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Abstract. In the paper we investigate and generalize the Hamy symmetric function: Fn(x, r) =∑
1�i1<i2<...<ir�n

(∏r
j=1 xij

) 1
r

. The Schur-convexity is discussed and some analytic inequal-

ities are established by use of the theory of majorization.

1. Introduction

Let Rn
+ = {x = (x1, x2, ..., xn) | xi > 0, i = 1, 2, ..., n}. The unweighted arithmetic

and geometric means of x , denoted by An(x), Gn(x) , respectively, are defined as
follows

An(x) =
1
n

n∑
i=1

xi, Gn(x) =

(
n∏

i=1

xi

) 1
n

. (1.1)

The order relation among these means is the well-known “A − G ” inequality, that is,
Gn(x) � An(x). The classical inequality has evoked the interest of many mathemati-
cians, and numerous proofs, generalizations and refinements were published. See, for
example, [1, 2, 4, 5, 11, 12 ] and the references cited therein.

The Hamy symmetric function ([4], [12, p. 67]) is defined as

Fn(x, r) = Fn(x1, x2, ..., xn; r) =
∑

1�i1<i2<...<ir�n

⎛
⎝ r∏

j=1

xij

⎞
⎠

1
r

, r = 1, 2, ..., n. (1.2)

Corresponding to this is the r− th order Hamy mean

σn(x, r) =
1

(n
r )

∑
1�i1<i2<...<ir�n

⎛
⎝ r∏

j=1

xij

⎞
⎠

1
r

, (1.3)

where (n
r ) = n!

(n−r)!r! . T. Hara et al. [4] established the following refinement of the
classical arithmetic and geometric means inequality:

Gn(x) = σn(x, n) � σn(x, n − 1) � ... � σn(x, 2) � σn(x, 1) = An(x). (1.4)
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The paper [5] by H. T. Ku, M. C. Ku and X. M. Zhang contains some interesting
inequalities including the fact that (σn(x, r))r is log-concave. The more results can also
be found in the book [2] by P. S. Bullen.

Now we define the following new symmetric function

F∗
n (x, r) = F∗

n (x1, x2, ..., xn; r) =
∑

i1+i2+...+in=r

(xi1
1 xi2

2 ...xin
n )

1
r , (1.5)

where i1, i2, ..., in are non-negative integers, r ∈ N = {1, 2, ...}. It is obvious that

Fn(x, r) =
ij=0 or 1∑

i1+i2+...+in=r

(xi1
1 xi2

2 ...xin
n )

1
r .

Thus, F∗
n (x, r) generalizes the function Fn(x, r) and so may be called generalized

Hamy symmetric function.
The main purpose of the paper is to investigate Schur-convexity of the Hamy

symmetric function Fn(x, r) and its generalization F∗
n (x, r) . Some analytic inequalities,

including Ky Fan type inequalities, are established by use of the theory of majorization,
for which, the interested reader can see the popular book [7] by Marshall and Olkin.

The Schur-convex function was introduced by I. Schur in 1923 [7]. It has many
important applications in analytic inequalities. Hardy et al. were also interested in some
inequalities that are related to Schur-convex functions [9]. The following definitions
can be found in many references such as [7, 12].

For fixed n � 2, let

x = (x1, x2, ..., xn), y = (y1, y2, ..., yn)

be two n− tuples of real numbers. Let

x[1] � x[2] � ... � x[n], y[1] � y[2] � ... � y[n],

be their ordered components.

DEFINITION 1.1. ([7, p. 55]) The n− tuple x is said to be majorized by y (in
symbols x ≺ y ), if

m∑
i=1

x[i] �
m∑

i=1

y[i], m = 1, 2, ..., n − 1; (1.6)

and n∑
i=1

x[i] =
n∑

i=1

y[i]. (1.7)

DEFINITION 1.2. ([7, p. 54]) A real-valued function φ defined on a set Ω ⊂ Rn is
said to be Schur-convex function on Ω if

x ≺ y on Ω =⇒ φ(x) � φ(y).

If, in addition, φ(x) < φ(y) whenever x ≺ y but x is not a permutation of y , then
φ is said to be strictly Schur-convex on Ω . φ is Schur-concave function on Ω if and
only if −φ is Schur-convex function; φ is a strictly Schur-concave function on Ω if
and only if −φ is strictly Schur-convex function on Ω.
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2. Lemmas

In order to verify our results, the following lemmas are necessary.

LEMMA 2.1. ([6, p. 259; 7, p. 57]) Let f (x) = f (x1, x2, ..., xn) be symmetric and
have continuous partial derivatives on In = I × I × ... × I (n copies) , where I is an
open interval. Then f : In → R is Schur-convex if and only if

(xi − xj)(
∂f
∂xi

− ∂f
∂xj

) � 0 (2.1)

on In . It is strictly Schur-convex if (2.1) is a strict inequality for xi �= xj , 1 � i, j � n .

Since f (x) is symmetric, the Schur’s condition, i.e. (2.1), can be reduced as [7, p.
57]

(x1 − x2)(
∂f
∂x1

− ∂f
∂x2

) � 0, (2.2)

and f is strictly Schur-convex if (2.2) is a strict inequality for x1 �= x2. The Schur’s
condition that guarantees a symmetric function being Schur-concave is the same as (2.1)
or (2.2) except for the direction of the inequality.

In Schur’s condition, the domain of f (x) does not have to be a Cartesian product
In. Lemma 2.1 remains true if we replace In by a set A ⊆ Rn with the following
properties (see [7, p. 57]):

(i) A is convex and has a nonempty interior;
(ii) A is symmetric in the sense that x ∈ A implies Px ∈ A for any n × n

permutation matrix P .

LEMMA 2.2. ([8]) Suppose that xi > 0, i = 1, 2, ..., n,
n∑

i=1
xi = s , and that

c � s . Then

(i) c−x
nc/s−1 =

(
c−x1

nc/s−1 , ...,
c−xn

nc/s−1

)
≺ (x1, x2, ..., xn) = x;

(ii) c+x
s+nc =

(
c+x1
s+nc ,

c+x2
s+nc , ...,

c+xn
s+nc

) ≺ ( x1
s , x2

s , ..., xn
s

)
= x

s .

Next, recall that the complete symmetric function [7, p. 81] is defined by

cr = cr(x) =
∑

i1+i2+...+in=r

xi1
1 xi2

2 ...xin
n , (2.3)

where i1, i2, ..., in are non-negative integers, r ∈ N = {1, 2, ...}, and define c0(x) = 1.
K. Z. Guan [3] established its property as follows

LEMMA 2.3. Assume that xi > 0, i = 1, 2, ..., n . Let

xi = (x1, ..., xi−1, xi+1, ..., xn).

Then
cr(x) = xicr−1(x) + cr(xi).
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3. Main results

In this section we investigate the Schur-convexity of Fn(x, r) and F∗
n (x, r) . Some

analytic inequalities are established by use of the theory of majorization.

THEOREM 3.1. The Hamy symmetric function Fn(x, r) , r = 1, 2, ..., n , is Schur-
concave in Rn

+ , and is increasing for all xi , i = 1, 2, ..., n.

Proof. It is clear that Fn(x, r) is increasing with respect to xi , i = 1, 2, ..., n, and
so is omitted. Below, we prove that Fn(x, r) is a Schur-concave function in Rn

+ . By
Lemma 2.1, noting that Fn(x, r) is symmetric and has continuous partial derivatives in
Rn

+ , we only need to prove

(x1 − x2)
(

∂Fn(x, r)
∂x1

− ∂Fn(x, r)
∂x2

)
� 0.

To this end, we consider the following possible cases for r .
(i) For r = 1 we are done due to Fn(x, 1) =

∑n
i=1 xi .

(ii) For 2 � r � n. The r -th order symmetric function ([7, p. 78]) is defined as

En(x, r) = En(x1, x2, ..., xn; r) =
∑

1�i1<i2<...<ir�n

r∏
j=1

xij .

The following property can be found in [2, p. 324]:

En(x1, x2, ..., xn; r) = x1x2En−2(x3, x4, ..., xn; r − 2)
+ (x1 + x2)En−2(x3, x4, ..., xn; r − 1)
+ En−2(x3, x4, ..., xn; r).

(3.1)

Fix r and let u = (u1, u2, ..., un) and ui = r
√

xi, i = 1, 2, ..., n , we have

Fn(x1, x2, ..., xn; r) = En(u1, u2, ..., un; r).

Differentiating Fn(x, r) with respect to x1 and using (3.1), we obtain

∂Fn(x, r)
∂x1

=
n∑

k=1

∂En(u, r)
∂uk

· ∂uk

∂x1
=

∂En(u, r)
∂u1

· ∂u1

∂x1

=
1

rx1
· r
√

x1x2 · En−2(u3, u4, ..., un; r − 2)

+
r
√

x1

rx1
· En−2(u3, u4, ..., un; r − 1).

Similarly, we can also get

∂Fn(x, r)
∂x2

=
n∑

k=1

∂En(u, r)
∂uk

· ∂uk

∂x2
=

∂En(u, r)
∂u2

· ∂u2

∂x2

=
1

rx2
· r
√

x1x2 · En−2(u3, u4, ..., un; r − 2)

+
r
√

x2

rx2
· En−2(u3, u4, ..., un; r − 1).
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Thus

(x1 − x2)
(

∂Fn(x, r)
∂x1

− ∂Fn(x, r)
∂x2

)

= −
r
√

x1x2

rx1x2
(x1 − x2)

2 · En−2(u3, u4, ..., un; r − 2)

+
1
r
(x1 − x2)(x

1
r −1
1 − x

1
r −1
2 ) · En−2(u3, u4, ..., un; r − 1).

From the fact that the function x
1
r−1 is decreasing in (0, +∞) , it follows that

(x1 − x2)
(

∂Fn(x, r)
∂x1

− ∂Fn(x, r)
∂x2

)
� 0.

Therefore, the proof is complete.

Using Theorem 3.1 and Lemma 2.2, we can easily establish the following conse-
quences.

COROLLARY 3.2. Suppose that xi > 0, i = 1, 2, ..., n ,
∑n

i=1 xi = s, and that
c � s . Then

Fn(c − x; r)
Fn(x; r)

�
(nc

s
− 1
)

.

REMARK 3.1. By Corollary 3.2, let c = s = 1 , the following statements are true.
(i) Fn(1−x;r)

Fn(x;r) � (n − 1);

(ii)
∏n

i=1(x
−1
i − 1) � (n − 1)n (Weierstrass inequality [11, p. 260]).

COROLLARY 3.3. Assume that xi > 0, i = 1, 2, ..., n ,
∑n

i=1 xi = s, and that c � s .
Then

Fn(c + x; r)
Fn(x; r)

�
(nc

s
+ 1
)

.

In particular, let c = s = 1 , we can get the Weierstrass inequality (see [11, p.
260])

n∏
i=1

(x−1
i + 1) � (n + 1)n.

Now we investigate the generalized Hamy symmetric function F∗
n (x, r) .

THEOREM 3.4. The generalized Hamy symmetric function F∗
n (x, r), r = 1, 2, ..., n,

is Schur-concave in Rn
+.

Proof. By Lemma 2.1, we only need to prove that

(x1 − x2)
(

∂F∗
n (x, r)
∂x1

− ∂F∗
n (x, r)
∂x2

)
� 0. (3.2)

To this end, we consider the two possible cases for r .
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(i) When r = 1 , it is clear that F∗
n (x, 1) =

∑n
i=1 xi. One can easily find that (3.2)

holds.
(ii) When 2 � r � n . Fix r and let u = (u1, u2, ..., un) , ui = r

√
xi , i = 1, 2, ..., n,

we have F∗
n (x, r) = cr(u). From Lemma 2.3, it follows that

∂cr(u)
∂uk

= cr−1(u) + uk
∂cr−1(u)

∂uk
, k = 1, 2, ..., n. (3.3)

Using Lemma 2.3 and (3.3) repeatedly yields

∂cr(u)
∂uk

= cr−1(u) + ukcr−2(u) + u2
kcr−3(u) + ... + ur−2

k c1(u) + ur−1
k . (3.4)

Differentiating F∗
n (x, r) with respect to x1 and using (3.4), we obtain

∂F∗
n (x, r)
∂x1

=
n∑

k=1

∂cr(u)
∂uk

· ∂uk

∂x1
=

∂cr(u)
∂u1

· ∂u1

∂x1

=
(

cr−1(u) + u1
∂cr−1(u)

∂u1

)
r
√

x1

rx1

=
(
cr−1(u) + u1cr−2(u) + u2

1cr−3(u) + ... + ur−2
1 c1(u) + ur−1

1

) r
√

x1

rx1

=
1
r

r∑
j=1

cr−j(u)x
j−r
r

1 .

Similarly, we also get

∂F∗
n (x, r)
∂x2

=
n∑

k=1

∂cr(u)
∂uk

· ∂uk

∂x2
=

∂cr(u)
∂u2

· ∂u2

∂x2

=
1
r

r∑
j=1

cr−j(u)x
j−r
r

2 .

Because the function x
j−r
r ( j = 1, 2, ..., r − 1 ) is decreasing in (0, +∞), one can

easily find that

(x1 − x2)
(

∂F∗
n (x, r)
∂x1

− ∂F∗
n (x, r)
∂x2

)
=

(x1 − x2)
r

r−1∑
j=1

cr−j(u)(x
j−r
r

1 − x
j−r
r

2 ) � 0.

Combining these argument, we have completed the proof of the theorem.

COROLLARY 3.5. The function F∗
n (x,r)

F∗
n (x,1) , 2 � r � n , is Schur-concave in Rn

+ .

Proof. Let Φ = F∗
n (x,r)

F∗
n (x,1) . Differentiating Φ with respect to xi shows that

∂Φ
∂xi

=
1

(F∗
n (x, 1))2

(
F∗

n (x, 1) · ∂F∗
n (x, r)
∂xi

− F∗
n (x, r)

)
, i = 1, 2. (3.5)
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From (3.5) and Theorem 3.4, it follows that

(x1 − x2)
(

∂Φ
∂x1

− ∂Φ
∂x2

)
=

(x1 − x2)
F∗

n (x, 1)
·
(

∂F∗
n (x, r)
∂x1

− ∂F∗
n (x, r)
∂x2

)
� 0.

By Lemma 2.1, we have proven F∗
n (x,r)

F∗
n (x,1) to be Schur-concave in Rn

+ .

Let 0 < xi � 1/2, i = 1, 2, ..., n. The following inequality

Gn(x)
Gn(1 − x)

� An(x)
An(1 − x)

,

where 1−x = (1−x1, 1−x2, ..., 1−xn), commonly referred to as the Ky Fan inequality
([10, p. 5]) has stimulated an interest of many researchers. New proofs, improvements
and generalizations of it were published ( see for instance [3] and [13-15]). Using
Corollary 3.6 and Lemma 2.2 and noting F∗

n (x, n) = Gn(x) , we get the following
inequality which generalizes the Ky Fan inequality.

COROLLARY 3.6. Assume that xi > 0 , i = 1, 2, ..., n, and that
∑n

i=1 xi � 1 , then

An(x)
An(1 − x)

� F∗
n (x, r)

F∗
n (1 − x, r)

, r = 2, 3, ..., n. (3.6)

Having in mind Theorem 3.4, it is naturally to ask whether the function F∗
n (x, r) is

Schur-concave in Rn
+ for r > n . We point it out as an open problemwhich is interesting

to be investigated. However, for n = 2 , we can prove the following

THEOREM 3.7. The function F∗
2 (x, r) = F∗

2 (x1, x2; r) is strictly Schur-concave in
R2

+ for r ∈ N.

Proof. Differentiating F∗
2 (x, r) with respect to xi , i = 1, 2 , we have

∂F∗
2 (x, r)
∂x1

= 1 +
r−1∑
i=1

(
1 − i

r

)(x2

x1

) i
r

,

and
∂F∗

2 (x, r)
∂x2

= 1 +
r−1∑
i=1

(
1 − i

r

)(x1

x2

) i
r

.

Thus, we get

(x1 − x2)
(

∂F∗
2 (x, r)
∂x1

− ∂F∗
2 (x, r)
∂x2

)
=

r−1∑
i=1

(
1 − i

r

)
(x1 − x2)

((
x2

x1

) i
r

−
(

x1

x2

) i
r
)

.

On the other hand, for x1 �= x2 , one can easily find that

(x1 − x2)

((
x2

x1

) i
r

−
(

x1

x2

) i
r
)

< 0, i = 1, 2, ..., r − 1.
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From this there follows that

(x1 − x2)
(

∂F∗
2 (x, r)
∂x1

− ∂F∗
2 (x, r)
∂x2

)
< 0.

By Lemma 2.1, the proof is complete.

For F∗
2 (x, r) = F∗

2 (x1, x2; r) , r ∈ N , we can also establish the following ratio
inequality.

THEOREM 3.8. Assume that b1 > b2 > 0 , a1
b1

� a2
b2

> 0, r ∈ N. Then

F∗
2 (a1, a2; r)

F∗
2 (b1, b2; r)

� Mr(a1, a2)
Mr(b1, b2)

, (3.7)

where as usual Mr(a, b) = ( a
1
r +b

1
r

2 )r denotes the r− th power-mean of a and b .

Proof. Simply calculating shows that

F∗
2 (a1, a2; r) = a2

(
a1

a2
+
(

a1

a2

) r−1
r

+
(

a1

a2

) r−2
r

+ ... +
(

a1

a2

) 1
r

+ 1

)
,

and

Mr(a1, a2) = a2

(
( a1

a2
)

1
r + 1

2

)r

.

Thus

F∗
2 (a, r)

F∗
2 (b, r)

=
a2

b2
·

a1
a2

+
(

a1
a2

) r−1
r

+
(

a1
a2

) r−2
r

+ ... +
(

a1
a2

) 1
r
+ 1

b1
b2

+
(

b1
b2

) r−1
r

+
(

b1
b2

) r−2
r

+ ... +
(

b1
b2

) 1
r
+ 1

,

and
Mr(a1, a2)
Mr(b1, b2)

=
a2

b2
·
(

( a1
a2

)
1
r + 1

( b1
b2

)
1
r + 1

)r

.

Let x = a1
a2

, y = b2
b2

( x � y > 1 ) and φ(x) = x+x
r−1

r +x
r−2

r +...+x
1
r +1

(x
1
r +1)r

. In order to prove

(3.7), we only have to verify the function φ(x) be non-decreasing for x ∈ (1, +∞).
We consider the following two possible cases for r .

Case 1. For r = 1 , we are done due to φ(x) = 1.
Case 2. For r � 2. Calculating φ(x) , we obtain

φ(x) =
x

r+1
r − 1

(x
1
r − 1)(x

1
r + 1)r

(x > 1).

Let u = x
1
r , then u > 1 and φ(x) = f (u) = ur+1−1

(u−1)(u+1)r . Taking logarithm on f (u)
and differentiating it with respect to u , we have

f ′(u)
f (u)

=
(r + 1)ur

ur+1 − 1
− 1

u − 1
− r

u + 1

=
1

(u2 − 1)(ur+1 − 1)
· ϕ(u),



THE HAMY SYMMETRIC FUNCTION AND ITS GENERALIZATION 805

where ϕ(u) = (r − 1)ur+1 − (r + 1)ur + (r + 1)u − r + 1 (u > 1 ).
Now

ϕ′(u) = (r − 1)(r + 1)ur − (r + 1)rur−1 + (r + 1),

ϕ′′(u) = (r − 1)r(r + 1)ur−2(u − 1) � 0 (u > 1).
From ϕ′(1) = ϕ(1) = 0 , it follows that ϕ(u) � 0 or f ′(u) � 0 (u > 1). Therefore
f (u) is non-decreasing for u ∈ (1, +∞), which shows that the function φ(x) is
no-decreasing for x ∈ (1, +∞).

Summarizing the above discussion, we have proven the theorem.

Using Theorem 3.8, we can get the following Ky Fan type inequality.

COROLLARY 3.9. If 0 < a1, a2 � 1
2 , r ∈ N, then

F∗
2 (a1, a2; r)

F∗
2 (1 − a1, 1 − a2; r)

� Mr(a1, a2)
Mr(1 − a1, 1 − a2)

.
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