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Abstract. The compactness of the higher dimensional generalized Hardy operator (Kf )(x) =∫
Sx

k(x, y)f (y)dy and its conjugate operator K∗ has been characterized for the case 1 < p ,
q < ∞ . This is done by reducing the problem to the corresponding one dimensional situation.

1. Introduction

The Lp -Lq boundedness and compactness of the generalized Hardy operator
(Lf ) (s) =

∫ s
0 l(s, t)f (t)dt involving the so called “Oinarov kernel” l(s, t) has been

a subject of investigation during the last decades. A good account of such work can
be found in [6], [8], [9], [10] and the references therein. Also, the boundedness and
compactness of L has been studied in the framework of general Banach function spaces
defined over R

+ , see, e.g., [7].
Our aim, in this paper, is to study the Lp -Lq compactness of an N -dimensional

analogue of the operator L defined by

(Kf )(x) =
∫

Sx

k(x, y)f (y)dy, x ∈ E

where E and Sx are certain cones in R
N (defined below) and show that the compactness

of K can be characterized in terms of the compactness of the one dimensional operator
L . We also study the corresponding conjugate operator K∗. Such reduction for some
other operators can be found in [3], [5]. In [12], the author works with smoothly star-
shaped regions and studies the boundedness of K in terms of the boundedness of L
under the special case when l(s, t) ≡ 1 ≡ k(x, y). The class of smoothly star-shaped
regions is larger than the one considered here. However, in our case, we dispense with
the smoothness condition. Further, if there is no confusion, we use the same notations
E and Sx for cones as done by Sinnamon [12] for star-shaped regions. In the general
case the boundedness of K has been studied in [13].

The paper is organized in the following manner: In Section 2, we collect certain
preliminaries which is required for the main results in this paper. The reduction of the
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compactness of K in terms of the compactness of L for 1 < p, q < ∞ has been done
in Section 3 and subsequently in this section, the precise weight characterization for the
compactness of K in the case 1 < p � q < ∞ is given. Finally, in Section 4, the case
1 < q < p < ∞ has been discussed as well as the conjugate operator K∗ has been
studied. There is no ambiguity in the symbol L being used for the space as well as for
the operator. It is clear with the context. Moreover, in the case of a space, the symbol
L is followed by a superscript, e.g., Lp, Lq etc.

2. Preliminaries

Let Ω ⊆ R
N . For a weight function u on Ω , we shall denote by Lp(Ω, u), 1 �

p < ∞, the weighted Lebesgue space which is the set of all measurable functions f
defined on Ω such that

‖f ‖p,Ω,u :=
(∫

Ω
| f (x) |p u(x)dx

) 1
p

< ∞.

It is known that for 1 � p < ∞ , Lp(Ω, u) is a Banach space and for 1 < p < ∞ , it
is reflexive too. If the duality on the weighted Lebesgue space Lp(Ω, u) , 1 < p < ∞ ,
is defined by

〈 f , g〉 =
∫
Ω

f (x)g(x)dx, g ∈ Lp(Ω, u)

then we can identify the conjugate space of Lp(Ω, u) by Lp′(Ω, u1−p′) , p′ = p
p−1 being

the conjugate index of p , i.e.

[Lp(Ω, u)]∗ = Lp′(Ω, u1−p′).

For a bounded linear operator T between two normed linear spaces X and Y, we
denote by T∗ , the conjugate of T acting between Y∗ and X∗ .

Consider the generalized Hardy operator L : Lp((0,∞), v) → Lq((0,∞), u) de-
fined by

(Lf ) (s) :=
∫ s

0
l(s, t)f (t)dt, s > 0,

where the kernel l(s, t) is defined for 0 < t < s < ∞ and l(s, t) � 0. The kernel
l(s, t) is called Oinarov if

(i) l(s, t) is increasing in the first variable, i.e.,

l(s1, t) � l(s2, t), f or 0 < s1 < s2; (2.1)

(ii) l(s, t) is decreasing in the second variable, i.e.,

l(s, t1) � l(s, t2), f or 0 < t2 < t1; (2.2)

(iii) there exist positive constants c1, c2 such that

c1[l(s, r) + l(r, t)] � l(s, t) � c2[l(s, r) + l(r, t)], 0 < t < r < s. (2.3)

Such kernels were introduced by Bloom and Kermen [2]. However, because of the
considerable work done with these kernels by Oinarov [9], [10], these are named after
him.
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The conjugate operator L∗ to L is given by

(L∗g) (s) :=
∫ ∞

s
l(t, s)g(t)dt, s > 0.

Let
∑

N be the unit sphere in R
N , i.e.,

∑
N =

{
x ∈ R

N :| x |= 1
}

, where | x |
denotes the Euclidean norm of the vector x ∈ R

N . Let A be a measurable subset of∑
N .We denote by E, a measurable cone in R

N and is defined by

E =
{
x ∈ R

N : x = sσ; 0 � s < ∞,σ ∈ A
}

.

Let Sx, x ∈ R
N denote part of E with ’radius’ �| x |, i.e.,

Sx =
{
y ∈ R

N : y = sσ, 0 � s �| x |,σ ∈ A
}

.

Let E be a cone in R
N . We consider the N−dimensional generalized Hardy

operator

(Kf ) (x) =
∫

Sx

k(x, y)f (y)dy, x ∈ E

where the kernel k(x, y) is defined on E×E for |y| � |x| and is such that k(x, y) � 0.
Following the one dimensional case, the kernel k(x, y) is called Oinarov if the following
are satisfied:

(i) k is increasing in the first argument, i.e.,

k(x1, y) � k(x2, y), | x1 |�| x2 |, y ∈ E; (2.4)

(ii) k is decreasing in the second argument, i.e.,

k(x, y1) � k(x, y2), x ∈ E, | y1 |�| y2 |; (2.5)

(iii) there exist positive constants c1, c2 such that

c1[k(x, y) + k(y, z)] � k(x, z) � c2[k(x, y) + k(y, z)], | z |�| y |�| x | . (2.6)

REMARK 1 . If k is a positive kernel satisfying (2.4) and (2.5) then it only depends
on the radial part. Indeed, let xi = sσi, yi = tτi, s, t > 0, σi, τi ∈ A, i = 1, 2. Note
that | x1 |=| x2 | and | y1 |=| y2 | . Then using (2.4) and (2.5) we obtain

k(x1, y1) = k(x2, y1) = k(x2, y2).

Thus, if we set
l (s, t) = k (sσ, tτ) , (2.7)

then l is a positive kernel defined on (0,∞) × (0,∞) corresponding to the kernel
k (sσ, tτ) defined on E × E . Clearly, k is Oinarov if and only if l is so.

The operator K∗ : Lp (E, v) → Lq (E, u) , conjugate to K is defind by

(K∗g) (x) =
∫

E\Sx

k(y, x)g(y)dy, x ∈ E. (2.8)

Let X be a normed linear space and X∗ denote its conjugate space. We say that a
sequence {xn} in X is strongly convergent (or simply convergent) to x ∈ X , written
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xn → x , if ‖ xn−x ‖→ 0 as n → ∞ . A sequence {xn} in X is said to convergeweakly
to x ∈ X , written xn

w→ x , if f (xn) → f (x) , for each f ∈ X∗ . A sequence {f n} in X∗

is said to be weak ∗ convergent to f ∈ X∗ , written f n
w∗
→ f , if f n (x) → f (x) for each

x ∈ X . Note that the strong convergence implies the weak convergence which in turn
implies the weak ∗ convergence. The implications in the reverse direction do not hold
in general. However, if X is a reflexive space then the weak ∗ convergence implies the
weak convergence.

The proofs of the theorems presented in this paper require some well known
assertions which are collected in the following :

THEOREM 2 .A. Let X and Y be Banach spaces.
(i) A bounded linear operator T : X → Y is compact if and only if its conjugate

T∗ : Y∗ → X∗ is compact.
(ii) If T : X → Y is compact and {xn} is a sequence in X such that {xn} w→ x ,

for some x ∈ X , then Txn → Tx
(iii) An operator T : X → Y is compact if T∗ : Y∗ → X∗ is weak ∗ -norm

sequentially continuous i.e. for each sequence {f n} in Y∗ with {f n} w∗→ f , for some
f ∈ Y∗ , we have T∗ (f n) → T∗f .

3. The results

For the sake of convenience we shall use the following notations. We denote for
n � 0

(Lnf ) (s) :=
∫ s

0
ln(s, t)f (t)dt,

(L∗
ng) (s) :=

∫ ∞

s
ln(t, s)g(t)dt.

(Knh) (x) :=
∫

Sx

kn(x, y)h(y)dy,

and

(K∗
nh) (x) :=

∫
E\Sx

kn(y, x)h(y)dy.

For example, L0 is the standard Hardy operator
∫ s

0 f (t) dt .
In [7], Lomakina and Stepanov studied the compactness of the operator L in

the framework of general Banach function spaces defined on R
+. In terms of Lp -Lq

compactness, their result reads as

THEOREM 3 .A. Let 1 < p � q < ∞ and U, V be weight functions on (0,∞).
Then the operator L : Lp((0,∞), V) → Lq((0,∞), U) involving the Oinarov kernel l
is compact if and only if

max(A0, A1) < ∞
and

lim
s→ai

Ai(s) = lim
s→bi

Ai(s) = 0, i = 0, 1
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where

A0 = sup
s>0

A0(s) = sup
s>0

(L∗
0U)1/q(s)

(
Lp′V

1−p′
)1/p′

(s),

A1 = sup
s>0

A1(s) = sup
s>0

(L∗
qU)1/q(s)

(
L0V

1−p′
)1/p′

(s),

ai = inf {s > 0 : Ai(s) > 0} i = 0, 1

and
bi = sup {s > 0 : Ai(s) > 0} i = 0, 1.

The aim is to extend the above result in the higher dimensional setting. More
precisely, we characterize the compactness of the operators K and K∗ defined in
Section 2. The following is the key result which characterizes the compactness of K in
terms of the compactness of the one dimensional operator L.

THEOREM 3.1. Let E be a cone in R
N and k be a kernel on E × E depending

on the radial variables, i.e., k(x, y) = k(|x| , |y|). Suppose that 1 < p, q < ∞ and u,v
be weight functions on E . Then the operator K : Lp (E, v) → Lq (E, u) is compact if
and only if the operator L : Lp ((0,∞) , V) → Lq ((0,∞) , U) is compact with

U (t) =
∫

A
u (tτ) tN−1dτ, t ∈ (0,∞) (3.1)

and

V (t) =
(∫

A
v1−p′ (tτ) tN−1dτ

)1−p

, t ∈ (0,∞) . (3.2)

Proof. Let x, y ∈ E. Using the polar coordinates, x = sσ , y = tτ, σ, τ ∈ A, and
the fact that k(x, y) depends on radial variables, we can set

k(x, y) = k(|x| , |y|) = l(s, t),

where l(s, t) is the kernel involved in the one dimensional operator L.
First assume that L : Lp ((0,∞) , V) → Lq ((0,∞) , U) is compact. In order

to show that K is compact, it suffices to show that the conjugate operator K∗ :

Lq′
(
E, u1−q′

)
→ Lp′

(
E, v1−p′

)
(K∗g) (x) =

∫
E\Sx

k(y, x)g(y)dy, x ∈ E,

is weak ∗ -norm sequentially continuous since then the result follows from Theorem

2.A (iii) . Let {f n} be a sequence in Lq′
(
E, u1−q′

)
such that {f n} w∗→ 0. Without any

loss of generality, we may assume that each f n is non-negative. Define

Fn (t) =
∫

A
f n (tτ) tN−1dτ, n ∈ N, t ∈ (0,∞) . (3.3)



744 PANKAJ JAIN, PAWAN K. JAIN AND BABITA GUPTA

Then

Fn (t)=
∫

A
f n (tτ) u−

1
q (tτ)

(
tN−1

) 1
q′ u

1
q (tτ)

(
tN−1

) 1
q dτ

�
(∫

A
f q′
n (tτ) u1−q′ (tτ) tN−1dτ

) 1
q′
(∫

A
u (tτ) tN−1dτ

) 1
q

,

and therefore using (3.1) and making change of variable tτ = y, we have(∫ ∞

0
Fq′

n (t) U1−q′ (t) dt

) 1
q′

�
(∫ ∞

0

∫
A
f q′
n (tτ) u1−q′ (tτ) tN−1dτdt

) 1
q′

=
(∫

E
f q′
n (y) u1−q′ (y) dy

) 1
q′

< ∞,

which gives that {Fn} is a sequence in Lq′
(
(0,∞) , U1−q′

)
. Next we note that if G

is any function in Lq ((0,∞) , U) and g : E → R is defined by

g (x) = G (t) , x = tτ

then g ∈ Lq (E, u) , since by using (3.1) and making change of variable x = tτ , we
have ∫

E
gq (x) u (x) dx =

∫ ∞

0

∫
A
gq (tτ) u (tτ) tN−1dτdt

=
∫ ∞

0
Gq (t) U (t) dt

< ∞.

Thus by using (3.3) , we have∫ ∞

0
Fn (t) G (t) dt =

∫ ∞

0

(∫
A
f n (tτ) tN−1dτ

)
G (t) dt

=
∫ ∞

0

∫
A
f n (tτ) g (tτ) tN−1dτdt

=
∫

E
f n (x) g (x) dx

→ 0 as n → ∞,

i.e. Fn
w→ 0 . Further since L is compact, by Theorem 2.A ((i) and (ii))

‖ L∗Fn ‖p′,(0,∞),V1−p′→ 0 as n → ∞.

Now making change of variables y = tτ , x = sσ so that for σ ∈ A , | x |= s and
using (3.2) , (3.3) , we have
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‖ K∗f n ‖p′,E,v1−p′ =

⎛⎝∫
E

(∫
E\Sx

k(y, x)f n (y) dy

)p′

v1−p′ (x) dx

⎞⎠
1
p′

=

(∫ ∞

0

∫
A

(∫ ∞

s

∫
A
k(tτ, sσ)f n (tτ) tN−1dτdt

)p′

v1−p′ (sσ) sN−1dσds

) 1
p′

=

(∫ ∞

0

(∫ ∞

s
l(t, s)Fn (t) dt

)p′

V1−p′ (s) ds

) 1
p′

=‖ L∗Fn ‖p′,(0,∞),V1−p′ ,

and we are done.
Conversely, assume that K : Lp (E, v) → Lq (E, u) is compact. Let {Fn} be a

sequence in Lq′
(
(0,∞) , U1−q′

)
such that Fn

w∗→ 0 . Without any loss of generality

we may assume that each Fn is non-negative. Define

f n (tτ) = Fn (t) u (tτ) U−1 (t) , n ∈ N, t ∈ (0,∞) , τ ∈ A. (3.4)

Then ∫
A
f n (tτ) tN−1dτ = Fn (t) , n ∈ N, t ∈ (0,∞) . (3.5)

Now using (3.1) and (3.4) , we have(∫
E

f q′
n (x) u1−q′ (x) dx

) 1
q′
=
(∫ ∞

0

∫
A
f q′
n (tτ) u1−q′ (tτ) tN−1dτdt

) 1
q′

=
(∫ ∞

0
Fq′

n (t)
(∫

A
uq′ (tτ) u1−q′ (tτ) tN−1dτ

)
U−q′ (t) dt

) 1
q′

=
(∫ ∞

0
Fq′

n (t) U1−q′ (t) dt

) 1
q′

< ∞,

which means that {f n} is a sequence in Lq′
(
E, u1−q′

)
. Thus (3.2) and (3.5) yield

‖ L∗Fn ‖p′,(0,∞),V1−p′=‖ K∗f n ‖p′,E,v1−p′ .

We now show that f n
w→ 0 . For any function g ∈ Lq (E, u) , using (3.4) , we have∫

E
f n (x) g (x) dx =

∫ ∞

0

∫
A
Fn (t) u (tτ) U−1 (t) g (tτ) tN−1dτdt

=
∫ ∞

0
Fn (t)

(∫
A
u (tτ) g (tτ) tN−1dτ

)
U−1 (t) dt

=
∫ ∞

0
Fn (t) G (t) dt

→ 0 as n → ∞,
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where

G (t) =
(∫

A
u (tτ) g (tτ) tN−1dτ

)
U−1 (t) , t ∈ (0,∞)

and it can be easily verified that G ∈ Lq ((0,∞) , U) . Indeed, using (3.1) ,we have∫ ∞

0
Gq (t) U (t) dt =

∫ ∞

0

(∫
A
u (tτ) g (tτ) tN−1dτ

)q

U1−q (t) dt

=
∫ ∞

0

(∫
A
g (tτ) u

1
q (tτ)

(
tN−1

) 1
q u

1
q′ (tτ)

(
tN−1

) 1
q′ dτ

)q

U1−q (t) dt

�
∫ ∞

0

(∫
A
gq (tτ) u (tτ) tN−1dτ

)(∫
A
u (tτ) tN−1dτ

)q−1

U1−q (t) dt

=
∫

E
gq (x) u (x) dx < ∞.

Now as K is compact, by Theorem 2.A ((i) and (ii)) , ‖ K∗f n ‖p′,E,v1−p′ and hence
‖ L∗Fn ‖p′,(0,∞),V1−p′ converges to 0 as n → ∞ . Now the compactness of L follows
from Theorem 2.A (iii) .

REMARK 2 . Theorem 3.1 can be compared with a result of the authors ( [5],
Theorem 4.1) where it is proved for k(x, y) ≡ 1 and l(s, t) ≡ 1. However, there the
integrals are considered over star-shaped regions.

Now we can give the precise weight characteriztion of the compactness of K :

THEOREM 3.2. Let 1 < p � q < ∞ and u, v be weight functions on E. Then the
operator K : Lp (E, v) → Lq (E, u) involving the Oinarov kernel k is compact if and
only if

A = max(A0,A1) < ∞ (3.6)

and
lim
x→xi

Ai(x) = lim
x→x̃i

Ai(x) = 0, i = 0, 1 (3.7)

where

A0 = sup
x∈E\{0}

A0(x) = sup
x∈E\{0}

(K∗
0u)1/q(x)

(
Kp′v

1−p′
)1/p′

(x),

A1 = sup
x∈E\{0}

A1(x) = sup
x∈E\{0}

(K∗
qu)1/q(x)

(
K0v

1−p′
)1/p′

(x),

xi = inf {x ∈ E\{0} : Ai(x) > 0} i = 0, 1

x̃i = sup {x ∈ E\{0} : Ai(x) > 0} i = 0, 1.

Proof. We use the polar coordinates x = sσ, y = tτ with σ, τ ∈ A and s, t > 0.
The result is obtained in view of (2.7) and Theorems 3.1 and 3.A if we show that
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Ai(s) = Ai(x), i = 0, 1. We find that

A0(s) =
(∫ ∞

s

∫
A
u (tτ) tN−1dτdt

) 1
q
(∫ s

0
lp

′
(s, t)

(∫
A
v1−p′ (tτ) tN−1dτ

)(1−p)(1−p′)
dt

) 1
p′

=
(∫ ∞

s

∫
A
u (tτ) tN−1dτdt

) 1
q
(∫ s

0

∫
A
kp′(sσ, tτ)v1−p′ (tτ) tN−1dτdt

) 1
p′

= A0(x).

Similarly, A1(s) = A1(x) and we are done.

4. Final results and remarks

REMARK 3 . Following a result of Ando [1], it is known that for 1 < q < p < ∞,
the operator L : Lp ((0,∞) , u) → Lq ((0,∞) , v) is bounded if and only if it is compact.
The same is true in higher dimension also. But the Lp -Lq boundedness of K is already
known, see [13]. Consequently, the same are the compactness conditions of K .

In view of Theorems 2.A (i) and 3.2, the conjugate operator K∗ : Lq′(E, u1−q′) →
Lp′(E, v1−p′) is compact if and only if (3.6) and (3.7) are satisfied. Replacing
p′, q′, u1−q′ and v1−p′ by, respectively, q, p, v and u, we immediately obtain the
following :

THEOREM 4.1. Let 1 < p � q < ∞ and u, v be weight functions on E. Then the
operator K∗ : Lp (E, v) → Lq (E, u) involving the Oinarov kernel k is compact if and
only if

A∗ = max(A∗
0 ,A∗

1 ) < ∞
and

lim
x→x∗i

A∗
i (x) = lim

x→x̃∗i
A∗

i (x) = 0, i = 0, 1

where

A∗
0 = sup

x∈E\{0}
A∗

0(x) = sup
x∈E\{0}

(K∗
0v

1−p′)1/p′(x) (Kqu)1/q (x),

A∗
1 = sup

x∈E\{0}
A∗

1(x) = sup
x∈E\{0}

(K∗
p′v

1−p′)1/p′(x) (K0u)1/q (x),

x∗i = inf {x ∈ E\{0} : A∗
i (x) > 0} i = 0, 1

x̃∗i = sup {x ∈ E\{0} : A∗
i (x) > 0} i = 0, 1.

REMARK 4 . In the light of Remark 3 and using the technique of Theorem 4.1, the
compactness of the operator K∗ for the case 1 < q < p < ∞ can be obtained. For
conciseness, the construction of the result and its proof is left to the reader.
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