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Abstract. In this paper, we introduce and study a new class of variational inequalities, known
as mixed quasi regularized variational inequality in the setting of nonconvexity. We use the
auxiliary principle technique to suggest and analyze some iterative schemes for regularized
variational inequalities. We prove that the convergence of these iterative methods requires either
pseudomonotonicity or partially relaxed strongly monotonicity. Our proofs of convergence are
very simple. As special cases, we obtain earlier results for solving general variational inequalities
involving the convex sets.

1. Introduction

Variational inequalities theory, which was introduced by Stampacchia [1], provides
us with a simple, general and unified framework to study a wide class of problems
arising in pure and applied sciences. During the last three decades, there has been
considerable activity in the development of numerical techniques for solving variational
inequalities. There are a substantial number of numerical methods including projection
method and its variant forms, Wiener-Hopf equations, auxiliary principle, and descent
framework for solving variational inequalities and complementarity problems; see [2-
12]. It is worthmentioning that almost all the results regarding the existence and iterative
schemes for variational inequalities , which have been investigated and considered so
far, if the underlying set is a convex set. This is because all the techniques are based on
the properties of the projection operator over convex sets, which may not hold in general,
when the sets are nonconvex. To overcome these difficulties, one uses the concept of
uniformly prox-regular (smooth sets), see [13, 14]. It is known that uniformly prox-
regular sets are nonconvex sets and include convex sets as special case. In this paper,
we introduce and consider a new class of variational inequalities, known as mixed quasi
regularized variational inequality. Thesemixed quasi regularized variational inequalities
are more general and include variational inequalities and related optimization problems
as special case. Since the underlying set is a nonconvex set, it is not possible to
extend the usual projection and resolvent techniques for solving regularized variational
inequalities. Fortunately, these difficulties can be overcome by using the auxiliary
principle, which is manily due to Glowinski, Lions and Tremolieres (Ref. 5). Noor
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(Refs. 6, 11, 15, 16) has used this technique to develop some iterative schemes for
solving various classes of variational inequalities. We point out that this technique does
not involve the projection or resolvent of the operator and is flexible. In this paper, we
show that the auxiliary principle technique can be used to suggest and analyze a class of
iterative methods for solving regularized (nonconvex) variational inequalities. We also
prove that the convergence of these new methods either require pseudomonotonicity
or partially relaxed strongly monotonicity. As special cases, one obtain several known
and new results for variational inequalities and related optimization problems. Results
obtained in this paper, represent an improvement and refinement of the known results
for nonconvex variational inequalities.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈 ·, ·〉
and ‖.‖ respectively. Let K be a nonempty closed convex set in H . First of all, we
recall the following well-known concepts from nonlinear convex analysis, see [13, 14].

DEFINITION 2.1. The proximal normal cone of K at u is given by

NP(K; u) := {ξ ∈ H : u ∈ PK [u + αξ ]},
where α > 0 is a constant and

PK [u] = {u∗ ∈ K : dK(u) = ‖u − u∗‖}.
Here dK(.) is an usual distance function to the subset K, that is

dK(u) = inf
v∈K

‖v − u‖.

The proximal normal cone NP(K; u) has the following characterization.

LEMMA 2.1. Let K be a closed subset in H. Then ζ ∈ NP(K; u) if and only if
there exists a constant α > 0 such that

〈 ζ , v − u〉 � α‖v − u‖2, ∀v ∈ K.

DEFINITION 2.2. The Clarke normal cone, denoted by NC(K; u) , is defined as

NC(K; u) = co[NP(K; u)],

where co means the closure of the convex hull. Clearly NP(K; u) ⊂ NC(K; u), but
the converse is not true. Note that NC(K; u) is always closed and convex, whereas
NP(K; u) is convex, but may not be closed, see [14]. Poliquin et al [14] and Clarke et al
[13] have introduced and studied a new class of nonconvex sets, which are also called
uniformly prox-regular sets. This class of uniformly prox-regular sets has played an
important part in many nonconvex applications such as optimization, dynamic systems
and differential inclusions. In particular, we have:
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DEFINITION 2.3. For a given r ∈ (0,∞], a subset K is said to be normalized
uniformly r -prox-regular if and only if every nonzero proximal normal to K can be
realized by an r -ball, that is, ∀u ∈ K and 0 	= ξ ∈ NP(K; u) with ‖ξ‖ = 1, one has

〈 ξ , v− u〉 � (1/2r)‖v− u‖2, ∀v ∈ K.

It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p -convex sets, C1,1 submanifolds (possiblywith
boundary)of H, the images under a C1,1 diffeomorphismof convex sets andmanyother
nonconvex sets; see [13, 14]. It is clear that if r = ∞, then uniform r -prox-regularity
of K is equivalent to the convexity of K. This fact plays an important part in this paper.
It is known that if K is a uniformly r -prox-regular set, then the proximal normal cone
NP(K; u) is closed as a set-valued mapping. Thus, we have NC(K; u) = NP(K; u). For
sake of simplicity, we denote N(K; u) = NC(K; u) = NP(K; u). and take γ = 1

2r .
Clearly, if r = ∞, then γ = 0.

From now onward, the set K is uniformly prox-regular set, unless otherwise
specified.

For given nonlinear continuousoperators T, g :−→ H, and a continuousbifunction
ϕ(., .) : H ×H −→ R∪ {+∞}, we consider the problem of finding u ∈ H : g(u) ∈ K
such that

〈Tu, g(v)−g(u)〉+ϕ(g(v), g(u))−ϕ(g(u), g(u))+γ ‖g(v)−g(u)|2 � 0, ∀g(v) ∈ K,
(2.1)

which is called the general mixed quasi regularized variational inequality.
Note that, if γ = 0, then uniformly prox-regular set K becomes the convex set K

and consequently problem (2.1) reduces to finding u ∈ H : g(u) ∈ K such that

〈Tu, g(v) − g(u)〉 + ϕ(g(v), g(u)) − ϕ(g(u), g(u)) � 0, ∀g(v) ∈ K, (2.2)

which is known as general mixed quasi variational inequality and has been studied
extensively in recent years.

If ϕ(v, u) = ϕ(v), ∀v ∈ H, then problem (2.1) is equivalent to finding u ∈ H :
g(u) ∈ K such that

〈Tu, g(v) − g(u)〉 + ϕ(g(v)) − ϕ(g(u)) + γ ‖g(v) − g(u)‖2 � 0, ∀g(v) ∈ K, (2.3)

which is called the regularized mixed variational inequality, introduced and studied by
Noor [16, 18] using the auxiliary principle technique and resolvent operator method.

If ϕ(.) is the indicator function of the set K, then problem (2.3) reduces to finding
u ∈ H : g(u) ∈ K such that

〈Tu, g(v) − g(u)〉 + γ ‖g(v) − g(u)‖2 � 0, ∀g(v) ∈ K, (2.4)

is called the regularized variational inequality, introduced and studied by Noor [16, 18,
19] using the auxiliary principle technique respectively.

In particular, if γ = 0 , then problem (2.4) is eaxactly the general variational
inequality problem introduced and studied by Noor [6] in 1988. For the recently
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applications, numerical methods, sensitivity analysis and local uniqueness of solutions
of variational inequalities, see [1-20] and the references therein. For g = I, the indentity
operator, we obtain the various classes of classical variational inequalities, which have
been studied extensively.

3. Main results

We use the auxiliary principle technique, which is mainly due to Glowinski, Lions
and Tremolieres [5] as developed by Noor [6, 11, 16], to suggest and analyze some
iterative methods for mixed quasi regularized variational inequalities (2.1).

For a given u ∈ K, where K is a prox-regular set in H, consider the problem of
finding a solution w ∈ H : g(w) ∈ K such that

〈 ρTw+g(w) − g(u), g(v) − g(w)〉 � −γ ‖g(v) − g(w)‖2

+ ρ{ϕ(g(w), g(w)) − ϕ(g(v), g(w))}, ∀g(v) ∈ K,
(3.1)

where ρ > 0 is a constant. Inequality of type (3.1) is called the auxiliary mixed quasi
regularized variational inequality. Note that if w = u, then w is a solution of (2.1).
This simple observation enables us to suggest the following iterative method for solving
(2.1).

Algorithm 3.1. For a given u0 ∈ K, compute the approximate solution un+1 by
the iterative scheme

〈 ρTun+1 + g(un+1) − g(un), g(v) − g(un+1)〉 � −γ ‖g(un+1) − g(v)‖2

+ ρ{ϕ(g(un+1), g(un+1))) − ϕ(g(v), g(un+1))} ∀g(v) ∈ K.
(3.2)

Algorithm3.1 is called the proximal point algorithm for solvingmixed quasi regularized
variational inequalities (2.1). In particular, if γ = 0, then the prox-regular set K
becomes the standard convex set K, and consequently Algorithm 3.1 reduces to:

Algorithm 3.2. For a given u0 ∈ H , compute un+1 by the iterative schemes

〈 ρTun+1 + g(un+1) − g(un), g(v) − g(un+1)〉
� ρ{ϕ(g(un+1), g(un+1)) − ϕ(g(v), g(un+1))}, ∀g(v) ∈ K.

In brief, for suitable and appropriate choice of the operators and spaces, one can obtain
several new and previously known methods for solving different classes of variational
inequalities and related optimization problems.

For the convergence analysis of Algorithm 3.1, we recall the following concepts
and results.

DEFINITION 3.1. For all u, v, z ∈ H , an operator T : H → H is said to be:
(i) g -monotone, if

〈Tu − Tv, g(u) − g(v)〉 � 0.
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(ii) g -pseudomonotone with respect to the bifunction ϕ(., .), if

〈Tu, g(v) − g(u)〉 + ϕ(g(v), g(u)) − ϕ(g(u), g(u)) � 0

=⇒
〈Tv, g(v) − g(u)〉 + ϕ(g(v), g(u)) − ϕ(g(u), g(u)) � 0.

(iii) partially relaxed strongly g -monotone, if there exists a constant α > 0
such that

〈Tu − Tv, g(z) − g(v)〉 � −α‖g(z) − g(u)‖2.

Note that for z = u, partially relaxed strongly g -monotonicity reduces to g -
monotonicity. It is known [11] that cocoercivity implies partially relaxed strongly
monotonicity, but the converse is not true. It is known [3] that monotonicity implies
pseudomonotonicity; but the converse is not true. Consequently, the class of pseu-
domonotone operators is bigger than the one of monotone operators.

DEFINITION 3.2. The bifunction ϕ(., .) : H × H −→ R ∪ {+∞} is called skew-
symmetric, if and only if,

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) − ϕ(v, v) � 0, ∀u, v ∈ H.

Clearly if the skew-symmetric bifunction ϕ(., .) is bilinear,

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) = ϕ(u − v, u − v) � 0, ∀u, v ∈ H.

LEMMA 3.1. ∀u, v ∈ H,

2〈 u, v〉 = ‖u + v‖2 − ‖u‖2 − ‖v‖2. (3.3)

We now consider the convergence criteria of Algorithm 3.1. The analysis is in the
spirit of Noor [11, 16, 19].

THEOREM 3.1. Let u ∈ H : g(u) ∈ K be a solution of (2.1) and let un+1 be
the approximate solution obtained from Algorithm 3.1. If the operator T is g -
pseudomonotone with respect to the bifunction ϕ(., .) and the bifunction ϕ(., .) is
skew-symmetric, then

{1 − γ }‖g(un+1) − g(u)‖2 � ‖g(un) − g(u)‖2 − {1 − γ }‖g(un+1) − g(un)‖2. (3.4)

Proof. Let u ∈ H : g(u) ∈ K be a solution of (2.1). Then

〈Tu, g(v)−g(u)〉+γ ‖g(v)−g(u)‖2 � ϕ(g(u), g(u))−ϕ(g(v), g(u)), ∀g(v) ∈ K.
(3.5)

Now taking v = un+1 in (3.5), we have

〈Tu, g(un+1) − g(u)〉 + γ ‖g(un+1) − g(u)‖2 � ϕ(g(u), g(u)) − ϕ(g(un+1), g(u)),

which implies that

〈Tun+1, g(un+1)−g(u)〉+γ ‖g(un+1)−g(u)‖2 � ϕ(g(u), g(u))−ϕ(g(un+1), g(u)),
(3.6)
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since T is g -pseudomonotone operator with respect to the bifunction ϕ(., .).
Taking v = u in (3.2), we get

〈 ρTun+1 + g(un+1) − g(un), g(u) − g(un+1)〉
� −γ ‖g(u)− g(un+1)‖2ρ{ϕ(g(un+1), g(un+1)) − ϕ(g(u0, g(un+1))},

which can be written as

〈 g(un+1) − g(un), g(u) − g(un+1)〉
� ρ〈Tun+1, g(un+1) − g(u)〉 + ρ{ϕ(g(un+1), g(un+1))

− ϕ(g(u), g(un+1))} − γ ‖g(u) − g(un+1)‖2

� −γ ‖g(u)− g(un+1)‖2 + ρ{ϕ(g(u), g(u)) − ϕ(g(u), g(un+1))

− ϕ(g(un+1), g(u)) + ϕ(g(un+1), g(un+1))} − γ ‖‖g(un+1) − g(u)‖2,

(3.7)

where we have used (3.6) and the fact thatthe bifunction ϕ(., .) is skew-symmetric.
Setting u = u − un+1 and v = un+1 − un in (3.3), we obtain

2〈 g(un+1)−g(un), g(u)−g(un+1)〉=‖g(u)−g(un)‖2−‖g(u)−g(un+1)‖2−‖un+1−un‖2.
(3.8)

Combining (3.7) and (3.8), we have

{1 − γ }‖g(un+1) − g(u)‖2 � ‖g(un) − g(u)‖2 − {1 − γ }‖g(un+1) − g(un)‖2,

the required result, (3.4). �

THEOREM 3.2. Let H be a finite dimensional space. If γ � 1, then the sequence
{un}∞

1
given by Algorithm 3.1 converges to a solution u of (2.1) , provided the

operator g is bijective.

Proof. Let u ∈ K : g(u) ∈ K be a solution of (2.1). From (3.4), it follows that
the sequence {||g(u) − g(un)||} is nonincreasing and consequently {un} is bounded
under the assumptions of the Theorem. Furthermore, we have

∞∑

n=0

{1 − γ )}‖g(un+1) − g(un)‖2 � ‖g(u0) − g(u)‖2,

which implies that
lim

n→∞ ‖g(un+1) − g(un)‖ = 0. (3.9)

Let û be the limlit point of {un}∞
1

; a subsequence {unj}
∞
1

of {un}∞
1

converges to
û ∈ H . Replacing wn by unj in (3.2), taking the limit nj −→ ∞ and using (3.9), we
have

〈Tû, g(v) − g(û)〉 + γ ‖g(v) − g(û)‖ � ϕ(g(û), g(û)) − ϕ(g(v), g(û)), ∀g(v) ∈ K,

which implies that û solves the regularized mixed quasi variational inequality (2.1) and

‖g(un+1) − g(u)‖2 � ‖g(un) − g(u)‖2.
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Thus, it follows from the above inequality that {un}∞
1

has exactly one limit point û
and

lim
n→∞ g((un)) = g(û).

which implies that limn−→∞ un = û, since g is bijective. �
It is well-known that to implement the proximal point methods, one has to calculate

the approximate solution implicitly, which is in itself a difficult problem. To overcome
this drawback, we suggest another iterative method, the convergence of which requires
only the partially relaxed strongly monotonicity, which is a weaker condition that
cocoercivity.

For a given u ∈ H : g(u) ∈ K, consider the problem of finding w ∈ H : g(w) ∈ K
such that

〈 ρTu + g(w) − g(u), g(v) − g(w)〉 + γ ‖g(v) − g(w)‖2

� ρ{ϕ(g(w), g(w)) − ϕ(g(v), g(w)), ∀g(v) ∈ K,
(3.10)

which is also called the auxiliary mixed quasi regularized variational inequality. Note
that problems (3.1) and (3.10) are quite different. If w = u, then clearly w is a
solution of the regularized mixed quasi variational inequality (2.1). This fact enables
us to suggest and analyze the following iterative method for solving (2.1).

Algorithm 3.3. For a given u0 ∈ K, compute the approximate solution un+1 by
the iterative scheme

〈 ρTun + g(un+1) − g(un), g(v) − g(un+1)〉 � −γ ‖g(v) − g(un+1)‖2

+ ρ{ϕ(g(un+1), g(un+1)) − ϕ(g(v), g(un+1))}, ∀g(v) ∈ K.
(3.11)

Note that for γ = 0, the prox-regular set K becomes a convex set K and Algorithm
3.3 reduces to:

Algorithm 3.4. For a given u0 ∈ K, calculate the approximate solution un+1 by
the iterative scheme

〈 ρTun + g(un+1) − g(un), g(v) − g(un+1)〉
� ρ{ϕ(g(un+1), g(un+1)) − ϕ(g(v), g(un+1))}, ∀g(v) ∈ K.

In a similar way, for suitable and appropriate choice of the operators and spaces, one
can obtain a number of new and known algorithms for solving various classes of
(regularized) variational inequalities and related optimization problems.

We now study the convergence of Algorithm 3.3. The analysis is in the spirit of
Theorem 3.1. For the sake of completeness and to convey an idea of the technique
involved, we sketch the main points.

THEOREM 3.3. Let the operator T be partially relaxed strongly monotone with
constant α > 0 and the bifunction ϕ(., .) be skew-symmetric. If un+1 is the approx-
imate solution obtained from Algorithm 3.3 and u ∈ H : g(u) ∈ K is a solution of
(2.1) , then

{1−γ }‖g(u)−g(un+1)‖2�‖g(u)−g(un)‖2−{1−2ρα−γ }‖g(un)−g(un+1)‖2. (3.12)
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Proof. Let u ∈ H : g(u) ∈ K be a solution of (2.1). Then

〈Tu, g(v)−g(u)〉+γ ‖g(v)−g(u)‖2 � ϕg(u), g(u))−ϕ(g(v), g(u)), ∀g(v) ∈ K.
(3.13)

Taking v = un+1 in (3.13), we have

〈Tu, g(un+1)−g(u)〉+γ ‖g(un+1)−g(u)‖2 � ϕ(g(u), g(u))−ϕ(g(un+1), g(u)).
(3.14)

Letting v = u in (3.11), we obtain

〈 ρTun + g(un+1) − g(un), g(u) − g(un+1)〉
� −γ ‖g(u)− g(un+1)‖2 + ρ{ϕ(g(un+1), g(un+1)) − ϕ(g(u), g(un+1))},

which implies that

〈 g(un+1) − g(un), g(u) − g(un+1)〉
� 〈 ρTun, un+1 − u〉 − γ ‖g(u) − g(un+1)‖2

+ ρ{ϕ(g(un+1), g(un+1)) − ϕ(g(u), g(un+1))},
� ρ〈Tun − Tu, g(un+1) − g(un)〉 − γ ‖g(u)− g(un+1)‖2

+ ρ{ϕ(g(u), g(u)) − ϕ(g(u), g(un+1)) − ϕ(g(un+1), g(u))

+ ϕ(g(un+1), g(un+1))} − γ ‖g(un) − g(un+1)‖2

� −αρ‖g(un) − g(un+1)‖2

− γ ‖g(u) − g(un+1)‖2 − γ ‖g(un) − g(un+1)‖2,

(3.15)

where we have used the fact that T is partially relaxed strongly g -monotone with
constant α > 0 and the bifunction ϕ(., .) is skew-symmetric.

Combining (3.8) and (3.15), we obtain the required result (3.12). �
Using essentially the technique of Theorem 3.2, one can study the convergence

analysis of Algorithm 3.3.

REMARK 3.1. In this paper,we have shown that the auxiliary principle technique can
be extended for solving mixed quasi regularized variational inequalities with suitable
modifications. We note that this technique is independent of the projection and the
resolvent of the operator. Moreover, we have studied the convergence analysis of these
new methods under some mild conditions. It is worth mentioning that the ideas and
techniques developed in this paper can be extended for mixed reularized equilibrium
problems, which is the subject of future research.
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