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BOUNDS FOR THE RATIO AND DIFFERENCE BETWEEN

PARALLEL SUM AND SERIES VIA MOND–PEČARIĆ METHOD

J. I. FUJII, M. NAKAMURA, J. PEČARIĆ AND Y. SEO

(communicated by T. Furuta)

Abstract. Upper bounds for the ratio and the difference between parallel sum and series of
operator connections in the sense of Anderson-Duffin-Trapp are obtained, in which the Mond-
Pečarić method for convex functions is applied: Let A and B be positive operators on a Hilbert
space such that 0 < mI � A,B � MI for some scalars m < M . Then we show an upper bound
of the difference of parallel sum and series :

(A + B) − (A : B) � 2
(
M + m −

√
Mm

)
I.

As an application, we show a noncommutative Kantorovich inequality: For positive operators A
and B such that 0 < mI � A, B � MI ,

A + B
2

� (M + m)2

4Mm

(
A−1 + B−1

2

)−1

and moreover we show the following refinement:

2
√

Mm
M + m

A + B
2

� A � B � M + m

2
√

Mm

(
A−1 + B−1

2

)−1

,

where A � B is the geometric mean.

1. Introduction

Motivated by a study of electrical network connection, Anderson and Duffin [1]
introduced the concept of parallel sum of two positive semidefinite matrices and se-
quently Anderson and Trapp [2] have extended this notion to positive operators on a
Hilbert space H . If A and B are impedance matrices of two resistive n -port networks,
then their parallel sum A : B defined by

A : B = (A−1 + B−1)−1

is the impedance matrix of parallel connection and their series

A + B
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is the impedance matrix of series connection. Some properties of parallel sum of two
positive semidefinite matrices are discussed. For example, Anderson and Duffin [1]
showed the following estimate of two impedance above: If A1, · · · , An are positive
semidefinite, then

n∑
i=1

Ai � n2
n∏

i=1

: Ai, (1)

where
n∏

i=1

: Ai = A1 : A2 : · · · : An.

In fact, the inequality (1) is a generalization of the classical inequality between the
arithmetic mean and the harmonic mean.

Thus we consider upper bounds for the ratio and the difference between two
impedance matrices above. We attempt to determine an upper estimate α such that

n∑
i=1

Ai � α
∏n

i=1
: Ai

and an upper estimate β such that

n∑
i=1

Ai −
∏n

i=1
: Ai � βI.

We regard these constants as two types of energy loss of two impedance matrices.
Throughout this paper, we discuss parallel sum and series in the framework of

operator theory on a Hilbert space.
Our purpose in this paper is to give upper bounds for two types of energy loss of

two impedances in terms of the spectra for given positive operators on a Hilbert space, in
which the Mond-Pečarić method for convex functions [4] is applied. As an application,
we show a noncommuatative Kantorovich inequality.

2. Mond-Pečarić method

A capital letter means a bounded linear operator on a Hilbert space H . An operator
A is said to be positive (A � 0 ) if (Ax, x) � 0 for all x ∈ H . We denote by B(H) the
algebra of all bounded linear operators on H .

In this section, we prove a few lemmas on positive linear maps to obtain upper
bounds for the ratio and the difference between parallel sum and series of operator
connections in the sense of Anderson-Duffin-Trapp [1, 2].

Let Φ be a normalized positive linear map on B(H) . Then it follows from [3,
Corollary 4.2] that Jensen’s operator inequality implies Kadison’s Schwarz inequality
as follows:

Φ(A−1)−1 � Φ(A) (2)

for every positive invertible operator A .
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By using the Mond-Pečarić method [4], we have the following reverse inequality
of (2) without the assumption of the normalization of Φ .

LEMMA 1. Let Φ be a positive linear map on B(H) such that Φ(I) = kI for
some positive scalar k . If A is a positive operator on a Hilbert space H such that
0 < mI � A � MI for some scalars m < M , then for each α > 0

Φ(A) � αΦ(A−1)−1 + β(m, M,α, k)I, (3)

where

β(m, M,α, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k(m + M) − 2
√
αmM if m �

√
αMm
k � M,

(k − α
k )M if

√
αMm
k � m,

(k − α
k )m if M �

√
αMm
k .

(4)

Proof. By the convexity of f (t) = t−1 , we have

A−1 �
1
M − 1

m

M − m
(A − mI) +

1
m

I = − 1
Mm

A +
M + m
Mm

I

and hence

Φ(A−1) � − 1
Mm

Φ(A) +
M + m
Mm

Φ(I) = − 1
Mm

Φ(A) +
k(M + m)

Mm
I

The last equality holds by the assumption of Φ(I) = kI .
Therefore it follows that

Φ(A) − αΦ(A−1)−1 � Φ(A) − α
(
− 1

Mm
Φ(A) +

k(M + m)
Mm

I

)−1

.

Since kmI � Φ(A) � kMI , put

h(t) = t − α
(

k(M + m) − t
Mm

)−1

on [km, kM].

Then we have

h′(t) =
(t − k(M + m))2 − αMm

(t − k(M + m))2
.

It follows that the equation h′(t) = 0 has exactly one solution t0 = k(M+m)−√
αMm .

If km � t0 � kM , then we have maxkm�t�kM h(t) = h(t0) and the condition km �
t0 � kM is equaivalent to the condition

m �
√
αMm
k

� M.

If kM � t0 , then h(t) is increasing on [km, kM] and hencewehave β = maxkm�t�kM h(t) =
h(t0) = (k − α

k )M for t0 = kM . Similarly, we have β = maxkm�t�kM h(t) = h(t0) =
(k − α

k )m for t0 = km . Since

Φ(A) − αΦ(A−1)−1 � max
km�t�kM

h(t)I,
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we have the desired inequality (3). �

REMARK 2. By the construction of β(m, M,α, k) in Lemma 1, it follows that for
each α > 0 (

k − α
k

)
M ,

(
k − α

k

)
m � k(m + M) − 2

√
αmM

and hence
β(m, M,α, k) � k(m + M) − 2

√
αmM.

By Lemma 1, we have the following upper bounds for the ratio and the difference
in the inequality (2):

LEMMA 3. Let Φ be a positive linear map on B(H) such that Φ(I) = kI for
some positive scalar k . If A is a positive operator on a Hilbert space H such that
0 < mI � A � MI for some scalars m < M , then

Φ(A) � k2(M + m)2

4Mm
Φ(A−1)−1 (5)

and
Φ(A) −Φ(A−1)−1 � (k(m + M) − 2

√
Mm)I. (6)

Proof. If we choose α such that k(m + M) − 2
√
αmM = 0 in (4) of Lemma

1, then it follows that α = k2(M+m)2

4Mm and α satisfies the condition m �
√
αmM
k � M .

Thus we have (5). Also, if we put α = 1 in (3) of Lemma 1, then it follows from
Remark 2 that β(m, M, 1, k) � k(m + M) − 2

√
Mm and hence we have (6). �

REMARK 4. If Φ is normalized, that is, Φ(I) = I , then by Lemma 3 we have the
following results due to Mond-Pečarić [8], cf. [4, Theorem 1.32]:

Φ(A) � (M + m)2

4Mm
Φ(A−1)−1 (7)

and
Φ(A) −Φ(A−1)−1 � (

√
M −√

m)2I. (8)

REMARK 5. Let A be a positive operator such that 0 < mI � A � MI and
Φ(I) = kI for some positive scalar k . Then

kmI � Φ(A) � kMI

and
m
k

I � Φ(A−1)−1 � M
k

I.

Therefore it follows that

Φ(A) − αΦ(A−1)−1 � (kM − αm
k

)I.

However, it follows from easy calculation that for each α > 0

β(m, M,α, k) � kM − αm
k

,

where β(m, M,α, k) is defined as (4) of Lemma 1.
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3. Main result

We state our main theorem, in which upper bounds for the ratio and the difference
between parallel sum and series of operator connections are given.

THEOREM 6. If A and B are positive operators on H such that 0 < mI � A ,
B � MI for some scalars m < M , then for each α > 0

A + B � α(A : B) + β(m, M,α, k = 2)I, (9)

where

β(m, M,α, k = 2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(m + M) − 2
√
αmM if m �

√
αMm
2 � M,

(2 − α
2 )M if

√
αMm
2 � m,

(2 − α
2 )m if M �

√
αMm
2 .

(10)

In particular,

A + B � (M + m)2

Mm
(A : B) (11)

and
A + B − (A : B) � 2

(
M + m −√

Mm
)

I. (12)

Proof. Let a map Ψ : B(H) ⊕ B(H) �→ B(H) ⊕ B(H) be defined by

Ψ
(

A 0
0 B

)
=
(

A + B 0
0 A + B

)
.

Then Ψ is a positive linear map such that Ψ(I) = 2I . Since

m

(
I 0
0 I

)
�
(

A 0
0 B

)
� M

(
I 0
0 I

)
,

it follows from Lemma 1 that for each α > 0

Ψ
(

A 0
0 B

)
− αΨ

(
A−1 0
0 B−1

)−1

� β(m, M,α, k = 2)
(

I 0
0 I

)
.

We have the desired inequality (9) by rearranging the expression above.
If we choose α such that 2((M + m) −√

αMm) = 0 in (9), then it follows that

α = (M+m)2

Mm and α satisfies the condition m �
√
αMm
2 � M . Thus we have (11). Also,

if we put α = 1 in (9), then it follows that

β(m, M,α = 1, k = 2) � 2
(
M + m −√

Mm
)

and hence we have (12). �

Similarly, we have the following n -variable version of Theorem 6.
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THEOREM 7. If Ai are positive operators on H such that 0 < mI � Ai � MI
for some scalars m < M for i = 1, 2, · · · , n , then for each α > 0

n∑
i=1

Ai � α
n∏

i=1

: Ai + β(m, M,α, k = n)I, (13)

where β(m, M,α, k = n) is defined as (4).
In particular,

n∑
i=1

Ai � n2 (M + m)2

4Mm

n∏
i=1

: Ai (14)

and
n∑

i=1

Ai −
n∏

i=1

: Ai �
(
n(M + m) − 2

√
Mm

)
I. (15)

Proof. Let a map Ψ : B(H) ⊕ · · · ⊕ B(H) �→ B(H) ⊕ · · · ⊕ B(H) be defined by

Ψ

⎛
⎝A1 0

. . .
0 An

⎞
⎠ =

⎛
⎝A1 + · · · + An 0

. . .
0 A1 + · · · + An

⎞
⎠ .

Then we can prove (13) by the same way as Theorem 6. �

4. Noncommutative Kantorovich inequality

Motivated by a study of parallel sum due to Anderson and Duffin [1], and Anderson
and Trapp [2], Kubo and Ando [7] introduced the notion of operator mean. A map
(A, B) → A σ B in the cone of positive invertible operators is called an operator mean
if the following conditions are satisfied:

monotonicity A � C and B � D imply A σ B � C σ D ,
upper continuity An ↓ A and Bn ↓ B imply An σBn ↓ A σ B ,
transformer inequality T∗(A σ B)T � (T∗AT) σ (T∗BT) for every operator T ,
normalized condition A σ A = A .
A key for the theory is that there is a one-to-one correspondence between an oper-

ator mean σ and a nonnegative operator monotone function f (x) on [0,∞) through
the formula

f (x) = 1 σ x for all x > 0 ,

or

A σ B = A
1
2 (1 σ A− 1

2 BA− 1
2 )A

1
2 = A

1
2 f (A− 1

2 BA− 1
2 )A

1
2 for all A, B > 0 .

We say that f is the representing function for σ . In this case, notice that f (t) is operator
monotone if and only if it is operator concave. The operator mean with representing
function tf (t−1) is called the transpose of σ and denoted by σ◦ :

A σ◦ B = B σ A for every positive A and B .
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An operator mean is called symmetric if σ = σ◦ . The operator mean with representing
function f (t−1)−1 is called the adjoint of σ and denoted by σ∗ :

A σ∗ B = (A−1 σ B−1)−1 for every positive invertible A and B .

Simple examples of operator means are the arithmetic mean, in symbol ∇ ,

A ∇ B =
A + B

2
.

The normalized parallel sum is called the harmonic mean, in symbol ! ,

A ! B = 2(A : B).

For invertible A, B , the geometric mean A � B is

A � B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 .

Then the following harmonic-geometric-arithmeric mean inequality holds

A ! B � A � B � A ∇ B.

Furthermore, the arithmetic mean is the maximum of all symmetric operatormeans
while the harmonic mean is the minimum.

On the other hand, Kantorovich [6] proved the following inequality. If the sequence
{ai} ( i = 1, 2, · · · , n ) of positive numbers has the property

0 < m � ai � M

and {xi} ( i = 1, 2, · · · , n ) denotes another sequence with
∑n

i=1 x2
i = 1 , then the

inequality
n∑

i=1

aix
2
i

n∑
i=1

1
ai

x2
i � (M + m)2

4Mm
(16)

holds. In fact, the inequality (16) is considered as a ratio type reverse inequality of
harmonic - arithmetic mean inequality(

n∑
i=1

1
ai

x2
i

)−1

�
n∑

i=1

aix
2
i .

Prof. S. Izumino suggested that Theorem 6 implies the following noncommutative
Kantorovich inequality:

THEOREM 8. If A and B are positive operators on H such that 0 < mI � A ,
B � MI for some scalars m < M , then

A ∇ B � (M + m)2

4Mm
A ! B (17)

and
A ∇ B − A ! B � (

√
M −√

m)2I. (18)
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Proof. It follows from the inequality (11) in Theorem 6 that

A + B � 4
(M + m)2

4Mm
(A : B),

and hence

A ∇ B � (M + m)2

4Mm
A ! B.

If we put α = 4 in Theorem 6, then the condition m �
√

Mm � M satisfies and

A + B � 4(A : B) + 2(M + m − 2
√

Mm)I.

Therefore, we have the desired inequality (18). �
As an application of Theorem 7, we have the following n-variable version of a

noncommutative Kantorovich inequality. We use the notation

n∏
i=1

! Ai = A1 ! A2 ! · · · ! An =
(

A−1
1 + · · · + A−1

n

n

)−1

.

THEOREM 9. If Ai are positive operators on H such that 0 < mI � Ai � MI
for some scalars m < M for i = 1, 2, · · · , n , then

1
n

n∑
i=1

Ai � (M + m)2

4Mm

n∏
i=1

! Ai (19)

and
1
n

n∑
i=1

Ai −
n∏

i=1

! Ai � (
√

M −√
m)2I. (20)

Proof. The inequality (19) follows from (14) in Theorem 7. If we put α = n2

in (13) of Theorem 7, then the condition m �
√
αMm
k � M satisfies and β(m, M,α =

n2, k = n) = n(m + M − 2
√

mM) . Therefore we have the desired inequality (20). �

REMARK 10. Prof. T. Furuta kindly pointed out that Theorem 9 is the special case
where r = −1 and s = 1 in [9, Theorem 1] due to Pečarić and Mićić, also where
p = −1 in [5, Theorem E] due to Furuta and Pečarić, which is one of typical examples
applying the Mond-Pečarić method.

Furthermore we show a generalization of Theorem 8 by means of symmetric
operator means.

THEOREM 11. Let σ be a symmetric operatormeanwith the representing function
f . If A and B are positive operators on H such that 0 < mI � A , B � MI for some
scalars m < M , then

m σ M
m ∇ M

A ∇ B � A σ B (21)

and

A σ∗ B � m ∇ M
m σ M

A ! B. (22)
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Also,

A ∇ B − A σ B � M

(
m ∇ M
m σ M

− 1

)
I (23)

and

A σ∗ B − A ! B � M

(
m ∇ M
m σ M

− 1

)
I. (24)

To prove it, we need the following lemma.

LEMMA 12. Let m and M be positive scalars. Then

m σ∗ M
m ! M

=
m ∇ M
m σ M

for every symmetric operator mean σ .

Proof. Let f be the representing function for σ . Then it follows that

m σ∗ M
m ! M

=
(m−1 σ M−1)−1

(m−1 ∇ M−1)−1
=

m−1 ∇ M−1

m−1 σ M−1

=
m + M
2mM

m

f
(

m
M

) =
m ∇ M
M σ m

=
m ∇ M
m σ M

.

The last equality holds since σ is symmetric. �

Proof of Theorem 11 . Since the representing function f is concave on (0,∞) , it
follows that

f (t) �
f
(

M
m

)− f
(

m
M

)
M
m − m

M

(
t − m

M

)
+ f

(m
M

)
for all t ∈ [ m

M , M
m ] .

Since m
M I � A− 1

2 BA− 1
2 � M

m I , we have

f (A− 1
2 BA− 1

2 ) �
f (M

m ) − f ( m
M )

M
m − m

M

(A− 1
2 BA− 1

2 − m
M

I) + f
(m

M

)
I

and hence

A σ B = A
1
2 f (A− 1

2 BA− 1
2 )A

1
2 �

f (M
m ) − f ( m

M )
M
m − m

M

(B − m
M

A) + f
(m

M

)
A

=
f (M

m ) − f ( m
M )

M
m − m

M

B +
M
m f ( m

M ) − m
M f (M

m )
M
m − m

M

A

=
2(f (M

m ) − f ( m
M ))

M
m − m

M

A ∇ B.
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The last equality holds since σ is symmetric, that is, f (t) = tf (t−1) . This relation
also implies

2(f (M
m ) − f ( m

M ))
M
m − m

M

=
2Mm

M2 − m2

(
1 − m

M

)
f

(
M
m

)
=

2
M + m

mf

(
M
m

)

=
m σ M
m ∇ M

,

and hence we have the desired inequality (21).
Replacing A by A−1 and B by B−1 in (21), it follows from 1

M I � A−1, B−1 � 1
mI

that
m−1 σ M−1

m−1 ∇ M−1
A−1 ∇ B−1 � A−1 σ B−1.

Taking inverse of both sides, we have(
m−1 σ M−1

m−1 ∇ M−1

)−1

(A−1 ∇ B−1)−1 � (A−1 σ B−1)−1

and it follows from Lemma 12 that

A σ∗ B � m ∇ M
m σ M

A ! B.

as desired.
It follows from the inequality (21) that

A ∇ B − A σ B �
(

m ∇ M
m σ M

− 1

)
A σ B

� M

(
m ∇ M
m σ M

− 1

)
I.

Similarly we have (24). �
As a special case of Theorem 11, we have the following refinement of Theorem 8.

THEOREM 13. If A and B are positive operators on H such that 0 < mI � A ,
B � MI for some scalars m < M , then

2
√

Mm
M + m

A ∇ B � A � B � M + m

2
√

Mm
A ! B (25)

and

A ∇ B − (
√

M −√
m)2

2

√
M
m

I � A � B � A ! B +
(
√

M −√
m)2

2

√
M
m

I (26)

Proof. Since the geometric mean � is symmetric and selfadjoint, that is, (�)∗ =
� = (�)◦ , it follows fromTheorem11 ifwe put the representing function f (t) =

√
t . �

REMARK 14. The inequality (25) in Theorem 13 is a refinement of Corollary 5.39
in [4] if Φ is the identity map.
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