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A NONCOMMUTATIVE AG INEQUALITY

IVICA GUSIĆ

(communicated by P. S. Bullen)

Abstract. We give a proof of AG inequality in noncommutative linearly ordered rings.

0. Introduction

AG inequality states that

x1 + ... + xn

n
� n

√
x1 · ... · xn (1)

where x1, ..., xn are positive real numbers. The equality in (1) holds if and only if
x1 = ... = xn .

The inequality (1) has the following algebraic form:

(x1 + ... + xn)n � nnx1 · ... · xn (2)

In this note we consider a noncommutative version of (2). We also give some
examples.

Let A be an associative but not necessarily commutative ring. The (partial)
orderings on A are in one-one correspondence with positive cones in A . Recall that
we say that a subset P of A is a cone if:

(i) P + P ⊆ P
(ii) PP ⊆ P
(iii) P ∩ (−P) = {0}

(see, for example, [3, p. 105]). The ordering corresponding to P is defined by a � b if
a − b ∈ P . We write simple (A, P) for A ordered by P .

If P satisfies the additional condition
(iv) A = P ∪ (−P) ∪ {0}

then we say that A is linearly ordered.
Further, if
(v) a < b and c > 0 imply ac < ab and ca < cb

then we say that A is strictly ordered.
It is easy to see that a strictly linearly ordered ring is a ring without zero divisors.
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One of possible extension of AG inequality on a noncommutative partially ordered
ring A is the following:

n!(t1 + ... + tn)n � nn
∑
σ∈Sn

tσ(1) · ... · tσ(n) (3)

for any positive t1, ..., tn ∈ A (here Sn denotes the group of permutation of the set
{1, ..., n} ). The equality holds if and only if t1 = ... = tn .

The inequality (3) does not hold on noncommutative partially ordered rings gen-
erally. The following example shows that it fails even in the case of matrices.

EXAMPLE 1. Let A be the ring of quadratic matrices of fixed order over an ordered
field and let P be the set of nonzero matrices with nonnegative entries. Then (3) fails
even for n = 2 .

The existence of non-positive squares in Example 1 is the main reason why AG
inequality fails. Another difficulty is the existence of nilpotent elements. These diffi-
culties may be avoided by considering linearly ordered rings. As far as the author can
determine, known proofs of the classical inequality (2) do not work in this more general
situation.

Historically, the first example of a noncommutative linearly ordered (division)
ring was the ring of Hilbert’s twisted Laurent series from 1899 . Using this ring Hilbert
obtained a geometry that satisfies the Desargues’ Theorem but not the Pappus’ Theorem
([5], see also [1, Ch. I and II]). In the following example we demonstrate the validity of
AG inequality (3) in the Hilbert ring.

EXAMPLE 2. Let F = R[[t]] be the ring of formal power series over R with ultra-
metric ordering (i.e. with positive cone consisting of formal power series having positive
first nonzero coefficients). Then there is exactly one (ordered) R -automorphism φ of
F satisfying φ(t) = 2t (then φm(tn) = 2mntn ). Let A be the ring of formal power series
over F with standard addition and with multiplication defined by (

∑
ajxj)(

∑
bjxj) =∑

cjxj where ck :=
∑

i+j=k φ
j(ai)bj . Then A is linearly ordered noncommutative

ring with positive cone consisting of formal power series having positive first nonzero
coefficients. We claim that AG inequality holds in A .

We have the following rule for multiplication of monomials in A .

a1x
r1 · ... · anx

rn = φ r2+...+rn(a1) · ... · φ rn(an−1)anx
r1+...+rn

For f ∈ A we put ord(f ) = r if f (x) = arxr + ar+1xr+1 + ... with ar �= 0 . It is
easy to see that ord(f g) = ord(f ) + ord(g) , ord(f + g) � min{ord(f ), ord(g)} and
ord(f + g) = min{ord(f ), ord(g)} if f , g are positive. Also if f , g are positive and
ord(f ) < ord(g) then f > g .

Let f 1, f 2, ..., f n ∈ A be positive. Then, if ord(f 1), ..., ord(f n) are not mutually
equal then ord(n!(f 1 + ... + f n)n) < ord(nn

∑
σ∈Sn

fσ(1) · ... · fσ(n)) (strict inequality),
hence n!(f 1 + ... + f n)n > nn

∑
σ∈Sn

fσ(1) · ... · fσ(n) . Therefore, we may assume that
ord(f 1) = ord(f 2) = ... = ord(f n) = m , and so

f i(x) = ai(t)xm + ...,
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where ai(t) , for i = 1, ..., n , are strictly positive elements of R[[t]] . Then

ord(n!(f 1 + ... + f n)n) = ord(nn
∑
σ∈Sn

fσ(1) · ... · fσ(n)) = mn,

so that our inequality is equivalent to

n!(φ (n−1)m(a1(t) + ... + an(t))φ (n−2)m(a1(t) + ... + an(t)) · ... · (a1(t) + ... + an(t))

� nn
∑
σ∈Sn

(φ (n−1)m(aσ(1)(t))φ (n−2)m(aσ(2)(t)) · ... · aσ(n)(t))

Since φk does not change the ord , we see that if ord(ai(t)) are not mutually equal
(in R[[t]] ), then we have strict inequality (as above). Therefore we may assume that
ord(a1(t)) = ord(a2(t)) = ... = ord(an(t)) = M , and so

ai(t) = Ait
M + ...,

where Ai , for i = 1, ..., n , are strictly positive real numbers. Now our inequality is
equivalent to

n!2(n−1)mM2(n−2)mM · ... · 1(
∑

Ai)n � nnn!2(n−1)mM2(n−2)mM · ... · 1
∏

Ai,

which is ordinary AG inequality over R . From the course of the proof it is clear that
the equality holds if and only if f 1 = ... = f n .

In this paper we prove that noncommutative AG inequality (3) holds in arbitrary
strictly linearly ordered rings. The organization of the paper is the following. In
Section 1. we sketch an algebraic version of classical AG inequality (as it is presented
in [4] and [7]). The advantage of this version is that it admits an extension on the
noncommutative case. In Section 2. we describe some connections between the rings
of homogenous polynomials in commutative and noncommutative variables and in
Section 3. we prove the main result.

1. An algebraic version of classical AG inequality

The classical AG inequality (1) has algebraic form (2). Our proof of noncommu-
tative AG inequality (3) is based on an explicit description of (x1 + x2 + ... + xn)n −
nnx1x2...xn , for which we need the notion of quasi-sum of squares.

DEFINITION 1. ([4, Definition 1.]) Let f be a homogenous symmetric n -degree
polynomial in n variables. We say that f is a quasi-sum of squares if

f =
∑

1�i<j�n

f i,j(Xi − Xj)2

where f i,j (for each i, j ) is a homogenous polynomial of degree n − 2 that is a linear
combination of monomials with nonnegative coefficients.

A significance of this notion is in the fact that

(X1 + ... + Xn)n − nnX1 · ... · Xn (4)
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is a quasi-sum of squares, for all natural numbers n (see [4], and [7] where the explicit
formulas are done). Note that Hurwitz ([6]) gave an explicit expression for

Xn
1 + Xn

2 + ... + Xn
n − nX1X2...Xn

as a quasi-sumof squares (see [2], p.87), whichmaybe understoodas an purely algebraic
proof of AG inequality for positive numbers xn

1, ..., x
n
n , i.e. a proof that works over

arbitrary ordered commutative rings. However, the Hurwitz result is insufficient for
purely algebraic proof of (2).

Let us adopt the following notation for polynomials in variables X1, X2, ...Xn :

s0 := 1

sk(X1, X2, ..., Xn) :=
∑

i1<i2<...<ik

Xi1Xi2 · ... · Xik ,

for 1 � k � n.

s(ij)
k (X1, X2, ..., Xn) := sk(X1, ..., Xi−1, Xi+1, ..., Xj−1, Xj+1, ..., Xn),

for 1 � i < j � n.

THEOREM 1. ([7, Theorem 1.]) (X1 + X2 + ... + Xn)n − nnX1X2...Xn is a quasi-sum
of squares with rational coefficients, for all natural n � 2 . More precisely:

(X1 + X2 + ... + Xn)n − nnX1X2...Xn =
∑

1�i<j�n

f i,j(Xi − Xj)2

where f i,j :=
∑k=n−2

k=0
nk

(n−1
k+1)

sn−2−k
1 s(ij)

k .

2. Link between commutative and noncommutative relations

In this section we prepare the result of previous section for the case of noncommu-
tative variables. We adopt the following notation and definitions.

T1, ..., Tn; T denotes noncommutative variables.
X1, ..., Xn; X denotes commutative variables.
C denotes the linear map from the ring of homogenous polynomials (over the

field of rational numbers) in noncommutative variables T1, ..., Tn, ...; T to the ring
of homogenous polynomials in the commutative variables X1, ..., Xn, ...; X defined by
C(Ti) = Xi , for all i and C(T) = X . Also, we require that C is multiplicative on the
monomials. For example, C(T1T3

2T4
1 ) = C(T1)(C(T2))3(C(T1))4 = X5

1X
3
2 .

DEFINITION 2. We say that a monomial G in noncommutative variables is associ-
ated to a monomial H , if C(G) = C(H) .

For example, if G := T2
4T1T3 then the set of all monomials that are associated to G

is {T2
4T1T3 , T2

4T3T1 , T4T1T4T3 , T4T3T4T1 , T4T1T3T4 , T4T3T1T4 , T1T2
4T3 , T3T2

4T1 ,
T1T4T3T4 , T3T4T1T4 , T1T3T2

4 , T3T1T2
4} .
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Further, let N denote the linear map from the ring of homogenous polynomials
in the commutative variables X1, ..., Xn, ...; X to the ring of homogenous polynomials
in noncommutative variables T1, ..., Tn, ...; T defined as follows. Given a monomial in
commutative variables f := Xa1

i1 · ... · Xar
ir , with ai � 1 for all i , then N(f ) is defined

to be the sum of monomials in noncommutative variables associated to the monomial
Ta1

i1 · ... · Tar
ir divided by the number of these monomials (i.e. by (a1+...+ar)!

a1!·...·ar!
). For

example, if f = X2
4X1X3 then

N(f ) =
1
12

(T2
4T1T3 + T2

4T3T1 + T4T1T4T3 + T4T3T4T1 + T4T1T3T4

+ T4T3T1T4 + T1T
2
4T3 + T3T

2
4T1 + T1T4T3T4 + T3T4T1T4 + T1T3T

2
4 + T3T1T

2
4 ).

Further, let ψij , 1 � i, j � n denote the map from the ring of homogenous poly-
nomials in noncommutative variables T1, ..., Tn; T to the ring of homogenous poly-
nomials in noncommutative variables T1, ..., Tn defined by ψij(F(T1, ..., Tn, T) :=
F(T1, ..., Tn, Ti − Tj)) . It is easy to see that ψij are linear for all i, j .

LEMMA 1. CN(f ) = f for all polynomials f in commutative variables.

Proof. Obvious. �

DEFINITION 3. We say that a homogenous polynomial F in noncommutative
variables is complete if it satisfies the following property: if F contains a monomial
G with coefficient c then it contains all monomials that are associated to G with the
same coefficient c .

LEMMA 2. A polynomial F is complete if and only if NC(F) = F .

Proof. Since C is linear and constant on any set of mutually associated monomials,
we see that NC(F) = F for all complete polynomials. Assume, now, that NC(F) = F ,
for a polynomial F . Assume that G =

∑
ckEk is a part of F where {Ek}k=m

k=1 is the set
of all monomials that are associated to a fixed monomial that occurs in F . We claim

that all ck are mutually equal. It must be NC(G) = G , so that
∑

ck
m

∑
Ek =

∑
ckEk ,

hence c1 = ... = cm .
For example, F := T2

1T2+T1T2T1+T2T2
1 is complete. We see that C(F) = 3X2

1X2 ,

and NC(F) = 3(T2
1 T2+T1T2T1+T2T

2
1 )

3 = F. �

LEMMA 3. Assume that F, G are complete. Then C(F) = C(G) implies F = G.

Proof. Assume C(F) = C(G) , for complete polynomials F, G . Then NC(F) =
NC(G) , hence, by Lemma 2, F = G . �

LEMMA 4. Assume that f = g · (Xi − Xj)2 for a homogenous polynomial g in
variables X1, ..., Xn . Then N(f ) = ψijN(g · X2) .

Proof. Since N and ψij are linear maps we may assume that g is a monomial, say
g := Xa1

i1 ·...·Xar
ir . By Lemma 1,we have CN(f ) = f . We claim that C(ψijN(gX2)) = f ,

too. Let {Ek}k=m
k=1 be the set of all monomials that are associated to Ta1

i1 · ...·Tar
ir T2 . Then
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we have, C(ψijN(gX2)) = C(ψij(
∑

Ek
m )) = 1

m

∑ C(ψij(Ek)) = f (since C(ψij(Ek)) =
C(Ta1

i1 · ... · Tar
ir (Ti − Tj)2) = f , for all k ). Now, using Lemma 3, we see that it is

sufficient to prove that ψijN(g · X2) is complete. Denote by a the multiplicity of Xi

in g and by b the multiplicity of Xj in g (note that a , b are nonnegative integers).
Then we have three classes of monomials in ψijN(g · X2) : (i) those having Xi with
multiplicity a+2 , (ii) those having Xi with multiplicity a+1 , and (iii) those having
Xi with multiplicity a .

In (i) each monomial appears with multiplicity
(a

2)
m , in (ii) with multiplicity ab

m ,

and in (iii) with multiplicity
(b

2)
m . The Lemma is proved.

3. Proof of the noncommutative AG inequality

Before the proving of main result we describe a natural extension (A′, P′) of a
noncommutative linearly strictly ordered ring (A, P) . By the definition

A′ := { a
m

: a ∈ A, m ∈ N}/ ∼
and

P′ := { a
m

: a ∈ P, m ∈ N}/ ∼,

with a
m ∼ b

r if ar = bm . Then a 	→ a
1 defines an ordered inclusion A ⊆ A′ , with

P = P′ ∩ A .

THEOREM 2. Let A be a noncommutative linearly strictly ordered ring. Then

n!(t1 + ... + tn)n � nn
∑
σ∈Sn

tσ(1) · ... · tσ(n) (5)

for any positive t1, ..., tn ∈ A . Further, the equality holds if and only if t1 = ... = tn .

Proof. By Theorem 1

(X1 + ... + Xn)n − nn · X1 · ... · Xn =
∑

1�i<j�n

f i,j(Xi − Xj)2

for some homogenous polynomials f i,j of degree n − 2 with nonnegative rational
coefficients. Therefore

N((X1 + ... + Xn)n − nn · X1 · ... · Xn) = N(
∑

1�i<j�n

f i,j(Xi − Xj)2).

By the definition of N and Lemma 4 we get

(T1 + ... + Tn)n − nn

n!

∑
σ∈Sn

∏
1�i�n

Tσ(i) =
∑

1�i<j�n

ψijN(f ij · X2).

We see that ψijN(f ij · X2) (for every fixed i < j ) is a linear combination with positive
coefficients of monomials in variables T1, ..., Tn and Ti − Tj , where Ti − Tj appears
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exactly twice. Therefore, after the substitution Ti 	→ ti (that makes sense over A′ ), we
get a relation over A

n!(t1 + ... + tn)n � nn
∑
σ∈Sn

tσ(1) · ... · tσ(n) (6)

for any positive t1, ..., tn ∈ A . It is easy to see that the equality holds if and only if
t1 = ... = tn . �

EXAMPLE 3. (a) For n = 2 we have

(X1 + X2)2 − 22X1X2 = (X1 − X2)2.

Therefore,
2!(T1 + T2)2 − 22(T1T2 + T2T1) = 2!(T1 − T2)2

(b) For n = 3 we have

(X1 + X2 + X3)3 − 33 · X1X2X3 =
1
2

(
(X1 + X2 + 7X3)(X1 − X2)2 + ...

)
Therefore

3!(T1+T2+T3)3−33(T1T2T3+T1T3T2+T2T1T3+T2T3T1+T3T1T2+T3T2T1)

= 3!
1
2

((
(T1+T2+7T3)(T1−T2)2+(T1−T2)(T1 + T2+7T3)(T1−T2)

+ (T1−T2)2(T1+T2+7T3)
)
+...

)
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[4] I. GUSIĆ, A purely algebraic proof of AG inequality, Math. Ineq. Appl., 8, (2) (2005), 191–198.
[5] D. HILBERT, Grundlagen der Geometrie, Springer, 1913.
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