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1. Introduction

In order to introduce the notion of a decision function, let us consider one of
the possible examples. We assume a parliament whose members would like to make
fair decisions. All the members have their own opinions and they are looking for a
procedure that produces a final common decision from these opinions. A decision
function accomplishes this procedure.

Naturally we would like our decisions to be fair in a certain sense, so a decision
function has to possess some “good” properties. Namely,

(i) the final decision should not depend on the order of the opinions (symmetry);
(ii) if everybody has the same opinion, then the final decision should be equal to

this joint opinion (reflexivity);
(iii) if there are two groups in the parliament (say left wing and right wing), and

both groups have already made their decision, then the final common decision should
be between these two decisions (internality);

(iv) the opinion of one member should not influence much the final decision,
if “sufficiently many” members take part at the session, i.e., odd ball opinions are
neglected (regularity);

(v) and, finally, a decision function has to be able to work with arbitrarily many
opinions (for example, if due to an epidemy some of the members cannot take part at
the session of the parliament).

Now let us define decision functions precisely. (This definition and the subsequent
theorem are special (real) cases of the definition and theorem in [9].)

Let I be an open real interval throughout this paper. Further, let R+ denote
the set of all positive real numbers and Rn

0 the set {(r1, . . . , rn) ∈ Rn | r1, . . . , rn �
0, r1 + · · · + rn > 0} for n ∈ N .

DEFINITION 1.1 A function D:
⋃∞

i=1 Ii → I is called a decision function, if it is
(i) symmetric, i.e.,

D(x1, . . . , xn) = D(xp1 , . . . , xpn)
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holds for every n ∈ N, x1, . . . , xn ∈ I and for every permutation p: {1, . . . , n} →
{1, . . . , n} ;

(ii) reflexive, i.e.,
D( x, . . . , x︸ ︷︷ ︸

n−times

) = x

holds for every n ∈ N and x ∈ I ;
(iii) internal, i.e.,

min{D(x1, . . . , xn), D(xn+1, . . . , xn+m)} � D(x1, . . . , xn+m)
� max{D(x1, . . . , xn), D(xn+1, . . . , xn+m)}

holds for every n, m ∈ N and x1, . . . , xn+m ∈ I ;
(iv) regular, i.e.,

lim
k→∞

D(x0, x1, . . . , x1︸ ︷︷ ︸
k−times

, . . . , xn, . . . , xn︸ ︷︷ ︸
k−times

) = D(x1, . . . , xn)

holds for every n ∈ N and x0, x1, . . . , xn ∈ I .

EXAMPLE 1.1 . It is easy to see that the arithmetic mean is an example for a decision
function. Moreover, this function gives the idea how one can generate other decision
functions. Let d: I × I → R be defined by d(x, y) = (x − y)2 . We can obtain the
arithmetic mean via the well-known least squares method as follows:

x1 + · · · + xn

n
= argmin

y∈I

(
d(x1, y) + · · · + d(xn, y)

)
,

where argminx∈I f (x) denotes the (unique) point of minimum of the function f over
I . We can generalize this method to obtain further decision functions.

DEFINITION 1.2 . A function d: I× I → R is called a decision generating function,
if

(i) for every n ∈ N and x1, . . . , xn ∈ I the function

y �→ d(x1, y) + · · · + d(xn, y) (1.1)

is strongly convex (i.e., convex and there is no proper subinterval of I , where it is
constant);

(ii) for every x, y ∈ I it holds that

0 = d(x, x) � d(x, y).

Let δ(I) denote the set of all decision generating functions over I .
For every decision generating function d ∈ δ(I) we can define a function Dd with

the help of a generalized least squares method as follows:

Dd(x1, . . . , xn) = argmin
y∈I

(
d(x1, y) + · · · + d(xn, y)

)
, (n ∈ N, x1, . . . , xn ∈ I).

(This definition is correct because of the strong convexity of the function in (1.1).)
The connection between the functions of form Dd and the decision functions is

described by the following result due to Páles [9].
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THEOREM 1.1. Let d ∈ δ(I) be a decision generating function. Then the function
Dd generated by d is a decision function.

Conversely, if D:
⋃∞

i=1 Ii → I is a decision function, then there exists a decision
generating function d ∈ δ(I) such that D = Dd .

EXAMPLE 1.2 . Power means (or Hölder means, see [6], [5], [1], [7], [2] for the
definition) are also decision functions. To see this, for p ∈ R , define dp: R+×R+ → R

by

dp(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pxp+1 − (p + 1)xpy + yp+1

p(p + 1)
, if p(p + 1) �= 0,

y(ln y − ln x) + x − y, if p = 0,

ln x − ln y +
y
x
− 1, if p + 1 = 0.

Then it holds that dp(x, x) = 0 , ∂2dp(x, x) = 0 and ∂2∂2dp(x, y) = yp−1 > 0 .
Therefore the function y �→ dp(x, y) is strictly convex (and thus the mapping y �→
dp(x1, y) + · · · + dp(xn, y) as well) and 0 = dp(x, x) � dp(x, y) for x, y > 0 . Thus dp

is a decision generating function.
For fixed x1, . . . , xn > 0 , the function

y �→ dp(x1, y) + · · · + dp(xn, y)

is minimal at y = y0 if and only if

∂2dp(x1, y0) + · · · + ∂2dp(xn, y0) = 0,

i.e., if

0 =
n∑

i=1

1
p
(yp

0 − xp
i ), if p �= 0,

0 =
n∑

i=1

(ln y0 − ln xi), if p = 0.

This yields

y0 =

⎧⎨
⎩

(xp
1 + · · · + xp

n

n

) 1
p
, if p �= 0,

n
√

x1 · · · xn, if p = 0,

i.e., in view of Theorem 1.1, the decision function generated by dp is the pth power
mean.

EXAMPLE 1.3 . Let ϕ: I → R be a continuous and strictly monotone increasing
function. Define dϕ : I × I → R by

dϕ(x, y) = (x − y)ϕ(x) +
∫ y

x
ϕ(t)dt.

One can see, as above, that dϕ is a decision generating function and it generates

the decision function Ddϕ (x1, . . . , xn) = ϕ−1
(ϕ(x1) + · · · + ϕ(xn)

n

)
. Thus, quasi-

arithmetic means (see [5], [1], [7], [2]) turn out to be decision functions, too.



32 BORBÁLA FAZEKAS

EXAMPLE 1.4 . The Gini mean Gp,q (cf. [4]) of the positive real numbers x1, . . . , xn

is defined by

Gp,q(x1, . . . , xn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
xp
1 + · · · + xp

n

xq
1 + · · · + xq

n

) 1
p−q

, if p �= q,

exp

(
xp
1 ln x1 + · · · + xp

n ln xn

xp
1 + · · · + xp

n

)
, if p = q,

where p, q ∈ R are fixed parameters. One can easily verify, by adapting the above
arguments, that it is also a decision function generated by (e.g.) the decision generating
function

dp,q(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(p − q)xp+1 − (p − q + 1)xpy + xqyp−q+1

(p − q)(p − q + 1)
, if (p−q)(p−q+1) �= 0,

yxp(ln y − ln x) + xp(x − y), if p − q = 0,

xp+1(ln x − ln y) + xp(y − x), if p − q + 1 = 0.

Observe that, if q = 0 then dp,q and Gp,q reduce to dp and to the pth power mean,
respectively.

EXAMPLE 1.5 . Without going into the details, we mention that deviation means
(cf. [3]) and also quasi-deviation means (cf. [8], [10]) are decision functions as well.

EXAMPLE 1.6 . Not every “mean” is a decision function. The empirical median
(defined for x1 � · · · � xn as x n+1

2
, if n is odd and as 1

2

(
x n

2
+ x n

2 +1

)
, if n is even) is

not regular (check e.g. the case, when n = 2 and x0 = 1 , x1 = 2 , x2 = 3 ). Though
one can define the empirical median as a setvalued function, namely, for x1 � · · · � xn

as x n+1
2

, if n is odd and as the closed interval [x n
2
, x n

2 +1] , if n is even. This function
is not a decision function in the above sense. One could however obtain this function
also via a similar generalized least squares method as above by taking the function
d(x, y) = |x − y| . Now the mapping y �→ d(x1, y) + · · · + d(xn, y) is not necessarily
strongly convex and thus the set of all points of minimum is an interval, (see also Lemma
2.1), which is just the (set-valued) median of x1, . . . , xn . We will discuss this example
further in Section 3.

Our aim is to characterize the properties of decision functions in terms of the
properties of their decision generating functions. In the sequel, we intend to investigate
their continuity and monotonicity properties.

2. Convex functions

In this section we give an overview of some properties of convex functions that
we need later. The following known Lemma characterizes the points of minimum of a
convex function (see, e.g. [11]).

LEMMA 2.1. Let f : I → R be a convex, non-monotone function. Then the set of
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all points of minimum of f is an [s, t] compact interval. Furthermore, it holds that

f ′
−(x) < 0 and f ′

+(x) < 0 , if x < s,

f ′
−(x) � 0 and f ′

+(x) � 0 , if s � x � t,

f ′
−(x) > 0 and f ′

+(x) > 0 , if x > t,

where f ′
+ and f ′

− denote the left and right derivatives of f , respectively.

DEFINITION 2.1 . We call the above interval [s, t] minimality interval, i.e., the set
of all points of minimum of a convex function f and denote it by minint f or by
minintx∈I f (x) .

LEMMA 2.2. Let fm : I → R be a sequence of non-monotone convex functions
and let f : I → R be a non-monotone function such that limm→∞ f m(x) = f (x) for
every x ∈ I . Then f is convex. Furthermore, it holds that

lim
m→∞minint f m ⊆ minint f . (2.1)

Proof. The convexity of f is trivial. To verify equation (2.1), let ε0 > 0 be
arbitrary and we show that there exists a δ0 > 0 such that

minint f m ⊆ minint f + [−ε0, ε0] (2.2)

holds for every m > δ0 . Denote [s, t] = minint f and ε = min{f (s − ε0) − f (s) ,
f (t + ε0) − f (t)} . Because of the pointwise convergence of the sequence f m , there
exists a δ0 such that

| f m(s − ε0) − f (s − ε0) |< ε
2
, | f m(s) − f (s) |< ε

2
,

| f m(t + ε0) − f (t + ε0) |< ε
2
, | f m(t) − f (t) |< ε

2

hold for every m > δ0 . Thus

f m(s − ε0) − f m(s) > f (s − ε0) − f (s) − ε � ε − ε = 0.

Analogously,
f m(t + ε0) − f m(t) > 0.

From the convexity of f m follows equation (2.2) for every m > δ0 . Thus (2.1) really
holds.

COROLLARY 2.3. Let fm: I → R be a sequence of non-monotone strongly convex
functions and let f : I → R be a non-monotone strongly convex function such that
limm→∞ f m(x) = f (x) for every x ∈ I . Then it holds that

lim
m→∞ argmin f m = argmin f .

Let us introduce the following relation on P(I) : let J1 � J2 for J1, J2 ⊆ I , if
sup J1 � inf J2 . The relation 	 can be defined analogously. If, for example, J1 = {x} ,
we will shortly write x � J2 .
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LEMMA 2.4. Let f 1, f 2: I → R be non-monotone convex functions such that

minint f 1 � minint f 2.

Then it holds that

minint f 1 � minint(α · f 1 + β · f 2) � minint f 2

for every α, β ∈ R+ .

Proof. From the convexity it follows that β · f 2 decreases strictly on the interval
]inf I, min(minint f 2)[ , while α · f 1 decreases on the interval ]inf I, max(minint f 1)[ and
thus α · f 1+β · f 2 decreases strictly on the interval ]inf I, max(minint f 1)[ . Analogously
α ·f 1+β ·f 2 increases strictly on the interval ]min(minint f 2), sup I[ . From the convexity
of α · f 1 + β · f 2 follows the statement of our Lemma.

3. Weighted decision functions

In this section we introduce the notion of a weighted decision function and describe
its basic properties. Denote

D̃d

(
x1 , . . . , xn

m1 , . . . , mn

)
= Dd

(
x1, . . . , x1︸ ︷︷ ︸

m1

, . . . , xn, . . . , xn︸ ︷︷ ︸
mn

)

for m1, . . . , mn ∈ N and for a decision generating function d ∈ δ(I) . Multiplying a
convex function by a positive number, the points of minimum remain unchanged, so it
is trivially true that

argmin
y∈I

(m1 ·d(x1, y)+ · · ·+mn ·d(xn, y))= argmin
y∈I

(m1

k
·d(x1, y)+ · · ·+ mn

k
·d(xn, y)

)
for m1, . . . , mn, k ∈ N . This validates the definition of the weighted decision function
D̃d for nonnegative rational weights as follows:

D̃d

(
x1 , . . . , xn
m1
k , . . . , mn

k

)
= D̃d

(
x1 , . . . , xn

m1 , . . . , mn

)
.

To extend the weighted decision function also for irrational weights, it could be
difficult to use the above approach. Instead, let us consider the function defined by

y �→ r1 · d(x1, y) + · · · + rn · d(xn, y)

(for fixed n ∈ N, x1, . . . , xn ∈ I and (r1, . . . , rn) ∈ Rn
0 ). This function is convex,

but not necessarily strongly convex. So it does not necessarily have a unique point of
minimum, but it always has a minimality interval. This minimality interval seems to
be a natural candidate for the value of the weighted decision function D̃d at the point
(x1, . . . , xn, r1, . . . , rn) . So we define the weighted decision function D̃d as a set-valued
function as follows:
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DEFINITION 3.1 . Let d ∈ δ(I) be a decision generating function. Then the
function

D̃d:
∞⋃
i=1

Ii × Ri
0 → P(I),

defined by

D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)
= minint

y∈I
(r1 · d(x1, y) + · · · + rn · d(xn, y))

for every n ∈ N , x1, . . . , xn ∈ I and (r1, . . . , rn) ∈ Rn
0 is called a weighted decision

function.
(For rational weights this definition naturally coincides with the concept of the

weighted decision function introduced above for rational weights.)
According to Lemma 2.1, for every x1, . . . , xn ∈ I and (r1, . . . , rn) ∈ Rn

0 the
minimality interval of the function y �→ r1 · d(x1, y) + · · · + rn · d(xn, y) can be
described as follows. The solutions y of the system of inequalities

r1 · d−(x1, y) + · · · + rn · d−(xn, y) � 0

r1 · d+(x1, y) + · · · + rn · d+(xn, y) � 0

form an interval [s, t] such that

[s, t] = D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)
.

Here d+ denotes the right derivative, while d− denotes the left derivative of d in its
second variable.

EXMPLE 3.2 . Let H be a positive Hamel basis of R over Q and let further be
given an injective function q: I → H . Then the function dmed: I× I → R , dmed(x, y) =
q(x)|x − y| is a decision generating function. The positivity and convexity properties
are obvious. For the strong convexity it suffices d−

med(x1, y) + · · · + d−
med(xn, y) �= 0 to

hold for every x1, . . . , xn, y ∈ I , i.e., ε1q(x1) + · · · + εnq(xn) �= 0 , where εi = 1 , if
y > xi and εi = −1 , if y � xi . This condition is indeed satisfied in case of a Hamel
basis.

With the weighted decision function D̃dmed generated by dmed one obtains at the
point (x1, . . . , xn,

1
q(x1)

, . . . , 1
q(xn)

) the (set-valued) median of x1, . . . , xn . So we gain
the (set-valued) median as a weighted decision function with suitable weights.

The following Lemmata describe the properties of the weighted decision function.
The first Lemma can be easily verified.

LEMMA 3.1. Let d ∈ δ(I) be a decision generating function. Then the weighted
decision function D̃d generated by d is a mean according to the relation � , i.e., for
every n ∈ N , x1 . . . , xn ∈ I , (r1, . . . , rn) ∈ Rn

0 it holds that

min{x1, . . . , xn} � D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)
� max{x1, . . . , xn}.

The second Lemma describes a kind of monotonicity property of the weighted
decision function.
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LEMMA 3.2. Let d ∈ δ(I) be a decision generating function. Moreover, let
x1, . . . , xn ∈ I , (s1, . . . , sn) , (r1, . . . , rn) ∈ Rn

0 be fixed such that

D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)
� D̃d

(
x1 , . . . , xn

s1 , . . . , sn

)
.

Then the mapping [0, 1] → P(I) defined by

t �→ D̃d

(
x1 , . . . , xn

t · r1 + (1 − t) · s1 , . . . , t · rn + (1 − t) · sn

)
is decreasing according to the relation � , i.e., if 0 � t1 < t2 � 1 , then

D̃d

(
x1 , . . . , xn

t2 · r1 + (1 − t2) · s1 , . . . , t2 · rn + (1 − t2) · sn

)

� D̃d

(
x1 , . . . , xn

t1 · r1 + (1 − t1) · s1 , . . . , t1 · rn + (1 − t1) · sn

)
.

Proof. Let 0 < t1 < t2 < 1 . According to Lemma 2.4,

D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)
= minint

y∈I
(r1 · d(x1, y) + · · · + rn · d(xn, y))

� minint
y∈I

(
t1·

(
r1·d(x1, y)+ · · ·+rn·d(xn, y)

)
+(1−t1)

(
s1·d(x1, y)+ · · ·+sn·d(xn, y)

))
� minint

y∈I

(
s1 · d(x1, y) + · · · + sn · d(xn, y)

)
= D̃d

(
x1 , . . . , xn

s1 , . . . , sn

)
.

Thus we can apply Lemma 2.4 again for

f 1(y) = r1 · d(x1, y) + · · · + rn · d(xn, y)

and

f 2(y) = (t1 · r1 + (1 − t1) · s1) · d(x1, y) + · · · + (t1 · rn + (1 − t1) · sn) · d(xn, y).

The statement of the Lemma follows immediately by choosing α = t2−t1
1−t1

and

β = 1−t2
1−t1

.
In the case, when t1 = 0 or t2 = 1 , the assertion can be obtained analogously.

COROLLARY 3.3. Let d ∈ δ(I) be a decision generating function. For every fixed
x1, x2 ∈ I with x1 < x2 the mapping [0, 1] → P

(
[x1, x2]

)
defined by

t �→ D̃d

(
x1 , x2

t , 1 − t

)
is decreasing according to the relation � .

Proof. The statement follows from Lemma 3.2 with n = 2 , (r1, r2) = (1, 0) and
(s1, s2) = (0, 1) .

The following Lemma describes a continuity property of the weighted decision
function.
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THEOREM 3.4. Let d ∈ δ(I) be a decision generating function. The mapping
defined by

(r1, . . . , rn) �→ D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)
is upper semi-continuous for every fixed x1, . . . , xn ∈ I .

Proof. Let (x1, . . . , xn) ∈ In and (r1, . . . , rn) ∈ Rn
0 be arbitrary fixed and let

(rm
1 , . . . , rm

n ) be a sequence in Rn
0 with limm→∞(rm

1 , . . . , rm
n ) = (r1, . . . , rn) . The

upper semi-continuity at the point (r1, . . . , rn) follows from Lemma 2.2 by choosing

f m(y) = rm
1 · d(x1, y) + · · · + rm

n · d(xn, y)

and
f (y) = r1 · d(x1, y) + · · · + rn · d(xn, y).

For the weighted decision function we can verify properties analogous to those of
the decision function in Definition 1.1.

THEOREM 3.5. Let d ∈ δ(I) be a decision generating function. Then it holds that
(i) D̃d is symmetric, i.e.,

D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)
= D̃d

(
xp1 , . . . , xpn

rp1 , . . . , rpn

)

holds for every n ∈ N , x1, . . . , xn ∈ I , (r1, . . . , rn) ∈ Rn
0 and for every permutation

p: {1, . . . , n} → {1, . . . , n} ;
(ii) reflexive, i.e.,

D̃d

(
x , . . . , x
r1 , . . . , rn

)
= x

holds for every n ∈ N , x ∈ I and (r1, . . . , rn) ∈ Rn
0 ;

(iii) internal, i.e., if

D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)
� D̃d

(
xn+1 , . . . , xn+m

rn+1 , . . . , rn+m

)
,

then

D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)
� D̃d

(
x1 , . . . , xn+m

r1 , . . . , rn+m

)
� D̃d

(
xn+1 , . . . , xn+m

rn+1 , . . . , rn+m

)

holds for every n, m ∈ N , x1, . . . , xn+m ∈ I , (r1, . . . , rn) ∈ Rn
0 and (rn+1, . . . , rn+m) ∈

Rm
0 ;

(iv) regular, i.e.,

lim
k→∞

D̃d

(
x0 , x1 , . . . , xn

r0 , k · r1 , . . . , k · rn

)
⊆ D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)

holds for every n ∈ N , x0, x1, . . . , xn ∈ I , r0 ∈ R+ and (r1, . . . , rn) ∈ Rn
0 .
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Proof. The symmetry and reflexivity properties are trivial.
The internality property follows from Lemma 2.4 by choosing

f 1(y) = r1 · d(x1, y) + · · · + rn · d(xn, y),
f 2(y) = rn+1 · d(xn+1, y) + · · · + rn+m · d(xn+m, y),

and α = β = 1 .
At last we show the regularity property. It holds that

D̃d

(
x0 , x1 , . . . , xn

r0 , k · r1 , . . . , k · rn

)
= D̃d

(
x0 , x1 , . . . , xn
r0
k , r1 , . . . , rn

)
.

According to Theorem 3.4, the weighted decision function is upper semi-continuous in
the weights. Since ( r0

k , r1, . . . , rn) → (0, r1, . . . , rn) as k → ∞ , it holds that

lim
k→∞

D̃d

(
x0 , x1 , . . . , xn
r0
k , r1 , . . . , rn

)
⊆ D̃d

(
x0 , x1 , . . . , xn

0 , r1 , . . . , rn

)
,

i.e.,

lim
k→∞

D̃d

(
x0 , x1 , . . . , xn
r0
k , r1 , . . . , rn

)
⊆ D̃d

(
x1 , . . . , xn

r1 , . . . , rn

)
.

That is what we wanted to prove.

4. Continuity properties of decision functions

We give a sufficient condition for the continuity of the decision function, which
is at the same time a sufficient condition for the upper semi-continuity of the weighted
decision function.

THEOREM 4.1. Let d ∈ δ(I) be a decision generating function, Dd the decision
function, D̃d the weighted decision function generated by d . Let us assume that for
every fixed y ∈ I the mapping x �→ d(x, y) is continuous. Then the following statements
hold:

(i) Dd is continuous, (i.e., the mapping (x1, . . . , xn) �→ Dd(x1, . . . , xn) is contin-
uous for every n ∈ N );

(ii) D̃d is upper semi-continuous, (i.e., the mapping (x1, . . . , xn, r1, . . . , rn) �→
D̃d

( x1 , . . . , xn

r1 , . . . , rn

)
is upper semi-continuous for every n ∈ N ).

Proof. Let (x1, . . . , xn) ∈ In and (r1, . . . , rn) ∈ Rn
0 be arbitrary fixed. Let further

(xm
1 , . . . , xm

n ) ∈ In and (rm
1 , . . . , rm

n ) ∈ Rn
0 be sequences such that (xm

1 , . . . , xm
n ) →

(x1, . . . , xn) and (rm
1 , . . . , rm

n ) → (r1, . . . , rn) as m → ∞ . Then (i) follows from
Corollary 2.3 by choosing

f m(y) = d(xm
1 , y) + · · · + d(xm

n , y)

and
f (y) = d(x1, y) + · · · + d(xn, y).
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(ii) follows from Lemma 2.2 by choosing

f m(y) = rm
1 · d(xm

1 , y) + · · · + rm
n · d(xm

n , y)

and
f (y) = r1 · d(x1, y) + · · · + rn · d(xn, y).

EXAMPLE 4.1 . It is obvious that all the decision functions mentioned in Section
1. are continuous. This also follows immediately from Theorem 4.1. It should be
mentioned that the condition of the theorem is sufficient but, in general, not necessary
for the upper semi-continuity of the weighted decision function. The set-valued median
is upper semi-continuous, while dmed of Example 3.2 is not continuous in x .

5. Monotonicity of decision functions

In this section we give a necessary and sufficient condition for the monotonicity of
the decision function which is at the same time a necessary and sufficient condition for
the monotonicity of the weighted decision function.

DEFINITION 5.1 . A function D:∪∞
i=1I

i → I is called monotone (increasing), if

D(x1, . . . , xi, . . . , xn) � D(x1, . . . , x̃i, . . . , xn)

holds for every n, i ∈ N , i � n , and x1, . . . , xn, x̃i ∈ I with xi � x̃i .
(A decision function can never be monotone decreasing because of the reflexivity

property described in Definition 1.1 .)
Our main result is the following:

THEOREM 5.1. Let d ∈ δ(I) be a decision generating function. The following
statements are equivalent:

(i)
d(x1, y1) + d(x2, y2) � d(x1, y2) + d(x2, y1) (5.1)

holds for every x1, x2, y1, y2 ∈ I with x1 � x2, y1 � y2 ;
(ii) Dd is monotone;
(iii)

min D̃d

(
x1 , . . . , xi , . . . , xn

r1 , . . . , ri , . . . , rn

)
� min D̃d

(
x1 , . . . , x̃i , . . . , xn

r1 , . . . , ri , . . . , rn

)
,

max D̃d

(
x1 , . . . , xi , . . . , xn

r1 , . . . , ri , . . . , rn

)
� max D̃d

(
x1 , . . . , x̃i , . . . , xn

r1 , . . . , ri , . . . , rn

)
hold for every n, i ∈ N , i � n , (r1, . . . , rn) ∈ Rn

0 and x1, . . . , xn, x̃i ∈ I with xi � x̃i .

REMARK 5.1 . If the partial derivative ∂2d(x, y) exists for all x, y ∈ I , then (5.1)
is equivalent to that the mapping x �→ ∂2d(x, y) is monotone decreasing for all y ∈ I .
If, furthermore, the partial derivative ∂1∂2d(x, y) exists for all x, y ∈ I , then (5.1) is
equivalent to the inequality ∂1∂2d(x, y) � 0 for all x, y ∈ I .
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To prove this Theorem, we will need the following Lemma that describes the
connection between the monotonicity of the decision function and the monotonicity of
the weighted decision function of two variables.

LEMMA 5.2. Let d ∈ δ(I) be a decision generating function and let us assume that
the decision function Dd generated by d is monotone. Let r ∈ [0, 1] and x1, x̃1, x2 ∈ I
with x1 � x̃1 . Then it holds that

min D̃d

(
x1 , x2

r , 1 − r

)
� min D̃d

(
x̃1 , x2

r , 1 − r

)
,

max D̃d

(
x1 , x2

r , 1 − r

)
� max D̃d

(
x̃1 , x2

r , 1 − r

)
.

Proof. Let r = n
m ∈ Q , (n ∈ N0 , m ∈ N , m � n) . Since Dd is monotone, it

holds that

D̃d

(
x1 , x2
n
m , 1 − n

m

)
= D̃d

(
x1 , x2

n , m − n

)
= Dd( x1, . . . , x1︸ ︷︷ ︸

n−times

, x2, . . . , x2︸ ︷︷ ︸
(m−n)−times

)

� Dd( x̃1, . . . , x̃1︸ ︷︷ ︸
n−times

, x2, . . . , x2︸ ︷︷ ︸
(m−n)−times

) = D̃d

(
x̃1 , x2

n , m − n

)
= D̃d

(
x̃1 , x2
n
m , 1 − n

m

)
.

Thus, in the rational case, we see the statement of the Lemma.
Now let r ∈ [0, 1] be arbitrary and (qn) ∈ Q ∩ [0, 1] be a sequence with qn ↑ r .

Then we have proved that

D̃d

(
x1 , x2

qn , 1 − qn

)
� D̃d

(
x̃1 , x2

qn , 1 − qn

)
. (5.2)

On the other hand, the mapping

r �→ D̃d

(
x1 , x2

r , 1 − r

)
is upper semi-continuous and monotone decreasing, thus it follows that

D̃d

(
x1 , x2

qn , 1 − qn

)
n→∞
−→max D̃d

(
x1 , x2

r , 1 − r

)
monotone decreasingly. Analogously,

D̃d

(
x̃1 , x2

qn , 1 − qn

)
n→∞
−→max D̃d

(
x̃1 , x2

r , 1 − r

)

also monotone decreasingly. Therefore, because of (5.2), it holds that

max D̃d

(
x1 , x2

r , 1 − r

)
� max D̃d

(
x̃1 , x2

r , 1 − r

)
.

The other inequality of the Lemma can be proved similarly.

Now we are ready to prove Theorem 5.1.
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Proof of Theorem 5.1 . In what follows, we will show the implications (ii) =⇒
(i) and (i) =⇒ (iii) only, because (iii) =⇒ (ii) is trivial.

1. To prove the implication (ii) =⇒ (i) , let Dd be monotone increasing. Let
further x1, x2, y1, y2 ∈ I such that x1 < x2, y1 < y2 . (If x1 = x2 or y1 = y2 , then
(5.1) is trivially true.) (5.1) is equivalent to the inequality

d(x1, y1) − d(x2, y1) � d(x1, y2) − d(x2, y2),

i.e., the mapping y �→ d(x1, y) − d(x2, y) is monotone increasing for every x1 < x2 .
To justify this monotonicity it is enough to prove that the left derivative of the above
mapping is nonnegative everywhere. (Indeed, from the convexity of d in its second
variable follows its local Lipschitz property and thus its absolute continuity on compact
subintervals of I . Therefore, one can apply Newton-Leibniz Theorem to get

0 �
∫ y2

y1

d−(x1, t) − d−(x2, t)dt = d(x1, y2) − d(x2, y2) − d(x1, y1) + d(x2, y1),

which is the desired property (i) .) Thus it suffices to show the inequality

d−(x1, y) � d−(x2, y) (5.3)

for every y ∈ I . If y ∈ [x1, x2] , then d−(x1, y) � 0 and 0 � d−(x2, y) , so in this case
inequality (5.3) holds trivially. Let now y ∈ ]inf I, x1[ . The case when y ∈ ]x2, sup I[
can be treated analogously.

Let x0 ∈ I be fixed such that x0 < y . We are looking for weights r1, r2 ∈ [0, 1]
such that

y ∈ D̃d

(
x0 , x1

r1 , 1 − r1

)⋂
D̃d

(
x0 , x2

r2 , 1 − r2

)
. (5.4)

For this purpose, determine the numbers r1, r2 ∈ R by

ri · d−(x0, y) + (1 − ri) · d−(xi, y) = 0, (5.5)

i.e., let

ri =
d−(xi, y)

d−(xi, y) − d−(x0, y)
, (i = 1, 2).

Since d−(xi, y) < 0 and d−(x0, y) > 0 , it holds that ri ∈ ]0, 1[ , (i = 1, 2) .
Because of the definition of r1 and r2 , (5.4) holds indeed. We show that r1 � r2 .

On the contrary, assume that r2 < r1 . According to Lemma 5.2, Corollary 3.3, and
(5.4),

y � max D̃d

(
x0 , x1

r1 , 1 − r1

)

� max D̃d

(
x0 , x2

r1 , 1 − r1

)
� min D̃d

(
x0 , x2

r2 , 1 − r2

)
� y.

Thus

y = max D̃d

(
x0 , x2

r1 , 1 − r1

)
.
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Therefore
r1 · d−(x0, y) + (1 − r1) · d−(x2, y) � 0. (5.6)

In view of r2 < r1 , we have that

0 < r2 · d−(x0, y) < r1 · d−(x0, y)

and
(1 − r2) · d−(x2, y) < (1 − r1) · d−(x2, y) < 0.

Then, according to (5.5),

0 = r2 · d−(x0, y) + (1 − r2) · d−(x2, y) < r1 · d−(x0, y) + (1 − r1) · d−(x2, y).

This contradicts (5.6), which validates r1 � r2 .
Now expressing d−(x1, y) and d−(x2, y) from (5.5), and using that

r2

r2 − 1
� r1

r1 − 1
,

we get

d−(x2, y) =
r2

r2 − 1
· d−(x0, y) � r1

r1 − 1
· d−(x0, y) = d−(x1, y),

which is the inequality we wanted to get.
2. Now we prove that (iii) follows from (i) . We show the first inequality, the

second can be verified analogously. Because of the symmetry of the function D̃d , it is
enough to prove monotonicity in the first variable. On the contrary, assume that there
are n ∈ N , x1, . . . , xn, x̃1 ∈ I and (r1, . . . , rn) ∈ Rn

0 with x1 < x̃1 such that

y = min D̃d

(
x1, x2 , . . . , xn

r1, r2 , . . . , rn

)
> min D̃d

(
x̃1, x2 , . . . , xn

r1, r2 , . . . , rn

)
= ỹ.

Then, using that our points y and ỹ are the smallest points of minimum, we get

r1 ·d(x1, y)+r2 ·d(x2, y)+· · ·+rn ·d(xn, y) < r1 ·d(x1, ỹ)+r2 ·d(x2, ỹ)+· · ·+rn ·d(xn, ỹ),

r1 ·d(x̃1, ỹ)+r2 ·d(x2, ỹ)+· · ·+rn ·d(xn, ỹ) � r1 ·d(x̃1, y)+r2 ·d(x2, y)+· · ·+rn ·d(xn, y).

Summing the above inequalities, we arrive at

d(x1, y) + d(x̃1, ỹ) < d(x1, ỹ) + d(x̃1, y).

As we have ỹ < y and x1 < x̃1 , the above inequality contradicts (5.1). Therefore D̃d

is monotone.
Thus the proof is complete.

EXAMPLE 5.1 . Applying Theorem 5.1 and Remark 5.1 we can now easily inves-
tigate the monotonicity property of the decision functions of the foregoing examples.
In case of quasi-arithmetic means it holds that ∂2dϕ(x, y) = ϕ(y) − ϕ(x) for x, y ∈ I .
Due to the monotone increasingness of ϕ , ∂2dϕ is decreasing in x , therefore quasi-
arithmetic means (and thus also power means) are always monotone decision functions.
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To investigate the monotonicity of the Gini mean Gp,q , observe that

∂1∂2dp,q(x, y) =

⎧⎨
⎩

1
p − q

(−pxp−1 + qxq−1yp−q), if p − q �= 0,

xp−1(p ln y − p ln x − 1), if p − q = 0

is nonpositive for every x, y > 0 if and only if q � 0 � p or p � 0 � q . Thus the
Gini mean Gp,q is monotone exactly when (p, q) belongs to one of these quadrants.

Acknowledgment. The author is indebted to Prof. Zs. Páles for the several valuable
discussions during the preparation of this work.
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