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GENERAL INEQUALITIES VIA

ISOTONIC SUBADDITIVE FUNCTIONALS

S. ABRAMOVICH, L-E. PERSSON, J. PEČARIĆ AND S. VAROŠANEC

(communicated by S. Saitoh)

Abstract. In this manuscript a number of general inequalities for isotonic subadditive functionals
on a set of positive mappings are proved and applied. In particular, it is pointed out that these
inequalities both unify and generalize some general forms of the Hölder, Popoviciu, Minkowski,
Bellman and Power mean inequalities. Also some refinements of some of these results are
proved.

1. Introduction

In the monograph [9] a number of classical inequalities like Jensen’s, Hölder’s,
Minkowski’s etc. are given in terms of positive isotonic linear functionals. In Article
[1] some sharpenings of these inequalities are presented and applied. Here we give an
answer to the natural question which arises from the previous results: “Can linearity of
functionals be substituted with much weaker conditions?” While in paper [1] we based
our investigation on using a functional version of Jensen’s and its reversed inequality,
now we change the starting point and use some results from [10].

Let S be a nonempty set and P be a set of mappings from the set S to the
nonnegative reals R+ . An Isotonic Subadditive Functional (ISF) A is a mapping from
P into R+ satisfying the following conditions:

(A1) A(0) = 0, A(af ) = aA(f ) , where a > 0 and af , f ∈ P (positive homogenity)
(A2) For f , g ∈ P , f � g implies A(f ) � A(g) (isotonicity)
(A3) A(f + g) � A(f ) + A(g) for all f , g, f + g ∈ P (subadditivity).

If we have equality in (A3) , then we say that A is Isotonic Linear (or additive)
Functional (ILF) . A number of such functionals were presented in [1] (the most im-
portant ones are connected to sums and integrals). In Section 2 of this paper we will
present a number of isotonic subadditive functionals (ISF) of interest for applications
e.g. in the theory of function spaces, interpolation theory, approximation theory and
inequalities. In this section we also include some other preliminary results and defini-
tions of importance for our investigation. The main results are presented and proved in
Section 3. Finally, some applications are pointed out in Section 4.
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2. Preliminaries

Let us mention the following result related to Jensen’s inequality given by J. Pečarić
and D. Veljan in [10] :

THEOREM A. Let A be a functional with properties (A1) − (A3) that is, A is
ISF, and let h(t1, . . . , tn) be a real-valued function of n variables, which is defined and
continuous for ti � 0 , i = 1, . . . , n. Suppose that h satisfies the following conditions:

i) if ti > 0 (i = 1, . . . , n) , then h(t1, . . . , tn) > 0 ,
ii) if λ > 0 , then h(λ t1, . . . , λ tn) = λh(t1, . . . , tn) ,
iii) h is a concave function.
Then the inequality

A(h(f 1, . . . , f n)) � h(A(f 1), . . . , A(f n)), f 1, . . . , f n ∈ P (1)

holds.

REMARK 1. Note that h satisfies the conditions of Theorem A if and only if there
exists a nonnegative concave continuous function g of n − 1 variables such that

h(t1, . . . tn) = t1g(
t2
t1

, . . .
tn
t1

) (2)

if t1 > 0 .

REMARK 2. In article [10] it was also shown that Theorem A implies the following
result by L. Maligranda (see [5]):

For every non-vanishing function ϕ : R2
+ → R , which is concave and continuous

in each variable and positive homogeneous of degree one and every x, y from a Banach
lattice X such that ϕ(|x|, |y|) ∈ X , the following holds:

||ϕ(|x|, |y|)||X � ϕ(||x||X , ||y||X).

Next we introduce the function Gr,s , which is crucial for our later investigations.

DEFINITION 1. Let f i, i = 1, 2, . . . , m − 1, be positive functions on (0,∞) and
let xi > 0, i = 1, . . . , m. For r � s , r, s ∈ {1, 2, . . . , m − 1} , we denote

Gr,s(xr, xr+1, . . . , xs+1) = xrf r

(
xr+1

xr
f r+1

(
xr+2

xr+1
. . . f s

(
xs+1

xs

)))
and

Gs+1,s(x) = x.

If any of the xi = 0, then we define that Gr,s(xr, xr+1, . . . , xs+1) = 0 .

We will finish this Section by pointing out some examples of isotonic subadditive
functionals (ISF), which indicate the usefulness of our results proved in Section 3 (e.g.,
see the applications in Section 4).

EXAMPLE 1. Let A be ILF or ISF. Then we can generate a scale of ISFs Ap ,
p � 1 , by using the well-known technique called convexification in the following way

Ap(f ) = A(f p)1/p.

For a simple proof of this fact see [8].
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In particular, by using any of the ILFs pointed out in [1] and Example 1 we obtain
a scale of ISFs as shown in the following examples:

EXAMPLE 2. Let p � 1 . Then the functionals

Σp : Σp(a) := ||a||�p = (
∞∑
i=1

ap
i )

1/p,

where a = {ai}∞0 , ai � 0 , or more generally

Sp : Sp(f ) := ||f ||Lp = (
∫
Ω

f pdμ)1/p,

where (Ω,μ) is a measure space, are all ISFs.
Example 2 is just a special case of the next example of great interest in the theory

of function spaces:

EXAMPLE 3. Let M+ be the cone of μ -measurable functions on R whose values
lie in [0,∞] . A mapping ρ : M+ → [0,∞] is called a Banach function norm if for all
f , g , f n , (n ∈ Z+) in M+ , for all constants α � 0 and for all μ -measurable subsets
E of R , it yields that:

(B1) ρ(f ) = 0 if and only if f = 0 μ a.e.; ρ(αf ) = αρ(f ) ,
(B2) 0 � g � f μ a.e. implies ρ(g) � ρ(f ) ,
(B3) ρ(f + g) � ρ(f ) + ρ(g) ,
and, moreover,
(B4) 0 � f n ↑ f μ a.e. implies ρ(f n) ↑ ρ(f ) ; μ(E) < ∞ ⇒ ρ(χE) < ∞ and∫

E f dμ � CEρ(f ) .
According to (B1) − (B3) we see that ρ is a subadditive functional.

REMARK 3. For each Banach function norm ρ , the collection X of all functions
f for which ρ(|f |) < ∞ is called a Banach function space X with the norm defined
by

‖f ‖X = ρ(|f |).
In particular, when ρ = ρp defined by

ρp(f ) =
{

(
∫
Ω f pdμ)1/p, 1 � p < ∞
ess supΩf , p = ∞

we obtain the Lebesgue spaces Lp (see Example 2) also for the limit case p = ∞ . In
fact, several of the most well-established function spaces (e.g. the Lorentz Lp,q spaces,
the Orlicz spaces, the Hardy-Littlewood L logL spaces etc.) are defined just via some
suitable Banach function norm ρ . For more details see e.g. [3].

Finally we give a fundamental example connected to abstract interpolation theory
(see e.g. [3]).

EXAMPLE 4. Let A0 and A1 denote two Banach function spaces. For each t > 0
and all a ∈ A0 + A1 the famous (Peetre) K-functional K defined by

K(a) = K(t, a; A0, A1) := inf
a=a0+a1 ,a0∈A0,a1∈A1

(‖a0‖A0 + t‖a1‖A1)
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is in fact an ISF. Also the corresponding (Peetre) J-functional J , defined by

J(a) = J(t, a; A0, A1) := sup
a∈A0∩A1

(‖a‖A0 , t‖a‖A1)

for each t > 0 and all a ∈ A0 ∩ A1 , is obviously an ISF.
All modern abstract real interpolation theory is based on these two functionals (see

e.g. the books [3] and [4] and the references given there). Hence, our results in this
paper directly imply new inequalities and embeddings in this connection.

3. The main results

The following concept is used in [1] and formulated in [2] as shown here:

DEFINITION2. We say that a set of convex or concave functions f i, i = 1, . . . , m−1 ,
satisfies Monotonicity Condition (MC) if all k = 1, . . . , m − 2 and all pairs (f k, f k+1)
satisfy the following:

(i) When both functions f k and f k+1 are either convex or concave, then f k is
increasing.

(ii) When either f k is convex and f k+1 is concave, or f k is concave and f k+1 is
convex, then f k is decreasing.

Now, we state the following general results for the function Gr,s .

THEOREM 1. Let {f i : i = 1, . . . , m− 1}, be a set of positive functions on (0,∞)
with the MC property.

a) Let p and q be positive real numbers. If f r is a concave function, then for
a = (ar, . . . , as+1) and b = (br, . . . , bs+1) we have

pGr,s(a) + qGr,s(b) � Gr,s(pa + qb) (3)

for any s , s ∈ {r, . . . , m − 1} .
If f r is a convex function, then the reversed inequality holds.
b) If f r is a concave function, then the function Gr,s is a superadditive and

concave function. If f r is a convex function, then the function Gr,s is a subadditive and
convex function.

c) The function Gr,s is a positively homogeneous function of degree one.

Proof. The first part of the theorem is proved by using the principle ofmathematical
induction on the number of variables of the function Gr,s and also by using the discrete
Jensen’s inequality for convex and concave functions.

Let us denote a2 = (ar, ar+1) and b2 = (br, br+1) . For p, q > 0 and f r concave
we have

Gr,r(pa2 + qb2) = (par + qbr)f r

(
par+1 + qbr+1

par + qbr

)

� parf r

(
ar+1

ar

)
+ qbrf r

(
br+1

br

)
= pGr,r(a2) + qGr,r(b2).

If f r is a convex function, then we have the reversed inequality.
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The assumption of the induction: Let us suppose that every function Gr,r+k−2 ,
r, r + k−2 ∈ {1, 2, . . . , m−1} , with k variables satisfies the statement of the first part
of Theorem 1.

Let us now consider the function Gr,r+k−1 of k + 1 variables. First we consider
the case when f r is a concave function. By the definition we have

Gr,r+k−1(ar, . . . , ar+k) = arf r

(
Gr+1,r+k−1(ar+1, . . . , ar+k)

ar

)
.

Gr+1,r+k−1 has k variables and the assumption of induction holds for it. If Gr+1,r+k−1

satisfies inequality (3), then f r+1 is concave and by the MC property f r is an increasing
function.

Dividing the assumption of the induction by par +qbr and using the monotonicity
of the function f r we have

f r

(
Gr+1,r+k−1(pak + qbk)

par + qbr

)
� f r

(
pGr+1,r+k−1(ak) + qGr+1,r+k−1(bk)

par + qbr

)
, (4)

where ak = (ar+1, . . . , ar+k) and bk = (br+1, . . . , br+k).
Now, multiplying (4) by par + qbr and using Jensen’s inequality for the concave

function f r we find that

Gr,r+k−1(pak+1 + qbk+1) = (par + qbr)f r

(
Gr+1,r+k−1(pak + qbk)

par + qbr

)

� parf r

(
Gr+1,r+k−1(ar+1, . . . , ar+k)

ar

)

+ qbrf r

(
Gr+1,r+k−1(br+1, . . . , br+k)

br

)
= pGr,r+k−1(ak+1) + qGr,r+k−1(bk+1),

where ak+1 = (ar, . . . , ar+k) and bk+1 = (br, . . . , br+k) , which establishes the state-
ment for the function Gr,r+k−1 of k + 1 variables.

Moreover, if Gr+1,r+k−1 satisfies the inequality reversed to (3), then f r+1 is convex
and by the MC property f r is a decreasing function. Hence, the inequality (4) is valid
also in this case, and after using the Jensen’s inequality for the concave function f r we
obtain that inequality (3) again is valid for the function Gr,r+k−1 of k + 1 variables.
Thus, by the induction axiom, a) is proved for the case when f r is concave.

If f r is a convex function, then similar arguments lead us to the reversed inequality
(3).

Obviously, the statement in b) is just a special case of that in a) and the proof of
the statement in c) i.e. that

Gr,s(λar, . . . , λas+1) = λGr,s(ar, . . . , as+1)

for each λ > 0 , is just an easy consequence of the definition of Gr,s . The proof is
complete. �

The following consequence of Theorem A is useful in the sequel but also of
independent interest:
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THEOREM 2. Let A be an ISF. Let ai ∈ P , i = 1, . . . , m, be positive functions
on a set S , A(ai) > 0 , i = 1, . . . , m, and let the set {f i : (0,∞) → (0,∞), i =
1, . . . , m − 1} have the MC property.

If, for some r ∈ {1, 2, . . . , m − 1} , the function f r is concave, then

A(Gr,s(ar, . . . , as)) � Gr,s(A(ar), . . . , A(as)) (5)

holds for any s ∈ {r, . . . , m − 1} .

Proof. The properties of the function Gr,s , which are described in Theorem 1,
imply that Gr,s satisfies the assumptions of Theorem A. Hence, the inequality (5) is a
simple consequence of the mentioned theorem. �

While (5) is a Jensen’s type inequality, in the following theorem we consider a
reversed inequality:

THEOREM 3. Let A be an ISF. Let ci , i = 1, 2, . . . , m, be positive real numbers,
ai ∈ P , i = 1, 2, . . . , m, be positive functions on S , A(ai) > 0 , ci − A(ai) > 0 ,
i = 1, 2, . . . , m.

Let the set {f i : (0,∞) → (0,∞), i = 1, . . . , m− 1} have the MC property. Fur-
thermore, suppose that Gr,s(ar, . . ., as+1) ∈ P , Gr,s(cr, . . ., cs+1)−A(Gr,s(ar, . . ., as+1))
> 0 for r, s ∈ {1, 2, . . . , m − 1} , r � s + 1 .

Then, for any r, s ∈ {1, 2, . . . , m − 1} , r � s + 1 , for which f r is concave, the
following holds:

Gr,s(cr − A(ar), . . . , cs+1−A(as+1)) � Gr,s(cr, . . . , cs+1)−A(Gr,s(ar, . . . , as+1)). (6)

Proof. Since, by Theorem 1, Gr,s is a superadditive function we have

Gr,s(cr−A(ar), . . . , cs+1−A(as+1)) � Gr,s(cr, . . . , cs+1)−Gr,s(A(ar), . . . , A(as+1))
� Gr,s(cr, . . . , cs+1)−A(Gr,s(ar, . . . , as+1))

where in the last inequality Theorem 2 is used. The proof is complete. �
We shall now prove some more general inequalities, which in particular imply

sharpenings of some of our previous inequalities.

THEOREM 4. Let E and F be functionals on P such that the difference D = F−E
is an ISF. Let f i , i = 1, . . . , m− 1 , be positive functions with the MC property. If f 1 is
concave, then for s = 2, . . . , m, it yields that

D(G1,m−1(a1, . . . , am)) � G1,s−1(F(a1), . . . , F(as−1), F(z))
− G1,s−1(E(a1), . . . , E(as−1), E(z)),

(7)

where z = Gs,m−1(as, . . . , am) , ai ∈ P, i = 1, . . . , m.

Proof. Since f i , i = 1, . . . , m−1 , satisfy the MC property, using discrete Jensen’s
inequality several times, we get

G1,s−1 (D(a1), . . . , D(as−1), D(z)) + G1,s−1 (E(a1), . . . , E(as−1), E(z))

= D(a1)f 1

(
G2,s−1 (D(a2), . . . , D(z))

D(a1)

)
+ E(a1)f 1

(
G2,s−1 (E(a2), . . . , E(z))

E(a1)

)



GENERAL INEQUALITIES VIA ISOTONIC SUBADDITIVE FUNCTIONALS 21

� F(a1)f 1

(
G2,s−1 (D(a2), . . . , D(z)) + G2,s−1 (E(a2), . . . , E(z))

F(a1)

)

� F(a1)f 1

(
F(a2)
F(a1)

f 2

(
G3,s−1 (D(a3), . . . , D(z)) +G3,s−1 (E(a3), . . . , E(z))

F(a2)

))
� . . . � G1,s−1 (F(a1), . . . , F(as−1), F(z)) .

(8)

Indeed, since f 1 is concave, the first inequality holds. Moreover, if f 2 is convex,
then f 1 is decreasing and if f 2 is concave, then f 1 is increasing. In either case the
second inequality holds. The same reasoning leads to the last inequality. Now, using
Theorem 2 we have

D(G1,m−1(a1, . . . , am))
= D(G1,m−1(a1, . . . , as−1, z))
� G1,s−1(D(a1), . . . , D(as−1), D(z))
� G1,s−1(F(a1), . . . , F(as−1), F(z)) − G1,s−1(E(a1), . . . , E(as−1), E(z)).

This completes the proof. �
As a consequence of the previous Theorems 2 and 4 we get the following result:

THEOREM 5. Let D and E be ISFs. Let ai ∈ P , i = 1, . . . , m, be positive
functions on a set S , D(ai) > 0 and E(ai) > 0 , i = 1, . . . , m, and let a set
{f i : (0,∞) → (0,∞), i = 1, . . . , m − 1} has the MC property. If f 1 is concave, then

G1,s−1 (F(a1), . . . , F(as−1), F(z))
� D(G1,m−1(a1, . . . , am)) + G1,s−1 (E(a1), . . . , E(as−1), E(z))
� F(G1,m−1(a1, . . . , am)),

(9)

where F = D + E .

Proof. The first inequality can be obtained by just rewriting inequality (7). More-
over, according to Theorem 2 we get

G1,s−1(E(a1), . . . , E(as−1), E(z)) � E(G1,s−1(a1, . . . , az))
= (D − F)(G1,s−1(a1, . . . , az))
= D(G1,m−1(a1, . . . , am)) − F(G1,m−1(a1, . . . , am)),

thus, the second inequality in (9) has been established. �

REMARK 4. When s = m (9) becomes

G1,m−1(F(a1), . . . , F(am)) � D(G1,m−1(a1, . . . , am))+G1,m−1(E(a1), . . . , E(am))
� F(G1,m−1(a1, . . . , am)),

(10)

which is a sharpening of inequality (5).

THEOREM 6. Let D and E be ISFs and put F = D + E . Moreover, let the
functions f i , i = 1 . . . , m− 1 , be positive functions with the MC property and let ai ∈
P, i = 1, . . . , m, be positive functions such that E(ai) > 0 , D(ai) > 0 , ci−E(ai) > 0 ,
ci − F(ai) > 0 , where ci , i = 1 . . . , m, are positive real numbers.
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If f 1 is concave, then for s = 2, . . . , m,

G1,s−1(c1, . . . , cs−1, u) − F(G1,s−1(a1, . . . , as−1, z))
� G1,s−1(c1−E(a1), . . . , cs−1−E(as−1), u−E(z))−D(G1,m−1(a1, . . . , am))
� G1,s−1(c1 − F(a1), . . . , cs−1 − F(as−1), u − F(z)),

(11)

where z = Gs,m−1(as, . . . , am) , u = Gs,m−1(cs, . . . , cm) and all the above-mentioned
terms are well-defined.

Proof. The left-hand side inequality is a consequence of Theorem 3. Namely, for
the functional E we have

G1,s−1(c1 − E(a1), . . . , cs−1 − E(as−1), u − E(z))
� G1,s−1(c1, . . . , cs−1, u) − E(G1,s−1(a1, . . . , as−1, z))
= G1,s−1(c1, . . . , cs−1, u) − F(G1,s−1(a1, . . . , as−1, z)) + D(G1,s−1(a1, . . . , as−1, z))

and our claim is proved.
The proof of the right-hand side of inequality (11) is based on Theorems 1 and 2.

In fact, using Theorem 2 we obtain

G1,s−1(c1 − F(a1), . . . , cs−1 − F(as−1), u − F(z)) + D(G1,m−1(a1, . . . , am))
� G1,s−1(c1−F(a1), . . . , cs−1−F(as−1), u−F(z))+G1,m−1(D(a1), . . . , D(am))
= G1,s−1(c1 − F(a1), . . . , cs−1−F(as−1), u−F(z))+G1,s−1(D(a1), . . . , D(z)).

Moreover, according to Theorem 1,

G1,s−1(c1 − F(a1), . . . , cs−1 − F(as−1), u − F(z)) + G1,s−1(D(a1), . . . , D(z))
� G1,s−1(c1−F(a1)+D(a1), . . . , cs−1−F(as−1)+D(as−1), u−F(z)+D(z))
= G1,s−1(c1 − E(a1), . . . , cs−1 − E(as−1), u − E(z)).

Now we easily obtain the right-hand side inequality (11) and the proof is complete. �

REMARK 5. When s = m (11) reads:

G1,m−1(c1, . . . , cm)) − F(G1,m−1(a1, . . . , am))
� G1,m−1(c1 − E(a1), . . . , cm − E(am)) − D(G1,m−1(a1, . . . , am))
� G1,m−1(c1 − F(a1), . . . , cm − F(am)),

(12)

which obviously is a sharpening of inequality (6).

4. Applications

The applications pointed out in 4.1 − 4.2 are known for ILF, but they are new in
this much more general setting. The applications in Sections 4.3 − 4.5 are essentially
new also for ILF.
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4.1. Hölder’s and Popoviciu’s type inequalities for ISFs

As a simple consequence of Theorems 2 and 3 we obtain a functional version of the
Hölder’s and Popoviciu’s inequality (see [6]). Namely, let pj , j = 1, 2, . . . , m , m � 2 ,
be positive numbers such that

∑m
j=1

1
pj

= 1 let the numbers qj , j = 1, 2, . . . , m − 1 ,
be as follows

1
q1

= 1 − 1
p1

,

1
qj

= 1 − q1q2 . . . qj−1

pj
, j = 2, . . . , m − 1.

It can easily be verified that q1, . . . , qm−1 are positive real numbers less then 1. Hence,
the functions f i(x) = x1/qi , i = 1, 2, . . . , m − 1 , are concave increasing functions
and if f i and ai satisfy the assumptions of Theorem 2, then inequality (5) holds for
r = 1, s = m − 1 and has the following form:

A

⎛
⎜⎝a1

⎛
⎝a2

a1

(
a3

a2
. . .

(
am

am−1

)1/qm−1
)1/q2

⎞
⎠

1/q1
⎞
⎟⎠

� A(a1)

⎛
⎝A(a2)

A(a1)

(
A(a3)
A(a2)

. . .

(
A(am)

A(am−1)

)1/qm−1
)1/q2

⎞
⎠

1/q1

,

which after some transformations becomes the following generalized form of Hölder’s
inequality:

A

(
m∏

i=1

a1/pi
i

)
�

m∏
i=1

A(ai)1/pi , (13)

where A is an ISF.
Moreover, choosing the same functions f i and assuming that A is an ISF, the

functions ai and the real numbers ci , i = 1, 2, . . .m , satisfy the assumptions of
Theorem 3, we obtain a functional version of Popoviciu’s inequality:

c1/p1

1 c1/p2

2 . . . c1/pm
m − A

(
a1/p1

1 a1/p2

2 . . . a1/pm
m

)
�

m∏
i=1

(ci − A(ai))
1/pi . (14)

4.2. Minkowski’s and Bellman’s type inequalities for ISFs

Let p > 1 be a real number and f be a real function defined by

f (x) = (1 + x1/p)p, x > 0.

The function f is concave and increasing and we consider the function G1,m−1 with
f 1 = . . . = f m−1 = f . Then

G1,m−1(x1, . . . , xm) = (x1/p
1 + . . . + x1/p

m )p.
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If A and ai , i = 1, . . . , m , satisfy the assumptions of Theorem 2, then we obtain the
following functional version of the Minkowski’s inequality:

A((a1/p
1 + . . . + a1/p

m )p) � (A(a1)1/p + . . . + A(am)1/p)p, (15)

where A is an ISF.
If A and ci, ai , i = 1, . . . , m , satisfy the assumptions of Theorem 3, then we

obtain the following functional version of the Bellman’s inequality:(
m∑

i=1

(ci − A(ai))1/p

)p

�
(

m∑
i=1

c1/p
i

)p

− A((
m∑

i=1

a1/p
i )p), (16)

where A is an ISF.

4.3. Power mean type inequalities for ISFs

Let wi , i = 1, . . . , m , be positive real numbers and
∑m

i=1 wi = 1 and let the
functions f i be

f i(x)=
(

1 +
wi+1

wi
xr

)1/r

, i = 2, . . . , m − 1,

f 1(x) = (w1 + w2x
r)1/r,

where r � 1 , r 	= 0 .
The functions f i , i = 1, 2, . . . , m − 1, are increasing and concave. The function

G1,m−1 for those special functions f i has the form

G1,m−1(x1, . . . , xm) = (w1x
r
1 + . . . + wmxr

m)1/r,

which is exactly the power mean of order r of a sequence x = (x1, . . . , xm) with
weights w = (w1, . . . , wm) . Usually, that power mean is denoted by M[r]

m (x; w) .
As a consequence of Theorems 2 and 3 we obtain the following inequalities:

A(M[r]
m (a1, . . . , am; w)) � M[r]

m (A(a1), . . . , A(am); w), (17)
and

M[r]
m (c1 − A(a1), . . . , cm − A(am); w)

� M[r]
m (c1, . . . , cm; w) − A(M[r]

m (a1, . . . , am; w)),
(18)

where A , ai, ci , i = 1, . . . , m , satisfy the assumptions of Theorem 2 and 3.

REMARK 6. If A = Ap as in Example 1, then the inequalities (17) and (18) have
the following forms:

Ap(M[r]
m (a1, . . . , am; w)) � M[r]

m (Ap(a1), . . . , Ap(am); w), (19)

respectively

M[r]
m (c1 − Ap(a1), . . . , cm − Ap(am); w)

� M[r]
m (c1, . . . , cm; w) − Ap(M[r]

m (a1, . . . , am; w)).
(20)

These inequalities are mixed-mean type inequalities. The inequality (19) can be found
in [10], while (20) is a new result.
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REMARK 7. If A is generated by a functional norm ||.|| as in Example 3 - Remark
3, then the inequalities (17) and (18) have the following forms:

||M[r]
m (a1, . . . , am; w)|| � M[r]

m (||a1||, . . . , ||am||; w), (21)

and
M[r]

m (c1 − ||a1||, . . . , cm − ||am||); w)

� M[r]
m (c1, . . . , cm; w) − ||M[r]

m (a1, . . . , am; w)||.
(22)

Both of these inequalities are new.

4.4. More refinements of Hölder’s, Minkowski’s, Bellman’s and reversed power
means inequalities for ISFs

If the functionals D, E, F and the functions ai , i = 1, . . . , m , satisfy the assump-
tions of Theorem 4, then for positive real numbers pi ,

∑m
i=1

1
pi

= 1, the following
sharpening of a functional version of Hölder’s inequality (13) holds:

m∏
i=1

F(ai)1/pi � D

(
m∏

i=1

a1/pi
i

)
+

m∏
i=1

E(ai)1/pi � F

(
m∏

i=1

a1/pi
i

)
.

Also, for p > 1 the following sharpening of a functional version of Minkowski’s
inequality (15) holds:(

m∑
i=1

F(ai)1/p

)p

� D

(
m∑

i=1

a1/p
i

)p

+

(
m∑

i=1

E(ai)1/p

)p

� F

(
m∑

i=1

a1/p
i

)p

.

Furthermore, if r < 1 , then the following sharpening of a functional version of
the power mean inequality (17) of order r with weights w = (w1, . . . , wm) holds:

M[r]
m (F(a); w) � D(M[r]

m (a; w)) + M[r]
m (E(a); w) � F(M[r]

m (a; w)),

where F(a) = (F(a1), . . . , F(am)) etc.
If the functionals D, E, F , the numbers ci , the functions ai , i = 1, . . . , m satisfy

the assumptions of Theorem 5, then for positive real numbers pi ,
∑m

i=1
1
pi

= 1 , the
following sharpening of a functional version of Popoviciu’s inequality (14) holds:

m∏
i=1

c1/pi
i − F

(
m∏

i=1

a1/pi
i

)
�

m∏
i=1

(ci − E(ai))1/pi − D

(
m∏

i=1

a1/pi
i

)

�
m∏

i=1

(ci − F(ai))1/pi .

Moreover, for p > 1 the following sharpening of a functional version of Bellman’s
inequality (16) holds:

(
m∑

i=1

c1/p
i )p − F

(
m∑

i=1

a1/p
i

)p

�
(

m∑
i=1

(ci − E(ai))1/p

)p

− D

(
m∑

i=1

a1/p
i

)p

�
(

m∑
i=1

(ci − F(ai))1/p

)p

.
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Finally, if r < 1 , then the following sharpening of a functional version of the
reversed inequality for power mean (18) of order r with weights w = (w1, . . . , wm)
holds:

M[r]
m (c; w) − F(M[r]

m (a; w)) � M[r]
m (c − E(a); w) − D(M[r]

m (a; w))

� M[r]
m (c − F(a); w),

where F(a) = (F(a1), . . . , F(am)) etc.

4.5. Some inequalities connected to Example 3

Let X be a Banach function space defined as in Example 3. Then the “convexified”
space Xp , p � 1 , is defined as the space of functions such that |f |p ∈ X equipped with
the norm

||f ||Xp := || |f |p ||1/p
X .

Our results in this paper give a number of both new and well-known inequalities for
such spaces. Here we just mention the following inequalities, which follow from our
Sections 4.1 − 4.2 and by the obvious substitutions:
Hölder’s inequality: If

∑m
i=1

1
pi

= 1 , pi > 0 , then

||
m∏

i=1

f i||X �
m∏

i=1

||f i||Xpi .

Minkowski’s inequality: If p � 1 , then

||
m∑

i=1

f i||Xp �
m∑

i=1

||f i||Xp .

Popoviciu’s inequality: If
∑m

i=1
1
pi

= 1 , pi > 0 and 0 < ||f i||Xpi < di , i = 1, . . . , m ,
then

m∏
i=1

di − ||
m∏

i=1

f i||X �
m∏

i=1

(
dpi

i − ||f i||pi
Xpi

)1/pi
.

Bellman’s inequality: If p > 1 and 0 < ||f i||Xp < di , i = 1, . . . , m , then(
m∑

i=1

(dp
i − ||f i||Xp)1/p

)p

�
(

m∑
i=1

di

)p

− ||
m∑

i=1

f i||pXp .

REMARK 8. The first two inequalities are well-known but the other two seem to
be new in this form.

4.6. Some inequalities connected to the Peetre K-functional

Let Ω = (Ω,Σ,μ) be a measure space and let f be a measurable function.
Consider the K-functional defined in our Example 4. Our results can be used to obtain
a number of completely new inequalities connected to this functional. We finish this
paper by just pointing out some easy examples of such inequalities.
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Let A0 and A1 be two function spaces on Ω and put K(t, f ) = K(t, f ; A0, A1) ,
t > 0 . According to (13) we obtain that

K(t,
m∏

i=1

f i) �
m∏

i=1

(K(t, f pi
i ))1/pi , (23)

where pi > 0 and
∑m

i=1
1
pi

= 1.

REMARK 9. It is well-known that

K(t, f ; L1, L∞) =
∫ t

0
f ∗(s)ds,

when f ∗ is the usual nonincreasing rearrangement of f (see e.g. [3]). For this case
(23) just reads ∫ t

0
(

m∏
i=1

f i)∗ds �
m∏

i=1

(
∫ t

0
(f ∗

i )pids)1/pi .

Of course, this inequality follows directly from Hölder’s inequality.
If we instead of (13) use (15) we obtain that(

K(t, (
m∑

i=1

f i)p)

)1/p

�
m∑

i=1

(K(t, f p
i ))1/p,

which just informs us that K(t, f ) , for each t > 0 , can be used as a norm on the space
A0 + A1 .

Moreover, the inequalities (14) and (16) imply that if
∑m

i=1
1
pi

= 1 , pi > 0 and
0 < K(t, |f i|pi) < di , i = 1, 2, . . . , m , then

m∏
i=1

di − K(t,
m∏

i=1

f i) �
m∏

i=1

(dpi
i − K(t, |f i|pi))1/pi

and if p > 1 and 0 < K(t, |f i|p) < di , i = 1, 2, . . . , m , then(
m∑

i=1

(dp
i − K(t, |f i|p))1/p

)p

�
(

m∑
i=1

di

)p

− K(t, |
m∑

i=1

f i|p).

REMARK 10. Analogous inequalities can be stated for the Peetre J-functional.
Since most of these inequalities are only known in special cases in interpolation theory
we strongly believe that our discovery can be useful in this area. We aim to return to
these questions in a forthcoming paper.
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