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THE HAMY SYMMETRIC FUNCTION AND ITS GENERALIZATION
KAIZHONG GUAN

(communicated by P. S. Bullen)

Abstract. In the paper we investigate and generalize the Hamy symmetric function: Fj(x,r) =

> 1<ii<ir<...<ir<n (Hle Xij) " . The Schur-convexity is discussed and some analytic inequal-

ities are established by use of the theory of majorization.

1. Introduction

Let R = {x = (x1,X2,...,x,) | x; > 0,i = 1,2, ..., n}. The unweighted arithmetic
and geometric means of x, denoted by A,(x), G,(x), respectively, are defined as
follows

1
1 n n n
A,,(x):;Zx,-, Go(x) =[] x| - (1.1)
i=1 i=1

The order relation among these means is the well-known “A — G” inequality, that is,
G,(x) < A,(x). The classical inequality has evoked the interest of many mathemati-
cians, and numerous proofs, generalizations and refinements were published. See, for
example, [1, 2,4, 5, 11, 12 ] and the references cited therein.

The Hamy symmetric function ([4], [12, p. 67]) is defined as

1

r

Fo(x,r) = Fu(x1,X2, oo, X3 1) = Z x|, r=12,.,n (12)
1

1<ii<i<...<ir<n Jj=

Corresponding to this is the r— th order Hamy mean

1

Oy (x,r) = % Z Hxij . (1.3)

i< <. <ipr<n \ j=

where (1) = (nf”—r'w, T. Hara et al. [4] established the following refinement of the

;
classical arithmetic and geometric means inequality:

G,(x) = o, (x,n) < oy(x,n—1) < ... € 0,(x,2) < 0,(x, 1) = Ay (x). (1.4)

Mathematics subject classification (2000): 0E05, 26D20.
Key words and phrases: Hamy symmetric function, schur-convexity, theory of majorization.

Supported by the Key Project of Chinese Ministry of Education and Hunan Province Department of Education.

© ﬂEI’EN Zagreb 797

Paper MIA-09-70



798 KAIZHONG GUAN

The paper [5] by H. T. Ku, M. C. Ku and X. M. Zhang contains some interesting
inequalities including the fact that (o,(x, r))" is log-concave. The more results can also
be found in the book [2] by P. S. Bullen.

Now we define the following new symmetric function

. Nt
Fi(x,r) = Fi(xix, oxsr) = Y (dxb.ad)r, (1.5)
i1 +ia+...Fip=r

where i, 1, ..., 1, are non-negative integers, r € N = {1,2,...}. It is obvious that

ij=00r1
Fu(x,r) = Z (x"l‘xéz...xi{’)%.
i1 +io+...+ip=r
Thus, F(x,r) generalizes the function F,(x,r) and so may be called generalized
Hamy symmetric function.

The main purpose of the paper is to investigate Schur-convexity of the Hamy
symmetric function F,(x, r) andits generalization F (x, r) . Some analytic inequalities,
including Ky Fan type inequalities, are established by use of the theory of majorization,
for which, the interested reader can see the popular book [7] by Marshall and Olkin.

The Schur-convex function was introduced by I. Schur in 1923 [7]. It has many
important applications in analytic inequalities. Hardy ef al. were also interested in some
inequalities that are related to Schur-convex functions [9]. The following definitions
can be found in many references such as [7, 12].

For fixed n > 2, let

X = (xla-x27"'7xn)a y= (yl7y2a"'ayn)
be two n— tuples of real numbers. Let
X[1] Z X[ 2 - Z Xuls yu Zyp 2 - 2 Vil
be their ordered components.

DEFINITION 1.1. ([7, p. 55]) The n—tuple x is said to be majorized by y (in
symbols x < y), if
Soxg <Y oy, m=12,..n—1 (1.6)
i=1 i=1
and n

X = Zm- (1.7)
1 i=1

DEFINITION 1.2. ([7, p. 54]) A real-valued function ¢ defined onaset Q C R" is
said to be Schur-convex function on Q if

13

x=<y on Q= ¢(x) <P(y).

If, in addition, ¢(x) < ¢(y) whenever x < y but x is not a permutation of y, then
¢ is said to be strictly Schur-convex on Q. ¢ is Schur-concave function on Q if and
only if —¢ is Schur-convex function; ¢ is a strictly Schur-concave function on € if
and only if —¢ is strictly Schur-convex function on Q.
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2. Lemmas

In order to verify our results, the following lemmas are necessary.

LEMMA 2.1. ([6,p.259;7,p.57]) Let f(x) = f (x1,X2,...,x,) be symmetric and
have continuous partial derivatives on I" =1 x I x ... x I (n copies), where I is an
open interval. Then f : I" — R is Schur-convex if and only if

0 0
(xi—xj)(a—i—a—i:) >0 (2.1)

on I". Itis strictly Schur-convex if (2.1) is a strict inequality for x; # x;, 1 <i,j <n.

Since f (x) is symmetric, the Schur’s condition, i.e. (2.1), can be reduced as [7, p.
57]
o o

(= x)(5-=5-)20, (2.2)

and f is strictly Schur-convex if (2.2) is a strict inequality for x; # x,. The Schur’s
condition that guarantees a symmetric function being Schur-concave is the same as (2.1)
or (2.2) except for the direction of the inequality.

In Schur’s condition, the domain of f (x) does not have to be a Cartesian product
I". Lemma 2.1 remains true if we replace [" by a set A C R" with the following
properties (see [7, p. 57)):

(i) A is convex and has a nonempty interior;

(ii) A is symmetric in the sense that x € A implies Px € A for any n x n
permutation matrix P.

LEMMA 2.2. ([8]) Suppose that x; > 0, i = 1,2,....n, > x;=s, and that

c>s. Then i=1
. c—x_ __ c—xi C—Xn e
(l) nefs—1 — (nc/sfl’ T nc/sfl) = ()Cl,)CQ, ""x") =%
. ctx _ (ctx1 ctx Cc+Xn X1 X2 Xn) — X
(”) stnc (ernc’ stnc? s+nc) = ( s s ) s

Next, recall that the complete symmetric function [7, p. 81] is defined by
e =c¢(x) = Z xillxéz...xf;’, (2.3)
i +ix+...+ip=r

where iy, iy, ..., i, are non-negative integers, r € N = {1,2, ...}, and define ¢o(x) = 1.
K. Z. Guan [3] established its property as follows

LEMMA 2.3. Assume that x; >0, i=1,2,....,n. Let
Xi = (X1 oy Xim 1, Xig 1y ey Xn)-

Then

cr(x) = xicr—1(x) + ¢ (x;).
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3. Main results

In this section we investigate the Schur-convexity of F,(x,r) and F}(x,r). Some
analytic inequalities are established by use of the theory of majorization.

THEOREM 3.1. The Hamy symmetric function F,(x,r), r = 1,2,....n, is Schur-
concave in R, and is increasing for all x;, i=1,2,...,n

Proof. 1tis clear that F,(x,r) is increasing with respectto x;, i = 1,2, ...,n, and
so is omitted. Below, we prove that F,(x,r) is a Schur-concave function in R% . By
Lemma 2.1, noting that F,(x,r) is symmetric and has continuous partial derivatives in
R’ , we only need to prove

OF,(x,r)  OF,(x,r)
- - <0.
(X] Xz) < 8x1 axz
To this end, we consider the following possible cases for r.

(i) For r =1 we are done due to Fj,(x,1) = Y7 | x;.
(ii) For 2 < r < n. The r-th order symmetric function ([7, p. 78]) is defined as

-
En(x,r) :En(xl,xz,...,x,,;r) = Z Hxl]

1<t <ir<...<ir<n j=1
The following property can be found in [2, p. 324]:
Ep(xX1,X0, ooy X5 7) = X1X0En—2 (X3, X4, ooy X3 7 — 2)
+ (X1 +x2)En—2(x3, X4y ooy X3 7 — 1) (3.1)
+ Eno(X3, X4, oy X3 7).
Fix r andlet u = (u1,us, ...,u,) and u; = J/x;, i =1,2,...,n, we have
Fo(x1, %0, ooy X5 7) = Ep(uy, g,y .oy iy 1).
Differentiating F,(x, r) with respectto x; and using (3.1), we obtain

8Fxr Z (u,r) Oug _ OEu(u,r) Ouy
8uk 8)61 81,{1 axl

X1

= \/x1x2 En 2(1,{3,1,{4,.. Ups ¥ 2)
m

rXy

+

' En72(u37u4a vy Ups T — 1)

Similarly, we can also get
OF,(x,r) i OFE,(u, r) Oup  OE,(u,r) Oup

8x2 o 8uk axz 8u2 8x2

= \/ X1X2 * En 2(1,{3, Ugy ooy Ups T 2)

| E

rxy

cEp_o(us, ugy .coyup;r — 1).
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Thus
OF,(x,r)  OF,(x,r)
(XI )C2) ( 8)61 8x2
S a2 (1 —22)7 - Eyn (U3, gy ooy thy; 7 — 2)
rxX1x2

1 11
+ ;(xl —x2)(x] = x5 ) Euo(uz,uay ..ty — 1).

From the fact that the function x7 ! is decreasing in (0, 400), it follows that

OF,(x,r)  OF,(x,7)
- - <
(XI x2) < 8x1 8)62 = 0

Therefore, the proof is complete.

Using Theorem 3.1 and Lemma 2.2, we can easily establish the following conse-
quences.

COROLLARY 3.2. Suppose that x; > 0,i = 1,2,....n, Z;;lxi = s, and that
c>s. Then
Fylc—x;r) S (E B 1).
Fu(x;r) s

REMARK 3.1. By Corollary 3.2, let ¢ = s = 1, the following statements are true.
() > (= 1);

(i) TI,(x;7' = 1) = (n— 1)" (Weierstrass inequality [11, p. 260]).

COROLLARY 3.3. Assumethat x; > 0,i=1,2,....n, Z?:I x; =s, andthat ¢ > s.
Then

Aletn (e ).
Fu(x;r) s

In particular, let ¢ = s = 1, we can get the Weierstrass inequality (see [11, p.
260])

l_l(xf1 +1) > m+1)".

i=1
Now we investigate the generalized Hamy symmetric function F(x,7).

THEOREM 3.4. The generalized Hamy symmetric function F(x,r), r =1,2,...,n,
is Schur-concave in R,

Proof. By Lemma 2.1, we only need to prove that

= (502 5 <0 62

To this end, we consider the two possible cases for r.
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(i) When r = 1, itis clear that Fj;(x, 1) = >, x;. One can easily find that (3.2)
holds.

(if) When 2 < r < n. Fix randlet u = (uy, ua, ..., up), ui = 3/%;, i =1,2,....n,
we have F}(x,r) = ¢,(#). From Lemma 2.3, it follows that

Oc(u) Ocr—1(u)
= g1k =1,2,...n. 3.3
ou )t m—g n (3-3)
Using Lemma 2.3 and (3.3) repeatedly yields
de, _ _
25:) = ¢, 1 () + wpe,—o () + e, —3(u) + o 4+ uy ey (u) +uf (3.4)

Differentiating F¥(x, r) with respect to x; and using (3.4), we obtain

OF(x,r) " e, (u ) Oug _ Ocr(u) Ouy
ax 8x1 o 8u1 8x1

I Ou
_ <Cr 1 3Cr 1 (u )> VX1
= (er-

Ouy

_ —1y VX1
u) + urcr—o () + uic,—3(u) + ... +u er (u) + up") v

rXy
1 < i=r
=2 erilu
j=1

Similarly, we also get

OFy(x,r) 'Zl dcr(u) Oug _ dcr(u) Oup
aX2 B —1 8uk 8)62 o 3u2 8)62
1 ¢ izr
= cr—j(u)x
=1

Because the function x — (j = 1,2,...,r — 1) is decreasing in (0,+00), one can
easily find that

OF¥(x,r)  OFX(x,r) (x1 — x2) = = i
— — = E ; T—x," ) <0.
(.Xl .Xz) < axl 8x2 r — CV_J(M)(XI )C2 ) = 0

Combining these argument, we have completed the proof of the theorem.

COROLLARY 3.5. The function Fy (o) 2 < r < n, is Schur-concave in R .

Fr(x1)
Proof. Let ® = ( >) Differentiating @ with respect to x; shows that
oP 1 OF(x,r)

o W(F*( 1)-T;—F;(x,r)>, i=1,2. (3.5)
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From (3.5) and Theorem 3.4, it follows that

0P 00 (x1 —x2) (OF¥(x,r) OFf(x,r)
_ - — ) = . — < 0.
(1 —x2) (3}(1 8x2) Fr(x,1) ( Ox1 Oxy <0

By Lemma 2.1, we have proven 5’15 ; to be Schur-concave in R’ .

Let 0 < x; < 1/2, i=1,2,...,n. The following inequality

G,(x) An(x)
G,(1—x) S Ay(1—x)’

where 1 —x = (1—x1,1—x, ..., 1 —x,), commonly referred to as the Ky Fan inequality
([10, p. 5]) has stimulated an interest of many researchers. New proofs, improvements
and generalizations of it were published ( see for instance [3] and [13-15]). Using
Corollary 3.6 and Lemma 2.2 and noting F(x,n) = G,(x), we get the following
inequality which generalizes the Ky Fan inequality.

COROLLARY 3.6. Assume that x; > 0, i = 1,2,....n, and that Z?:l x; < 1, then

Ay(x) < F(x,r)
A (1—x) 7 Fx(1 —x,r)’

r=2,3,..,n (3.6)

Having in mind Theorem 3.4, it is naturally to ask whether the function F(x, r) is
Schur-concavein R’ for r > n. We pointit out as an open problem which is interesting
to be investigated. However, for n = 2, we can prove the following

THEOREM 3.7. The function F3(x,r) = F5(x1,x2;r) is strictly Schur-concave in
Ri for r € N.

Proof. Differentiating F; (x, r) with respect to x;, i = 1,2, we have

OF;(x,r) — i\ [ x G
(29)61 _1+Z(1;)(x_1> ’

i=1

%_1+Z(1—;)(—>r.

and

Thus, we get

oo (2500 0ty Sty ((2) - (2)1)

On the other hand, for x; # x; , one can easily find that

(x1 — x2) (()2>r — (ﬂ>r> <0, i=1,2,...,r—1.
X1 X2
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From this there follows that

B OF;(x,r)  OF;3(x,r)
(X1 —x2) ( o1 oy < 0.

By Lemma 2.1, the proof is complete.

For F5(x,r) = F5(x1,x2;7), r € N, we can also establish the following ratio
inequality.

THEOREM 3.8. Assume that by > by > 0, b—l > “2 >0,r € N. Then

F3(ai, a3 1) )

M, (ar
F3(by,byir) = My(by,b2)’

(3.7)

Lot
where as usual M,(a,b) = (“22)" denotes the r— th power-mean of a and b.

Proof. Simply calculating shows that

r—1 r—2 1
a a r a r a r
Fj(ai,a27r) = a (—1 + (—1) + (—1) ot (—1) + 1) ,
an [25) an [25)

and
4y +1
M, (ai,az) = ay <(u2) >
2
Thus
r—1 r—2 1
F3(a,r)  a Z; (Z;) +(Z_2) + +(%) +1
Fi(b,r) by,  ,\NF 0\ SNE
(i) ()T e ()
and

Letx=2,y=2 (x>y>1)and ¢(x) = 27 +(i5r+1)+ 741y order to prove
(3.7), we only have to verify the function ¢(x) be non-decreasing for x € (1, +00).
We consider the following two possible cases for r.

Case 1. For r = 1, we are done due to ¢(x) = 1.

Case 2. For r > 2. Calculating ¢(x), we obtain

rJ;l 1
o0 = s b

Let u = x7, then u > 1 and ¢(x) = f (u) = % Taking logarithm on f (u)
and differentiating it with respect to u, we have

flw)  (r+1u" 1 r

f@ Wt =1 u—1 u+1

1
) “o(u),
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where @(u) = (r— D' —(r+ D +(r+ Du—r+1 (u>1).
Now
O'(u) = (r=1)(r+ D" = (r+ Dra"" + (r+ 1),
o' ()= (r—Drr+ D *w—-1)=0 (u>1).
From ¢’(1) = ¢(1) = 0, it follows that @(u) > 0 or f'(u) >0 (u > 1). Therefore
f(u) is non-decreasing for u € (1,400), which shows that the function ¢(x) is
no-decreasing for x € (1, +00).
Summarizing the above discussion, we have proven the theorem.

Using Theorem 3.8, we can get the following Ky Fan type inequality.
COROLLARY 3.9. If 0 < aj,ay < %,r € N, then

F5(ay,ar) < M. (a1, a)
Fi(l—aj, 1 —axyr) ~ M,(1—a, 1 —a)
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