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Abstract. In this paper, a new class of strongly nonlinear quasi-variational inclusions involving
H -accretive operator in Banach spaces is studied, which includes many variational inequal-
ity(inclusion) and complementarity problems as special cases. By using the resolvent operator
technique for H -accretive operator due to Fang and Huang, an existence and uniqueness the-
orem of solution for strongly nonlinear quasi-variational inclusion is proved. A new perturbed
algorithm for finding approximate solution of the strongly nonlinear quasi-variational inclusion
is suggested and discussed, the convergence and stability of the iterative sequence generated by
new perturbed algorithm is also given. The results presented in this paper improve and generalize
some recent results in this field.

1. Introduction

It is known that variational inclusion is an important and useful generalization of
variational inequality. Because of the wide applications to optimization and control,
economic and transportation equilibrium, and engineering sciences, variational inequal-
ities and variational inclusions have been studied by many authors (see, [1-28, 30, 32]
and the references therein). We also know that one of the most important and interesting
problems in the theory of variational inequalities and variational inclusions is the de-
velopment of an efficient and implementable iterative algorithm for solving variational
inequalities and inclusions. Among these methods, the resolvent operator techniques
for solving variational inequalities and inclusions are interesting and important.

Recently, Fang and Huang [8] introduced a new class of H -accretive operator in
Banach spaces, and studied the properties of the resolvent operator associated with
the H -accretive operator. They also introduced and studied a class of generalized
variational inclusions involving H -accretive operator in Banach spaces.

Inspired and motivated by recent research works in this field, in this paper, we
shall introduce and study a new class of strongly nonlinear quasi-variational inclusions
involving H -accretive operator in Banach spaces, which includes many variational
inequality(inclusion) and complementarity problems as special cases. By using the
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resolvent operator technique for H -accretive operator due to Fang and Huang, an
existence and uniqueness theorem of solutions for strongly nonlinear quasi-variational
inclusions is proved and a new perturbed algorithm for finding approximate solutions
is proposed and discussed. The convergence and stability of the iterative sequence
generated by the new perturbed algorithm is also proved. The results presented in this
paper improve and generalize many known corresponding results in the literature.

2. Preliminaries

Let X be a real Banach space with dual space X∗ , 〈 ·, ·〉 be the dual pair between
X and X∗ , and 2X denote the family of all the nonempty subsets of X . The generalized
duality mapping Jq : X → 2X∗

is defined by

Jq(x) = {f ∗ ∈ X∗ : 〈 x, f ∗〉 = ‖x‖q and ‖f ∗‖ = ‖x‖q−1}, ∀x ∈ X,

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping.
It is known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x �= 0 and Jq is single-valued
if X∗ is strictly convex. In the sequel, unless otherwise specified, we always suppose
that X is a real Banach space such that Jq is single -valued and H is a Hilbert space.
If X = H , then J2 becomes the identity mapping of H .

The modulus of smoothness of X is the function ρX : [0,∞) → [0,∞) defined
by

ρX(t) = sup{1
2
(‖x + y‖ + ‖x − y‖) − 1 : ‖x‖ � 1, ‖y‖ � t}.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)
t

= 0.

X is called q -uniformly smooth if there exists a constant c > 0 , such that

ρX(t) � ctq, q > 1.

Note that Jq is single -valued if X is uniformly smooth. In the study of characteris-
tic inequalities in q -uniformly smooth Banach spaces, Xu [31] proved the following
theorem.

THEOREM X. Let X be real uniformly smooth Banach space. Then X is q -
uniformly smooth if and only if there exists a constant Cq > 0 , such that for all
x, y ∈ X ,

‖x + y‖q � ‖x‖q + q〈 y, Jq(x)〉 + Cq‖y‖q.

DEFINITION 2.1. Let S be a selfmap of X , x0 ∈ X , and let xn+1 = h(S, xn) define
an iteration procedure which yields a sequence of points {xn}∞n=0 in X . Suppose that
{x ∈ X : Sx = x} �= φ and {xn}∞n=0 converges to a fixed point x∗ of S . Let {un} ⊂ X
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and let εn = ‖un+1−h(S, un)‖ . If lim
n→∞ εn = 0 implies that un → x∗ , then the iteration

procedure defined by xn+1 = h(S, xn) is said to be S -stable or stable with respect to S .

LEMMA 2.1. (29) Let {an} be a nonnegative real sequence and {bn} be a real

sequence in [0, 1] such that
∞∑

n=0
bn = ∞ . If there exists a positive integer n1 such that

an+1 � (1 − bn)an + bncn, ∀n � n1,

where cn � 0 for all n � 0 and cn → 0(n → ∞) , then lim
n→∞ an = 0 .

DEFINITION 2.2. Let H : X → X and N : X × X → X be two single-valued
operators.

(1) The operator H is said to be
(i) accretive if

〈H(x) − H(y), Jq(x − y)〉 � 0, ∀x, y ∈ X;

(ii) strictly accretive if

〈H(x) − H(y), Jq(x − y)〉 � 0, ∀x, y ∈ X,

and the equality holds if and only x = y ;
(iii) α - strongly accretive if there exists some constant α > 0 such that

〈H(x) − H(y), Jq(x − y)〉 � α‖x − y‖q, ∀x, y ∈ X;

(iv) β -Lipschitz continuous if there exists some constsnt β > 0 such that

‖H(x) − H(y)‖ � β‖x − y‖, ∀x, y ∈ X.

(2) The operator N(·, ·) is said to be
(i) r -strongly accretive with respect to H in first argument if there exists some

constant r > 0 such that

〈N(x, ·) − N(y, ·), jq(H(x) − H(y))〉 � r‖x − y‖q, ∀x, y ∈ X;

(ii) s -Lipschitz continuous with respect to the first argument if there exists some
constsnt s > 0 such that

‖N(x, ·) − N(y, ·)‖ � s‖x − y‖, ∀x, y ∈ X.

In a similar way, we can define Lipschitz continuity of N(·, ·) with respect to the
second argument.

DEFINITION 2.3. Let H : X → X be a single-valued operator. A multivalued
operator M : X → 2X is said to be
(i) accretive if

〈 u − v, Jq(x − y)〉 � 0, ∀x, y ∈ X, u ∈ M(x), v ∈ M(y);

(ii) m -accretive if M is accretive and (I + λM)(X) = X , for all λ > 0 , where I
denotes the identity mapping on X .
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(iii) H -accretive if M is accretive and (H + λM)(X) = X holds, for all λ > 0 .
The example of H -accretive operator can be found in Fang and Huang [8].

REMARK 2.1. If H = I , then (iii) of Definition 2.3 reduces to the definition of
m -accretive operator, and if X = H and H = I , then (iii) of Definition 2.3 reduces
to the definition of maximal monotone operator.

In [8], Fang and Huang showed that (H + λM)−1 is a single-valued operator if M
is a H -accretive operator and H is a strictly accretive operator, where I is an identity
operator and λ > 0 is a constant. Based on this fact, the resolvent operator for a
H -accretive operator M can be defined as follows:

RM
H,λ (u) = (H + λM)−1, ∀u ∈ X.

LEMMA 2.2. (8) Let H : X → X be a r -strongly accretive operator and M : X →
2X be an H -accretive operator. Then the resolvent operator RM

H,λ : X → X is Lipschitz
continuous with constant 1/r , i. e. ,

‖RM
H,λ (u) − RM

H,λ (v)‖ � 1
r
‖u − v‖, ∀u, v ∈ X.

Let N : X × X → X and H : X → X be two single-valued operators, and
M : X ×X → 2X be a H -accretive operator with respect to the first argument. Now we
consider the following problem:

Find u ∈ X such that
0 ∈ N(u, u) + M(u, u). (2.1)

Problem (2.1) is called the strongly nonlinear quasi-variational inclusion involving
H -accretive operator.

If N(u, u) = A(u), M(u, u) = G(u) for all u ∈ X , where A : X → X is a
single-valued operator, G : X → 2X is a H -accretive operator, then problem (2.1) is
equivalent to the following problem:

Find u ∈ X such that
0 ∈ A(u) + G(u). (2.2)

which is called the generalized variational inclusion involving H -accretive operator
considered by Fang and Huang [8] and has been studied by many authors in the setting
of Hilbert spaces when M is maximal monotone and A is strongly monotone. It
is easy to see that problem (2.1) includes many variational inequality(inclusion) and
complementarity problems as special cases.

3. Main results

LEMMA 3.1. u is a solution of problem (2.1) if and only if there exists u ∈ X
such that

u = RM(·,u)
H,λ (H(u) − λN(u, u)),

where RM(·,u)
H,λ = (H + λM(·, u))−1 and λ > 0 is a constant.

Proof. This directly follows from the definition of RM(·,u)
H,λ .
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THEOREM 3.1. Let X be a q -uniformly smooth Banach space and H : X → X
be r -strongly accretive and s -Lipschitz continuous. Let N : X × X → X be Lipschitz
continuous in the first and second arguments with constants α and β , respectively,
and be γ -strongly accretive with respect to H in the first argument. If for any given
u ∈ X, M(·, u) : X → 2X is a H -accretive operator and there exist constant δ > 0
such that for each u, v, x ∈ X,

‖RM(·,u)
H,λ (x) − RM(·,v)

H,λ (x)‖ � δ‖u − v‖ (3.1)

and

θ =
1
r
(sq − qλγ + Cqλ qαq)

1
q +

λ
r
β + δ < 1, (3.2)

where Cq > 0 is the same as in Theorem X. Then the problem (2.1) has a unique
solution u∗ ∈ X .

Proof. Define F : X → X as follows:

F(u) = RM(·,u)
H,λ (H(u) − λN(u, u)), ∀u ∈ X. (3.3)

It follows from (3.1), (3.3) and Lemma 2.2 that

‖F(u) − F(v)‖ = ‖RM(·,u)
H,λ (H(u) − λN(u, u)) − RM(·,v)

H,λ (H(v) − λN(v, v))‖
� ‖RM(·,u)

H,λ (H(u) − λN(u, u)) − RM(·,u)
H,λ (H(v) − λN(v, v))‖

+ ‖RM(·,u)
H,λ (H(v) − λN(v, v)) − RM(·,v)

H,λ (H(v) − λN(v, v))‖

� 1
r
‖H(u) − H(v) − λ (N(u, u) − N(v, v)‖ + δ‖u − v‖

� 1
r
‖H(u) − H(v) − λ (N(u, u) − N(v, u)‖

+
1
r
λ‖N(v, u) − N(v, v)‖ + δ‖u − v‖

(3.4)

By assumptions and Theorem X, we obtain

‖H(u) − H(v) − λ (N(u, u) − N(v, u)‖q

� ‖H(u) − H(v)‖q − qλ 〈N(u, u)− N(v, u), Jq(H(u) − H(v)〉
+ Cqλ q‖N(u, u) − N(v, u)‖q

� (sq − qλγ + Cqλ qαq)‖u − v‖q,

(3.5)

‖N(v, u) − N(v, v)‖ � β‖u − v‖ (3.6)

Combining (3.4), (3.5) and (3.6), we have

‖F(u) − F(v)‖ � θ‖u − v‖.
where

θ =
1
r
(sq − qλγ + Cqλ qαq)

1
q +

λ
r
β + δ,
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by (3.2), we know that θ < 1 , thus F(u) is a contractive mapping. So there exists a
unique point u∗ ∈ X such that

u∗ = RM(·,u∗)
H,λ (H(u∗) − λN(u∗, u∗)).

It follows from Lemma 3.1 that u∗ ∈ X is a unique solution of problem (2.1).This
completes the proof.

REMARK 3.1 If X is 2-uniformly smooth and there exist λ > 0 such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|λ − γ−β l
C2α2−β2 | < min{ l

β ,

√
(γ−β l)2−(C2α2−β2)(s2−l2)

C2α2−β2 },

γ > β l +
√

(C2α2 − β2)(s2 − l2), C2α2 > β2, s > l,

l = r(1 − δ), 0 < δ < 1.

then (3.2) holds.

Algorithm 3.1 Let {αn}∞n=0 and {βn}∞n=0 be two sequences such that αn, βn ∈
[0, 1] and

∞∑
n=0

αn = ∞ . Let {en}∞n=0 and {f n}∞n=0 be two sequences in X introduced

to take into account possible inexact computation. For any given x0 ∈ X , the perturbed
Ishikawa type iterative sequence {xn} is defined by{

xn+1 = (1 − αn)xn + αnR
M(·,yn)
H,λ (H(yn) − λN(yn, yn)) + αnen,

yn = (1 − βn)xn + βnR
M(·,xn)
H,λ (H(xn) − λN(xn, xn)) + βnf n,

(3.7)

for n = 0, 1, 2, · · · . Let {zn} be any sequence in X and define {εn} by{
εn = ‖zn+1 − {(1 − αn)zn + αnR

M(·,tn)
H,λ (H(tn) − λN(tn, tn)) + αnen}‖,

tn = (1 − βn)zn + βnR
M(·,zn)
H,λ (H(zn) − λN(zn, zn)) + βnf n,

(3.8)

for n = 0, 1, 2, · · · .
THEOREM 3.2. Let X, H, N, M be the same as in Theorem 3.1 , and conditions

(3.1) and (3.2) holds. Then
(i) If lim

n→∞ ‖en‖ = lim
n→∞ ‖f n‖ = 0 , then the sequence {xn} generated by (3.7)

converges strongly to the unique solution u∗ of problem (2.1) .
(ii) Moreover, if 0 < μ � αn , then lim

n→∞ zn = u∗ if and only lim
n→∞ εn = 0 , where

εn is defined by (3.8) .

Proof. Let u∗ ∈ X be the unique solution of problem (2.1). It follows from
Lemma 3.1 that

u∗ = (1 − αn)u∗ + αnR
M(·,u∗)
H,λ (H(u∗) − λN(u∗, u∗))

= (1 − βn)u∗ + βnR
M(·,u∗)
H,λ (H(u∗) − λN(u∗, u∗)).



PERTURBED ALGORITHM AND STABILITY FOR STRONGLY NONLINEAR QUASI-VARIATIONAL... 777

From (3.1), (3.7) and Lemma 2.2, it follows that

‖xn+1−u∗‖ � (1 − αn)‖xn − u∗‖ + αn‖RM(·,yn)
H,λ (H(yn) − λN(yn, yn))

− RM(·,u∗)
H,λ (H(u∗) − λN(u∗, u∗))‖ + αn‖en‖

� (1 − αn)‖xn − u∗‖ + αn‖RM(·,yn)
H,λ (H(yn) − λN(yn, yn))

− RM(·,yn)
H,λ (H(u∗) − λN(u∗, u∗))‖ + αn‖RM(·,yn)

H,λ (H(u∗)

− λN(u∗, u∗)) − RM(·,u∗)
H,λ (H(u∗) − λN(u∗, u∗))‖ + αn‖en‖

� (1 − αn)‖xn − u∗‖ +
1
r
αn‖H(yn) − H(u∗) − λ (N(yn, yn)

− N(u∗, u∗))‖ + αnδ‖yn − u∗‖ + αn‖en‖
� (1−αn)‖xn−u∗‖+1

r
αn‖H(yn)−H(u∗)−λ (N(yn, yn)−N(u∗, yn))‖

+
1
r
λαn‖N(u∗, yn) − N(u∗, u∗)‖ + αnδ‖yn − u∗‖ + αn‖en‖

(3.9)

By assumptions and Theorem X, we have

‖H(yn)−H(u∗)−λ (N(yn, yn)−N(u∗, yn))‖q � (sq−qλγ+Cqλ qαq)‖yn−u∗‖q (3.10)

‖N(u∗, yn) − N(u∗, u∗)‖ � β‖yn − u∗‖. (3.11)

Substituting (3.10) and (3.11) into (3.9), we obtain

‖xn+1 − u∗‖ � (1 − αn)‖xn − u∗‖ + αnθ‖yn − u∗‖ + αn‖en‖, (3.12)

where

θ =
1
r
(sq − qλγ + Cqλ qαq)

1
q +

1
r
λβ + δ.

Similarly, we can prove that

‖yn − u∗‖ � (1 − βn)‖xn − u∗‖ + βnθ‖xn − u∗‖ + βn‖f n‖. (3.13)

It follows from (3.12), (3.13) and condition (3.2), that

‖xn+1 − u∗‖ � (1 − αn)‖xn − u∗‖ + αnθ(1 − βn)‖xn − u∗‖
+ αnβnθ2‖xn − u∗‖ + αn(θβn‖f n‖ + ‖en‖)

� [1 − αn(1 − θ)]‖xn − u∗‖ + αn(θ‖f n‖ + ‖en‖).
(3.14)

Letting

an = ‖xn − u∗‖, bn = (1 − θ)αn, cn =
1

1 − θ
(θ‖f n‖ + ‖en‖),

then (3.14) can be written as

an+1 = (1 − bn)an + bncn.
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It follows from Lemma 2.1 that an → 0(n → ∞) , and so {xn} converges strongly to
the unique solution u∗ of problem (2.1).

Now we prove conclsion (ii) . By (3.8), we obtain

‖zn+1−u∗‖ � ‖zn+1−{(1−αn)zn+αnR
M(·,tn)
H,λ (H(tn)−λN(tn, tn))+αnen}‖

+ ‖(1−αn)zn+αnR
M(·,tn)
H,λ (H(tn)−λN(tn, tn))+αnen − u∗‖

� ‖(1−αn)zn+αnR
M(·,tn)
H,λ (H(tn)−λN(tn, tn))+αnen}−u∗‖+εn.

(3.15)

As the proof of in equality (3.14), we have

‖(1 − αn)zn + αnR
M(·,tn)
H,λ (H(tn) − λN(tn, tn)) + αnen − u∗‖

� [1 − (1 − θ)αn]‖zn − u∗‖ + αn(θ‖f n‖ + ‖en‖).
(3.16)

Since 0 < μ � αn , by (3.15) and (3.16), we have

‖zn+1 − u∗‖ � [1 − (1 − θ)αn]‖zn − u∗‖ + (1 − θ)αn(
θ‖f n‖ + ‖en‖

1 − θ
+

εn

μ(1 − θ)
).

Suppose that lim
n→∞ εn=0 . Then from

∞∑
n=0

αn=∞ and Lemma 2.1, we have lim
n→∞ zn=u∗ .

Conversely, if lim
n→∞ zn = u∗ , then we get

εn = ‖zn+1 − {(1 − αn)zn + αnR
M(·,tn)
H,λ (H(tn) − λN(tn, tn)) + αnen}‖

� ‖zn+1 − u∗‖ + ‖(1 − αn)zn + αnR
M(·,tn)
H,λ (H(tn) − λN(tn, tn)) + αnen} − u∗‖

� ‖zn+1 − u∗‖ + [1 − (1 − θ)αn]‖zn − u∗‖ + αn(θ‖f n‖ + ‖en‖) → 0,

as n → ∞ . This completes the proof.
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