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AN ADDENDUM OF AN EQUIVALENCE THEOREM

L. LEINDLER

(communicated by S. Owa)

Abstract. In a previous paper we showed that the two conditions which guarantee that a factor
sequence should be a Weyl multiplier for a certain property of a given orthogonal series is
equivalent to only one assumption. In the present paper it is verified that the additional condition
prescribed on the Weyl multipliers is also necessary to the equivalence.

1. Introduction

There are several theorems declaring that if a monotone increasing sequence {ωn}
of positive numbers satisfying a certain condition and

∞∑
n=1

a2
n ωn < ∞, (1.1)

then for a decided orthonormal system {ψn(x)} the series

∞∑
n=1

an ψn(x)

has an appropriate property. Then the sequence {ωn} is called Weyl multiplier for the
given property and the considered orthonormal system {ψn}.

For example a sequence {ωn} is a Weyl multiplier for unconditional convergence
for the Haar system if and only if

∞∑
n=1

1
nωn

< ∞, (1.2)

see P. L. Ul’janov [9, Ch. 9]. Similar best possible type results for the Walsh system are
due to K. Tandori [8] and S. Nakata [4], [5].

For general orthonormal systems {ϕn(x)} we recall a classical theorem of W.
Orlicz [6].
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If {νn} is an increasing sequence of indices with log νn+1 = O(log νn) and there
exists a positive monotone increasing function λ (x) such that

∞∑
n=1

1
λ (νn)

< ∞, (1.3)

then the condition ∞∑
n=1

a2
n λ (n) log2 n < ∞ (1.4)

implies the convergence almost everywhere of any orthogonal series

∞∑
n=1

an ϕn(x) (1.5)

with every arrangement of its terms.
In brief, the factors ωn := λ (n) log2 n are Weyl multipliers for unconditional

convergence for the orthogonal series (1.5).
K. Tandori [7] developed this result verifying that if

∞∑
k=0

⎧⎨
⎩

νk+1∑
n=νk+1

a2
n log2 n

⎫⎬
⎭

1/2

< ∞, (1.6)

then the series (1.5) is unconditionally convergent; and if |an| � |an+1| then (1.6) is
not only sufficient but it is necessary as well.

In [1] we showed that the conditions (1.6) and

∞∑
n=1

1
n

{ ∞∑
k=n+1

a2
k

}1/2

< ∞ (1.7)

are equivalent.
It was natural to ask: What is the relation between (1.7) and the Orlicz’s conditions?
In the same paper we verified that the conditions

∞∑
n=0

22n/ρ22n < ∞ (1.8)

and ∞∑
n=0

a2
n ρn < ∞ (1.9)

with an increasing sequence {ρn} are already equivalent to our simple condition (1.7)
and thus to (1.6), too.

It is easy to see that the conditions (1.8) and (1.9) claim only a little bit less than
(1.3) and (1.4) do, but they equivalent to (1.7), consequently to (1.6), and therefore if
{|an|} is monotonic, then they are best possible.
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The equivalence of (1.7) and the pair of (1.8) and (1.9) was the initiation of proving
a very general equivalence result [2, Hilfssatz] whose special case is the following
theorem.

THEOREM 1. Let {λn} be a monotone sequence of positive numbers and denote

Λn :=
n∑

k=1
λ−1

k . Then
∞∑

n=1

1
λn

{ ∞∑
k=n

a2
k

}1/2

< ∞ (1.10)

holds if and only if there exists a nondecreasing sequence {μn} of positive numbers
with the properties

∞∑
n=1

Λn

λn μn
< ∞ (1.11)

and ∞∑
n=1

a2
n μn < ∞. (1.12)

This theorem delivers several corollaries giving the compact equivalence form with
one condition instead of the two conditions of Weyl multipliers type, and conversely.
E.g. instead of the conditions (1.1) and (1.2) it is sufficient to claim that

∞∑
n=2

1
n(log n)1/2

{ ∞∑
k=n

a2
k

}1/2

< ∞. (1.13)

The other benefit of the condition (1.13) is that the factor n(log n)1/2 is well-
determined, but in (1.1) and (1.2) the factor ωn(= μn) is not, and thus clearly there is
no exact Weyl multiplier for the Haar system.

It is easy to verify that if (1.10) holds then with

μn := Λn A−1
n , where An :=

{ ∞∑
k=n

a2
k

}1/2

(1.11) and (1.12) maintain. Hence it is clear that then the sequence {Λn/μn} is
nonincreasing. This gives a certain explanation for the fact that such a type, but
somewhat weaker assumption will appear in our new theorem, too.

One more remark before ending our introductory words.
It is clear that if εn → 0 then with μ∗

n := μn εn in place of μn the condition (1.12)
is also satisfied, but it can be happened that

∞∑
n=1

Λn

λn μ∗
n

= ∞ (1.14)

will befall.
This raises the question: Do (1.14) and (1.12) with μ∗

n imply (1.10) for arbitrary
{an} ?
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In this note we shall show that the answer is negative in other words we shall verify
the necessity of (1.11).

Before formulating our theorem we give some notions and notations.
A sequence γ := {γn} of positive terms is said to be quasi increasing (decreasing)

if there exist a natural number N := N(γ ) and a constant K := K(γ ) > 1 such that

K γn � γm (γn � K γm)

holds for any n � m � N.

The above mentioned sequence γ is quasi geometrically increasing (decreasing)
if there exist natural numbers ν := ν(γ ), N := N(γ ) and a constant K := K(γ ) � 1
such that

γn+ν � 2γn and γn � K γn+1

(
γn+ν � 1

2
γn and γn+1 � K γn

)

hold for all n � N.

Furthermore K and Ki will denote positive constants that are not necessarily the
same at each occurrence.

2. Result

Now we formulate our result.

THEOREM 2. Let {λn} and {μn} be monotone nondecreasing sequences of pos-

itive terms and denote Λn :=
n∑

k=1
λ−1

k . Furthermore let us assume that the sequence

{Λn/μn} is quasi decreasing with a constant K0 , and

∞∑
n=1

Λn

λn μn
= ∞. (2.1)

Then there exists a sequence {an} of real numbers such that the inequality (1.12) holds,
but

∞∑
n=1

1
λn

{ ∞∑
k=n

a2
k

}1/2

= ∞. (2.2)

REMARK 1. Our theorem shows that the condition (1.11) is necessary in order that
(1.11) and (1.12) imply (1.10) for any {an}.

REMARK 2. It seems to be a difficult task to verify the statements of our Theorem
without the assumption on the quasi monotonicity of {Λn/μn}, but this requirement
holds at all known theorems, see e.g. the results mentioned in [2, Folgerung I].
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3. Lemma

The following lemma is known, see e.g. Lemma in [3].

LEMMA 1. For any positive sequence γ := {γn} the inequalities

∞∑
n=m

γn � K γm (m = 1, 2, . . . ; K � 1),

or
m∑

n=1

γn � K γm (m = 1, 2, . . . ; K � 1),

hold if and only if γ is quasi geometrically decreasing or increasing, respectively.

4. Proof

Without loss of the generality we can assume that λ1 � 1 and μ1 � 1. Let us
define

Sn :=
n∑

k=1

Λk

λk μk
.

By (2.1) we can define a sequence {pm} of indices such that

2m � Spm < 2m+1 (4.1)

holds for all m = 1, 2, . . . , furthermore p0 = 0.
The Abel-Dini theorem and the assumption (2.1) imply that

∞∑
n=1

1
λn μn Sn

Λn =
∞∑
k=1

1
λk

∞∑
n=k

1
λn μn Sn

= ∞. (4.2)

Next we show that ∑
0

:=
∞∑

n=1

1
λn Sn

∞∑
k=n

1
λk μk Sk

< ∞. (4.3)

Let us divide the sum
∑

0 into blocks as follows:

∑
0

=
∞∑

m=0

pm+1∑
n=pm+1

1
λn Sn

⎛
⎝pm+1∑

k=n

+
∞∑

k=pm+1+1

⎞
⎠ 1

λk μk Sk

� K

{ ∞∑
m=0

2−2m
pm+1∑

n=pm+1

1
λn

pm+1∑
k=n

1
λk μk

+
∞∑

m=0

2−m
pm+1∑

n=pm+1

1
λn

∞∑
i=m+1

2−i
pi+1∑

k=pi+1

1
λk μk

}

=:
∑

1
+

∑
2
.

(4.4)
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Using an Abel rearrangement and (4.1) we get that

∑
1

� K
∞∑

m=0

2−2m
pm+1∑

k=pm+1

1
λk μk

k∑
n=pm+1

1
λk

� K
∞∑

m=0

2−2m
pm+1∑

k=pm+1

1
λk μk

Λk < ∞.

(4.5)

Similarly an elementary consideration and (4.1) yield

∑
2

� K
∞∑

m=0

2−m
pm+1∑

n=pm+1

1
λn

∞∑
i=m+1

2−i
pi+1∑

k=pi+1

1
λk μk

Λk

Λpi

� K1

∞∑
m=0

2−m
pm+1∑

n=pm+1

1
λn

∞∑
i=m+1

1
Λpi

=:
∑

3
.

(4.6)

Next we show that the sequence {Λpi} is quasi geometrically increasing. In order
to verify this it suffices to prove that there exists a natural number ν with the property

Λpm+ν � 2Λpm (4.7)

for all m � 1.
Utilizing again (4.1) and the quasi monotonicity of the sequence {Λn/μn} we

obtain that

2m+ν−1 �
pm+ν∑

k=pm+1

1
λk μk

Λk � K0 Λpm+ν
Λpm

μpm

and

2m+1 >

pm∑
k=1

1
λk μk

Λk � Λpm

K0 μpm

Λpm .

These inequalities plainly imply (4.7) if 2ν � 8K2
0 .

On the basis of (4.7) the sequence {Λ−1
pm

} is clearly quasi geometrically decreasing,
and hereby, our Lemma yields that

∞∑
i=m+1

1
Λpi

� K
1

Λpm+1

.

Putting this into (4.6) we get that
∑

2 < ∞. Since by (4.5)
∑

1 < ∞ also holds,
thus (4.4) shows that the assertion (4.3) is true.

Now we can define the sequence {an} satisfying the assertions of our theorem.
Let

An :=

{ ∞∑
k=n

a2
k

}1/2

:=
∞∑
k=n

1
λk μk Sk

. (4.8)
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Since then

a2
n = A2

n − A2
n+1 = (An − An+1)(An + An+1) � 2

λn μn Sn

∞∑
k=n

1
λk μk Sk

.

This and (4.3) clearly imply (1.12).
On the other hand, (4.8) and (4.2) verify (2.2).
Consequently the proof is complete.
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