‖

+ ‖g1(s + h, τ + h, x(τ + h))‖}dτds

+
∫ 0

−h
{|a(t + h, s + h)| ‖f (s + h, x(s + h))‖

+ ‖g(t + h, s + h, x(s + h))‖}ds

+
∫ t

0
‖T(t − s)‖ {|a(s + h, s + h)| ‖f (s + h, x(s + h)) − f (s + h, x(s))‖

+ ‖a(s + h, s + h)f (s + h, x(s)) − a(s, s)f (s, x(s))‖
+ ‖g(s + h, s + h, x(s + h)) − g(s + h, s + h, x(s))‖
+ ‖g(s + h, s + h, x(s)) − g(s, s, x(s))‖}ds

+
∫ t

0
‖T(t−s)‖

∫ s

0
{|a1(s+h, τ+h)| ‖f (τ+h, x(τ+h))−f (τ+h, x(τ))‖

+ ‖a1(s + h, τ + h)f (τ + h, x(τ)) − a1(s, τ)f (τ, x(τ))‖
+ ‖g1(s + h, τ + h, x(τ + h)) − g1(s + h, τ + h, x(τ))‖
+ ‖g1(s + h, τ + h, x(τ)) − g1(s, τ, x(τ))‖}dτds

+
∫ t

0
{|a(t + h, s + h)| ‖f (s + h, x(s + h)) − f (s + h, x(s))‖

+ ‖a(t + h, s + h)f (s + h, x(s)) − a(t, s)f (s, x(s))‖
+ ‖g(t + h, s + h, x(s + h)) − g(t + h, s + h, x(s))‖
+ ‖g(t + h, s + h, x(s)) − g(t, s, x(s))‖}ds

+
∫ t

0
‖T(t − s)‖ {‖f ′

0(s + h) − f ′
0(s)‖} ds +

∫ 0

−h
‖T(t − s) ‖‖ f 0(s + h)‖ ds

+ ‖T(t + h)f 0(0) − T(t)f 0(0)‖ + ‖f 0(t + h) − f 0(t)‖

(3.43)

Using (3.37) − (3.40) in (3.43), we get

‖Ax(t + h) − Ax(t)‖ � L(h) + M
∫ t

0
‖x(s + h) − x(s)‖A ds (49)

where

L(h) = (M0h + h)(N1L1 + L2) + (N2L1 + L3)M0(
3h2

2
+ lh) + M0L5h

M = M0(N1M1 + M2) + M0(N2M1 + M3)l + N1M1 + M2

Now, by using equations (3.41) and (3.44), we obtain

‖x(t + h) − x(t)‖A = ‖x(t + h) − x(t)‖ + ‖Ax(t + h) − Ax(t)‖

�
[
L(h) + L(h)

]
+

[
M + M

] ∫ t

0
‖x(s + h) − x(s)‖A ds
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Again, thanks to Gronwall’s inequality, and applying to the above result, we get

‖x(t + h) − x(t)‖A �
[
L(h) + L(h)

]
exp

[
(M + M)t

]
, for 0 < t < t + h < l. (50)

Thus lim
t→l− x(t) exists in [D(A)] and is in D. By Theorem 2.2, x(t) can be continued

past l, contradicting the noncontinuability hypothesis and the proof of the Theorem 2.5
is complete.

Suppose lim
t→l− ‖x(t)‖A < ∞. Assume that U is the closure of {x(t): 0 � t < l}

in [D(A)]. Then, it is clear that U ⊂ D, U is closed and bounded. By Theorem 2.5, it
follows that l = +∞ and proof of the corollary 2.6 is complete.

4. Application

In order to illustrate the application of our main result, consider the following
nonlinear partial integrodifferential equation of the form

wt(u, t) = wuu(u, t)+
∫ t

0
{a(t, s)F(s, wuu(u, s))+G(t, s, wuu(u, s))}ds+H(u, t), (51)

w(0, t) = w(1, t) = 0, t > 0, (52)

w(u, 0) = w0(u), 0 < u < 1. (53)

where the kernel function a(t, s): R+ ×R+ → R is continuous, and continuously differ-
entiable in the first argument, the functions F(t, x): R+ × R → R and G(t, s, x): R+ ×
R+ × R → R are continuous and continuously differentiable, F(t, x), G(t, s, x)
and G1(t, s, x) are Lipschitz continuous in x uniformly in t and the function
H(u, t): [0, 1]× R+ → R is continuously differentiable.

Let X = L2(0, 1; R). We define an operator A: X → X by Az = z′′ with domain
D(A) = {z ∈ X: z′′ ∈ X and z(0) = z(1) = 0}. Define the functions f : R+ × D → X ,
g: R+ × R+ × D → X and f 0: R+ → X as follows

f (t, z)(u) = F(t, z′′(u)),
g(t, s, z)(u) = G(t, s, z′′(u))

and
f 0(t)(u) = H(u, t)

for t > 0; z ∈ X and 0 < u < 1. From above choices of the functions, the problem
(4.1) − (4.3) can be formulated abstractly as

x′(t) = Ax(t) +
∫ t

0
{a(t, s)f (s, x(s)) + g(t, s, x(s))}ds + f 0(t), t � 0; (54)

x(0) = x0 ∈ X. (55)

Since all the hypotheses of Theorem 2.2 are satisfied and therefore a unique solution of
the equations (4.1) − (4.3) exists.
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