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Abstract. We introduce and study the fuzzy random positive linear operators acting on fuzzy ran-
dom continuous functions. We establish a series of fuzzy random Shisha–Mond type inequalities
of Lq -type 1 � q < ∞ and related fuzzy random Korovkin type theorems, regarding the fuzzy
random q -mean convergence of fuzzy random positive linear operators to the fuzzy random unit
operator for various cases. All convergences are with rates and are given via the above fuzzy ran-
dom inequalities involving the fuzzy random modulus of continuity of the engaged fuzzy random
function. The assumptions for the Korovkin theorems are minimal and of natural realization,
fulfilled by almost all example fuzzy random positive linear operators. The astonishing fact is
that the real Korovkin test functions assumptions are enough for the conclusions of our fuzzy
random Korovkin theory. We give at the end applications.

1. Introduction

Motivation for this work are [1], [4], [5], [8], [3], [11] and [16]. This type of work for
fuzzy stochastic processes is new to our knowledge. We introduce the concept of fuzzy
random positive linear operator and we prove our results for a very large general class
of such operators. Most of the summation and integration operators fall into this class.
To do that we are greatly helped by the fuzzy Riesz representation theorem developed
in [5]. The surprising fact is that the basic assumptions of real Korovkin theory for
the test functions 1, id , id2 carry over here and they are the only ones needed. Of
course a natural realization condition is required in the fuzzy random setting to prove
the fuzzy random q -mean convergence. But first we establish a series of fuzzy random
Shisha–Mond type inequalities for various important cases. These contain the fuzzy
random modulus of continuity of the involved function.

So this paper is basically the study with rates and quantitavely for the fuzzy random
q -mean convergence of a sequence of very general and abstract fuzzy random positive
linear operators to the fuzzy random unit operator. Linearity and positivity here are
the analogs of the real case. Finally we give applications to fuzzy random Bernstein
operators.

Mathematics subject classification (2000): 26E50, 28E10, 41A17, 41A25, 41A36, 47S40, 60H25,
60H99.
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2. Background

We start with

DEFINITION 1. (See [18]) Let μ: R → [0, 1] with the following properties:
(i) is normal, i.e., ∃x0 ∈ R ; μ(x0) = 1 .
(ii) μ(λx + (1 − λ )y) � min{μ(x),μ(y)} , ∀x, y ∈ R , ∀λ ∈ [0, 1] (μ is called a

convex fuzzy subset).
(iii) μ is upper semicontinuous on R , i.e., ∀x0 ∈ R and ∀ε > 0 , ∃ neighborhood

V(x0) : μ(x) � μ(x0) + ε , ∀x ∈ V(x0) .
(iv) The set supp(μ) is compact in R (where supp (μ) := {x ∈ R ; μ(x) > 0} ).

We call μ a fuzzy real number. Denote the set of all μ with RF .
E.g., X{x0} ∈ RF , for any x0 ∈ R , where X{x0} is the characteristic function at

x0 .
For 0 < r � 1 and μ ∈ RF define [μ]r := {x ∈ R : μ(x) � r} and

[μ]0 := {x ∈ R : μ(x) > 0}.

Then it is well known [12] that for each r ∈ [0, 1] , [μ]r is a closed and bounded interval
of R . For u, v ∈ RF and λ ∈ R , we define uniquely the sum u ⊕ v and the product
λ � u by

[u ⊕ v]r = [u]r + [v]r, [λ � u]r = λ [u]r, ∀r ∈ [0, 1],

where [u]r + [v]r means the usual addition of two intervals (as subsets of R ) and λ [u]r

means the usual product between a scalar and a subset of R (see, e.g., [13]). Notice
1 � u = u and it holds u ⊕ v = v ⊕ u , λ � u = u � λ . If 0 � r1 � r2 � 1 then
[u]r2 ⊆ [u]r1 . Actually [u]r = [u(r)

− , u(r)
+ ] , where u(r)

− � u(r)
+ , u(r)

− , u(r)
+ ∈ R , ∀r ∈ [0, 1] .

Based on [12] we can then identify any u ∈ RF with the parametrized representation{
(u(r)

− , u(r)
+ ) | 0 � r � 1

}
. We denote u ≺∼ v iff u(r)

− � v(r)
− and u(r)

+ � v(r)
+ , for all

r ∈ [0, 1] . Define
D: RF × RF → R+

by
D(u, v) := sup

r∈[0,1]
max{|u(r)

− − v(r)
− |, |u(r)

+ − v(r)
+ |},

where [v]r = [v(r)
− , v(r)

+ ] ; u, v ∈ RF . We have that D is a metric on RF . Then (RF , D)
is a complete metric space, see [17], with the properties

D(u ⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ RF ,

D(k � u, k � v) = |k|D(u, v), ∀u, v ∈ RF , ∀k ∈ R,

D(u ⊕ v, w ⊕ e) � D(u, w) + D(v, e), ∀u, v, w, e ∈ RF .

We need the following lemmas.
LEMMA 1. (See [7]) For any a, b ∈ R: ab � 0 and any u ∈ RF we have

D(a � u, b � u) � |a − b| · D(u, õ), (1)

where õ ∈ RF is defined by õ := X{0} .
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LEMMA 2. (See [7])
(i) If we denote õ := X{0} , then õ ∈ RF is the neutral element with respect to ⊕ ,

i.e., u ⊕ õ = õ ⊕ u = u , ∀u ∈ RF .
(ii) With respect to õ , none of u ∈ RF , u �= õ has opposite in RF .
(iii) Let a, b ∈ R: a · b � 0 , and any u ∈ RF , we have (a + b)� u = a � u ⊕ b� u .

For general a, b ∈ R , the above property is false.
(iv) For any λ ∈ R and any u, v ∈ RF , we have λ � (u ⊕ v) = λ � u ⊕ λ � v .
(v) For any λ ,μ ∈ R and u ∈ RF , we have λ � (μ � u) = (λ · μ) � u .
(vi) If we denote ‖u‖F := D(u, õ) , ∀u ∈ RF , then ‖ · ‖F has the properties of a

usual norm on RF , i.e.,

‖u‖F = 0 iff u = õ, ‖λ � u‖F = |λ | · ‖u‖F ,

‖u ⊕ v‖F � ‖u‖F + ‖v‖F , ‖u‖F − ‖v‖F � D(u, v).

Notice that (RF ,⊕,�) is not a linear space over R , and consequently (RF , ‖·‖F)
is not a normed space.

We need the following definitions.

DEFINITION 2. (See also [11, Definition 13. 16, p. 654]). Let (X,B, P) be a prob-
ability space. A fuzzy-random variable is a B -measurable mapping g: X → RF , i.e.,
for any open set U ⊆ RF , in the topology of RF generated by the metric D , we have

g−1(U) = {s ∈ X; g(s) ∈ U} ∈ B. (2)

The set of all fuzzy-random variables is denoted by LF (X,B, P) . Let gn, g ∈
LF (X,B, P) , n ∈ N , and 0 < q < +∞ . We say,

gn(s)
“ q -mean”
−−→

n→+∞
g(s),

if

lim
n→+∞

∫
X

(
D(gn(s), g(s))

)q
P(ds) = 0. (3)

DEFINITION 3. (See [11, p. 654, Definition 13. 17].) Let (T, T ) be a topological
space. A mapping f : T → LF (X,B, P) will be called fuzzy-random function (or
fuzzy-stochastic process) on T . We denote f (t)(s) = f (t, s) , t ∈ T , s ∈ X .

REMARK 1. (See [11, p. 655].) Any usual fuzzy real function f : T → RF can be
identified with the degenerate fuzzy-random function f (t, s) = f (t) , ∀t ∈ T , s ∈ X .

REMARK 2. (See [11, p. 655].) Fuzzy-random functions that coincide with proba-
bility one, for each t ∈ T , will be considered equivalent.

REMARK 3. (See [11, p. 655].) Let f , g: T → LF (X,B, P) . Then, f ⊕g and k� f
are defined pointwise, i.e.,

(f ⊕ g)(t, s) = f (t, s) ⊕ g(t, s),
(k � f )(t, s) = k � f (t, s), t ∈ T, s ∈ X, k ∈ R.
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DEFINITION 4. (See also [11, Definition 13. 18, pp. 655–656].) For a fuzzy-random
function f : [a, b] → LF (X,B, P) , we define the (first) fuzzy-random modulus of
continuity

Ω(F)
1 (f , δ)Lq =sup

{(∫
X

Dq
(
f (x, s), f (y, s)

)
P(ds)

)1/q

; x, y ∈ [a, b], |x−y| � δ

}
,

0 < δ, 1 � q < ∞.

(4)

DEFINITION 5. Here, 1 � q < ∞ . Let f : [a, b] → LF (X,B, P) be a fuzzy
random function. We call f a (q -mean) uniformly continuous fuzzy random function
over [a, b] iff ∀ε > 0 ∃δ > 0 : whenever |x − y| � δ , x, y ∈ [a, b] , implies that∫

X

(
D(f (x, s), f (y, s))

)q
P(ds) � ε. (5)

We denote it as f ∈ CUq
FR([a, b]) .

We need

PROPOSITION 1. Let f ∈ CUq
FR([a, b]) . Then, Ω(F)

1 (f , δ)Lq < ∞ , any δ > 0 .

Proof. Let ε0 > 0 be arbitrary, but fixed. Then, there exists δ0 > 0: |x− y| � δ0 ,
x, y ∈ [a, b] which implies∫

X

(
D(f (x, s), f (y, s))

)q
P(ds) � ε0 < ∞.

That is, Ω(F)
1 (f , δ0)Lq � ε1/q

0 < ∞ . Let now δ > 0 arbitrary, x, y ∈ [a, b] , such that
|x − y| � δ . Choose n ∈ N : nδ0 � δ and set xi := x + (i/n)(y − x) , 0 � i � n .
Then,

D
(
f (x, s), f (y, s)

)
� D

(
f (x, s), f (x1, s)

)
+ D

(
f (x1, s), f (x2, s)

)
+ · · · + D

(
f (xn−1, s), f (y, s)

)
.

Consequently,(∫
X

(
D(f (x, s), f (y, s))

)q
P(ds)

)1/q

�
(∫

X

(
D(f (x, s), f (x1, s))

)q
P(ds)

)1/q

+ · · ·+
(∫

X

(
D(f (xn−1, s), f (y, s))

)q
P(ds)

)1/q

� nΩ(F)
1 (f , δ0)Lq � nε1/q

0 < ∞,

since |xi−xi+1| � (1/n)|x−y| � (1/n)δ � δ0 , 0 � i � n . Therefore, Ω(F)
1 (f , δ)Lq �

nε1/q
0 < ∞ . �

PROPOSITION2. Let f , g: [a, b] → LF(X,B, P) be fuzzy random functions, [a, b] ⊂
R . The following hold.
(i) Ω(F)

1 (f , δ)Lq be nonnegative and nondecreasing in δ > 0 .

(ii) limδ↓0 ω
(F)
1 (f , δ)Lq = Ω(F)

1 (f , 0)Lq = 0 , iff f ∈ CUq
FR([a, b]) .
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(iii) Ω(F)
1 (f , δ1 + δ2)Lq � Ω(F)

1 (f , δ1)Lq + Ω(F)
1 (f , δ2)Lq , δ1, δ2 > 0 .

(iv) Ω(F)
1 (f , nδ)Lq � nΩ(F)

1 (f , δ)Lq , δ > 0 , n ∈ N .

(v) Ω(F)
1 (f , λδ)Lq � �λ�Ω(F)

1 (f , δ)Lq � (λ+1)Ω(F)
1 (f , δ)Lq , λ > 0 , δ > 0 , where

�·� is the ceiling of the number.

(vi) Ω(F)
1 (f ⊕ g, δ)Lq � Ω(F)

1 (f , δ)Lq +Ω(F)
1 (g, δ)Lq , δ > 0 . Here, f ⊕ g is a fuzzy

random function.
(vii) Ω(F)

1 (f , ·)Lq is continuous on R+ , for f ∈ CUq
FR([a, b]) .

Proof. The proof is obvious. �
PROPOSITION 3. (See [3]) Let f , g be fuzzy random variables from X → RF .

Then, we have the following.
(i) Let c ∈ R , then c � f is a fuzzy random variable.
(ii) f ⊕ g is a fuzzy random variable.

For the definition of general fuzzy integral we follow [14] next.

DEFINITION 6. Let (Ω,Σ,μ) be a complete σ -finite measure space. We call
F:Ω → RF measurable iff ∀ closed B ⊆ R the function F−1(B):Ω → [0, 1] defined
by

F−1(B)(ω) := sup
x∈B

F(ω)(x), all ω ∈ Ω
is measurable, see [9], [14].

Notice here that the concept of measurability is different than the B -measurability
of Definition 2.

THEOREM 1. ([14]) For F:Ω → RF , F(ω) =
{
(F(r)

− (ω), F(r)
+ (ω)) | 0 � r � 1

}
,

the following are equivalent.
(1) F is measurable,

(2) ∀r ∈ [0, 1] , F(r)
− , F(r)

+ are measurable.

Following [14] , given that for each r ∈ [0, 1] , F(r)
− , F(r)

+ are integrable we have
that the parametrized representation{(∫

A
F(r)
− dμ,

∫
A
F(r)

+ dμ
)

| 0 � r � 1

}

is a fuzzy real number for each A ∈ Σ .

The last fact leads to

DEFINITION 7. ([14]) A measurable function F:Ω → RF ,

F(ω) =
{
(F(r)

− (ω), F(r)
+ (ω)) | 0 � r � 1

}
is called integrable if for each r ∈ [0, 1] , F(r)

± are integrable, or equivalently, if F(0)
±

are integrable. In this case, the fuzzy integral of F over A ∈ Σ is defined by∫
A
F dμ :=

{(∫
A
F(r)
− dμ,

∫
A
F(r)

+ dμ
)
| 0 � r � 1

}
.

By [14], F is integrable iff ω → ‖F(ω)‖F is real-valued integrable.
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We need also
THEOREM 2. ([14])) Let F, G:Ω → RF be integrable. Then

(1) Let a, b ∈ R , then a � F + b � G is integrable and for each A ∈ Σ ,∫
A
(a � F ⊕ b � G) dμ = a �

∫
A
F dμ ⊕ b �

∫
A
G dμ;

(2) D(F, G) is a real-valued integrable function and for each A ∈ Σ ,

D

(∫
A
F dμ,

∫
A
G dμ

)
�
∫

A
D(F, G) dμ.

In particular, ∥∥∥∥
∫

A
F dμ

∥∥∥∥
F

�
∫

A
‖F‖F dμ.

We need

DEFINITION 8. Let U open or compact ⊆ (M, d) metric space and f : U →
RF . We say that f is fuzzy continuous at x0 ∈ U iff whenever xn → x0 , then
D(f (xn), f (x0)) → 0 . If f is continuous for every x0 ∈ U , we then call f a fuzzy
continuous real number valued function. We denote the related space by CF (U) .
Similarly one defines CF ([a, b]) , [a, b] ⊆ R .

DEFINITION 9. Let L: CF (U) ↪→ CF (U) , where U is open or compact ⊆ (M, d)
metric space, such that

L(c1 � f ⊕ c2 � g) = c1 � L(f ) ⊕ c2 � L(g), ∀c1, c2 ∈ R.

We call L a fuzzy linear operator.

We give the following example of a fuzzy linear operator, etc.

DEFINITION 10. Let f : [0, 1] → RF be a fuzzy real function. The fuzzy algebraic
polynomial defined by

B(F)
n (f )(x) =

n∑∗

k=0

(
n
k

)
xk(1 − x)n−k � f

(
k
n

)
, ∀x ∈ [0, 1],

will be called the fuzzy Bernstein operator. Here
∑∗ stands for the fuzzy summation.

We also need

DEFINITION 11. Let f , g: U → RF , U ⊆ (M, d) metric space. We denote f �∼ g ,

iff f (x) �∼ g(x) , ∀x ∈ U , iff f (r)
+ (x) � g(r)

+ (x) and f (r)
− (x) � g(r)

− (x) , ∀x ∈ U , ∀r ∈
[0, 1] , iff f (r)

+ � g(r)
+ and f (r)

− � g(r)
− , ∀r ∈ [0, 1] , where [f (x)]r = [f (r)

− (x), f (r)
+ (x)] .

We give

DEFINITION 12. Let L: CF (U) ↪→ CF (U) be a fuzzy linear operator, U open or
compact ⊆ (M, d) metric space. We say that L is positive, iff whenever f , g ∈ CF (U)
are such that f �∼ g then L(f ) �∼ L(g) , iff

(L(f ))(r)
+ � (L(g))(r)

+
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and
(L(f ))(r)

− � (L(g))(r)
− , ∀r ∈ [0, 1].

Here we denote

[L(f )]r =
[
(L(f ))(r)

− , (L(f ))(r)
+
]
, ∀r ∈ [0, 1].

An example of a fuzzy positive linear operator is the fuzzy Bernstein operator on the
domain [0, 1] , etc. For more see [4], [5], [8].

We mention
Assumption 1 . (See [5]). Let L be a fuzzy positive linear operator from CF (K) ,

K compact ⊆ (M, d) metric space, into itself. Here we assume that there exists a
positive linear operator L̃ from C(K) into itself with the property

(Lf )(r)
± = L̃(f (r)

± ), (6)

respectively, for all r ∈ [0, 1] , ∀f ∈ CF (K) .
Again, as an example, we mention the fuzzy Bernstein operator and the real

Bernstein operator fulfilling the above assumption on [0, 1] , etc.
We apply the following Fuzzy Riesz Representation Theorem.

THEOREM 3. (See [5]) Let L be a fuzzy positive linear operator from CF (K) into
itself as in Assumption 1 , K compact ⊆ (M, d) metric space. Then for each x ∈ K
there exists a unique positive finite completed Borel measure μx on K such that

(Lf )(x) =
∫

K
f (t)μx(dt), ∀f ∈ CF (K).

3. Auxilliary material

In proofs we apply

REMARK 4. Let f : [a, b] → LF (X,B, P) , [a, b] ⊂ R be a fuzzy random function.
Then by Proposition 2(v) we get

Ω(F)
1 (f , |x − y|)Lq �

⌈
|x − y|
δ

⌉
Ω(F)

1 (f , δ)Lq , ∀x, y ∈ [a, b] any δ > 0. (7)

The main function space we are going to work on in the paper is defined as follows.

DEFINITION 13. Let (X,B, P) be a probability space, [a, b] ⊂ R , and the fuzzy
random function f : [a, b]×X → RF such that f (t,ω) is fuzzy continuous in t ∈ [a, b]
uniformlywith respect to ω in X . I.e. ∀ε > 0 ∃δ > 0 such that whenever |x−y| � δ ;
x, y ∈ [a, b] , then

D
(
f (x,ω), f (y,ω)

)
� ε, ∀ω ∈ X.

We denote the space of all these functions by CU
FR([a, b]) .

One can easily see that if f ∈ CU
FR([a, b]) then for each ω ∈ X we have that

f (·,ω) ∈ CF ([a, b]) and f is q -mean uniformly continuous in t ∈ [a, b] , i.e. f ∈
CUq
FR([a, b]) , any 1 � q < +∞ , see Definition 5.

We mention
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DEFINITION 14. Let L∗: CU
FR([a, b]) ↪→ CU

FR([a, b]) such that

L∗(c1 � f 1 ⊕ c2 � f 2) = c1 � L∗(f 1) ⊕ c2 � L∗(f 2), ∀c1, c2 ∈ R.

We call L∗ a fuzzy random linear operator on CU
FR([a, b]) .

The following motivate our work.

EXAMPLE 1. (See [11], p. 656). For f : [0, 1] → LF (X, B, P) , the fuzzy random
polynomials defined by

B(F)
n (f )(x,ω) :=

n∑∗

k=0

(
n
k

)
xk(1 − x)n−k � f

(
k
n
,ω
)

, x ∈ [0, 1], ω ∈ X

will be called a Bernstein-type. Clearly B(F)
n (·)(x,ω) is a fuzzy random linear operator,

n ∈ N .

We have

THEOREM 4. (See [11], p. 656) For f : [0, 1] → LF(X,B, P) we have the estimate∫
X

D
(
B(F)

n (f )(x,ω), f (x,ω)
)
P(dω) � 3

2
Ω(F)

1

(
f ;

1√
n

)
L1

, (8)

∀x ∈ [0, 1] , n ∈ N . If, moreover, f satisfies the condition

lim
δ↓0

Ω(F)
1 (f , δ)L1 = 0,

then

B(F)
n (f )(x,ω)

“1-mean”
−−→

n→+∞
f (x,ω),

uniformly with respect to x ∈ [0, 1] .

We mention

DEFINITION 15. Let L∗: CU
FR([a, b]) ↪→ CU

FR([a, b]) be a fuzzy random linear
operator. We call L∗ a positive fuzzy random linear operator iff whenever we have
f , g ∈ CU

FR([a, b]) such that f �∼ g , i.e. f (x,ω) �∼ g(x,ω) for all (x,ω) ∈ [a, b] × X
then L∗f �∼ L∗g , i.e. (L∗f )(x,ω) �∼ (L∗g)(x,ω) for all (x,ω) ∈ [a, b] × X , iff

(L∗f )(r)
+ (x,ω) � (L∗g)(r)

+ (x,ω) and

(L∗f )(r)
− (x,ω) � (L∗g)(r)

− (x,ω), ∀r ∈ [0, 1], ∀(x,ω) ∈ [a, b] × X.

Here we denote

[L∗(f )(x,ω)]r =
[
(L∗f )(r)

− (x,ω), (L∗f )(r)
+ (x,ω)

]
, ∀r ∈ [0, 1], ∀(x,ω) ∈ [a, b] × X.

An example of a positive fuzzy random linear operator is B(F)
n (·)(x,ω) , etc.

We give the useful

REMARK 5. Let L be a fuzzy positive linear operator from CF ([a, b]) into itself.
We assume that there exists a positive linear operator L̃ from C([a, b]) into itself with
the property

(Lf )(r)
± = L̃(f (r)

± ), (9)
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respectively, ∀r ∈ [0, 1] , ∀f ∈ CF ([a, b]) . Then by Theorem 3, ∀t ∈ [a, b] there
exists a unique positive finite completed Borel measure μt on [a, b] such that

(Lf )(t) =
∫

[a,b]
f (s)μt(ds), ∀f ∈ CF ([a, b]). (10)

Consequently for f ∈ CU
FR([a, b]) and since f (·,ω) ∈ CF ([a, b]) , ∀ω ∈ X , we get

that

L
(
f (·,ω)

)
(t) =

∫
[a,b]

f (s,ω)μt(ds), ∀t ∈ [a, b], ∀ω ∈ X. (11)

Of course here by (9) we have

(
L(f (·,ω))

)(r)
± (t) = L̃

(
f (r)
± (·,ω)

)
(t), ∀t ∈ [a, b], ∀ω ∈ X, ∀r ∈ [0, 1]. (12)

We call
mt := μt([a, b]) � 0. (13)

By setting
M(f )(t,ω) := L

(
f (·,ω)

)
(t), (14)

that is

M(f )(t,ω) =
∫

[a,b]
f (s,ω)μt(ds), (15)

from Theorem 2 (1) we have that

M(c1 � f ⊕ c2 � g)(t,ω) = c1 � M(f )(t,ω) ⊕ c2 � M(g)(t,ω), (16)

∀(t,ω) ∈ [a, b]× X , ∀f , g ∈ CU
FR([a, b]) , ∀c1, c2 ∈ R .

Let CFR([a, b]) := {f : [a, b]×X → RF : such that f (t,ω) is fuzzy continuous in
t ∈ [a, b] and B -measurable in ω ∈ X} . Additionally we assume here that M(f )(t,ω)
is B -measurable in ω ∈ X . Then

M(f ) ∈ CFR([a, b]), ∀f ∈ CU
FR([a, b]).

That is M is a fuzzy random linear operator from CU
FR([a, b]) into CFR([a, b]) . Thus

by (12) we have

(M(f ))(r)
± (t,ω) =

(
L(f (·,ω))

)(r)
± (t) = L̃

(
f (r)
± (·,ω)

)
(t). (17)

Let f , g ∈ CU
F ([a, b]) such that f �∼ g iff f (r)

− � g(r)
− and f (r)

+ � g(r)
+ , ∀r ∈ [0, 1] .

Then
L̃
(
f (r)
− (·,ω)

)
(t) � L̃

(
g(r)
− (·,ω)

)
(t)

and
L̃
(
f (r)
+ (·,ω)

)
(t) � L̃

(
g(r)

+ (·,ω)
)
(t).

That is (M(f ))(r)
− � (M(g))(r)

− and (M(f ))(r)
+ � (M(g))(r)

+ , ∀r ∈ [0, 1] . Hence M is a
positive fuzzy random linear operator.
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For example we notice that

B(F)
n

(
f (·,ω)

)
(x) =

n∑∗

k=0

(
n
k

)
xk(1 − x)n−k � f

(
k
n
,ω
)

= B(F)
n (f )(x,ω), (18)

∀x ∈ [0, 1] , ∀ω ∈ X , ∀f ∈ CU
FR([0, 1]) , the last fulfills all the above theory. So fuzzy

operators like L , M are quite common, e.g. summation, integral operators in the fuzzy
sense, therefore we study their approximation properties next.

Clearly, by Theorem 5 of [5], any positive linear operator L̃ from C([a, b]) into
itself induces a unique positive fuzzy linear operator L acting on CF ([a, b]) , which
in turn generates by (14) a unique positive fuzzy random linear operator M acting on
CU
FR([a, b]) , so the class of M ’s is very rich.

4. Main results

We will use the following

PROPOSITION4. Let (X,B, P) be a probability space, [a, b] ⊂ R , f ∈ CU
FR([a, b]) .

Let L a fuzzy positive linear operator from CF ([a, b]) into itself for which there exists
a positive linear operator L̃ from C([a, b]) into itself such that

(Lg)(r)
± = L̃(g(r)

± ), (19)

respectively, ∀r ∈ [0, 1] , ∀g ∈ CF ([a, b]) . We consider the positive fuzzy random
linear operator M acting on CU

FR([a, b]) defined by

M(f )(t,ω) := L
(
f (·,ω)

)
(t), ∀(t,ω) ∈ [a, b] × X, ∀f ∈ CU

FR([a, b]). (20)

We assume that M(f )(t,ω) is B -measurable in ω ∈ X . That is M(f ) ∈ CFR([a, b]) .
Then

D
(
M(f )(t,ω), f (t,ω)

)
�
∫

[a,b]
D
(
f (s,ω), f (t,ω)

)
μt(ds)

+ |mt − 1|D
(
f (t,ω), õ

)
, ∀(t,ω) ∈ [a, b] × X,

(21)

where μt is as in (10) and mt as in (13) .

Proof. We observe that the B -measurable function [See Remark 13. 39, p. 654,
[11]]

D
(
M(f )(t,ω), f (t,ω)

) (15)
= D

(∫
[a,b]

f (s,ω)μt(ds), f (t,ω)

)

� D

(∫
[a,b]

f (s,ω)μt(ds), f (t,ω) � mt

)
+ D

(
f (t,ω) � mt, f (t,ω)

)
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= D

(∫
[a,b]

f (s,ω)μt(ds),
∫

[a,b]
f (t,ω)μt(ds)

)
+ D

(
f (t,ω) � mt, f (t,ω)

)
� (by Theorem 2(2) and Lemma 1)∫

[a,b]
D
(
f (s,ω), f (t,ω)

)
μt(ds) + |mt − 1|D

(
f (t,ω), õ

)
.

Here notice that

f (t,ω) � mt =
{(

mt(f (t,ω))(r)
− , mt(f (t,ω))(r)

+
)
| 0 � r � 1

}
=

{(∫
[a,b]

(
f (t,ω)

)(r)
− dμt,

∫
[a,b]

(
f (t,ω)

)(r)
+ dμt

)
| 0 � r � 1

}

=
∫

[a,b]
f (t,ω)μt(ds). �

By Remark 2 of [5] we trivially see that

mt = L̃(1)(t) � 0, ∀t ∈ [a, b]. (22)

We give our first main result.

THEOREM 5. Assume all terms and assumptions of Proposition 4 and∫
X

D
(
f (t,ω), õ

)
dP(ω) < ∞, ∀t ∈ [a, b].

Then∫
X

D
(
M(f )(t,ω), f (t,ω)

)
dP(ω) � |L̃(1)(t) − 1|

(∫
X

D
(
f (t,ω), õ

)
dP(ω)

)

+
(

L̃(1)(t) +
√

L̃(1)(t)
)
Ω(F)

1

(
f , (L̃((· − t)2)(t))1/2

)
L1 , ∀t ∈ [a, b],

(23)

and

sup
t∈[a,b]

(∫
X

D
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

)

� ‖L̃(1) − 1‖∞ sup
t∈[a,b]

(∫
X

D
(
f (t,ω), õ

)
dP(ω)

)

+ ‖L̃(1) +
√

L̃(1)‖∞Ω(F)
1

(
f , ‖L̃((· − t)2)(t)‖1/2

∞
)

L1 .

(24)

Proof. Integrating (21) we get∫
X

D
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

�
∫

X

(∫
[a,b]

D
(
f (s,ω), f (t,ω)

)
μt(ds)

)
dP(ω) + |mt − 1|

(∫
X

D
(
f (t,ω), õ

)
dP(ω)

)
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(by D � 0 and the facts that D
(
f (s,ω), f (t,ω)

)
is continuous in s ∈ [a, b] , by Lemma

1 of [2], also it is a real random variable in ω , by Remark 13. 39 of [11], p. 654 and
thus by Proposition 3.3(i) of [3] it is jointly measurable in (s,ω) , and then being able
to use Tonelli–Fubini’s theorem, p. 104 of [10] and thus see both double integrals make
sense)

=
∫

[a,b]

(∫
X

D
(
f (s,ω), f (t,ω)

)
dP(ω)

)
μt(ds) + |mt − 1|

(∫
X

D
(
f (t,ω), õ

)
dP(ω)

)
(h > 0)

�
∫

[a,b]
Ω(F)

1

(
f ,

|s − t|
h

h

)
L1

μt(ds)+|mt−1|
(∫

X
D
(
f (t,ω), õ

)
dP(ω)

)
(by (7))

� Ω(F)
1 (f , h)L1

∫
[a,b]

⌈
|s − t|

h

⌉
μt(ds) + |mt − 1|

(∫
X

D
(
f (t,ω), õ

)
dP(ω)

)

� |mt − 1|
(∫

X
D
(
f (t,ω), õ

)
dP(ω)

)
+

(∫
[a,b]

(
1 +

|s − t|
h

)
μt(ds)

)
Ω(F)

1 (f , h)L1

= |mt − 1|
(∫

X
D
(
f (t,ω), õ

)
dP(ω)

)
+

(
mt +

1
h

∫
[a,b]

|s − t|μt(ds)

)
Ω(F)

1 (f , h)L1

(by Cauchy–Schwarz inequality)

� |mt−1|
(∫

X
D
(
f (t,ω), õ

)
dP(ω)

)
+

⎛
⎝mt+

1
h

√
mt

(∫
[a,b]

(s−t)2μt(ds)

)1/2
⎞
⎠Ω(F)

1 (f , h)L1

(by choosing

h :=

(∫
[a,b]

(s − t)2μt(ds)

)1/2

=
(
L̃((· − t)2)(t)

)1/2
> 0,

for > 0 it is enough to assume μt([a, b] − {t}) > 0 )

� |mt − 1|
(∫

X
D
(
f (t,ω), õ

)
dP(ω)

)
+ (mt +

√
mt)Ω

(F)
1

(
f ,
(
L̃((· − t)2)(t)

)1/2
)

L1
,

by using (22) we have established (23). One can easily see that if

L̃((· − t)2)(t) = 0

then again (23) is valid. Clearly by Remark 13.39, p. 654, [11] D(f (t,ω), õ) is a real
random variable in ω ∈ X , for each t ∈ [a, b] .

Next we notice that

|D(f (x,ω), õ) − D(f (y,ω), õ)| � D(f (x,ω), f (y,ω)) ∀x, y ∈ [a, b], ∀ω ∈ X.

Hence ∀ε > 0 ∃δ > 0 such that whenever x, y ∈ [a, b] with |x − y| � δ then∣∣∣∣
∫

X
D
(
f (x,ω), õ

)
P(dω)−

∫
X

D
(
f (y,ω), õ

)
P(dω)

∣∣∣∣�
∫

X
D
(
f (x,ω), f (y,ω)

)
P(dω)�ε,
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because f ∈ CU1
FR([a, b]) by f ∈ CU

FR([a, b]) . Therefore the function

F(x) :=
∫

X
D
(
f (x,ω), õ

)
P(dω),

is continuous in x ∈ [a, b] and hence is bounded, i.e. ‖F(x)‖∞ < ∞ , making (24)
valid. �

We need the following

PROPOSITION 5. All here as in Proposition 4 and∫
X

(
D(f (t,ω), õ)

)q
P(dω) < ∞, q > 1, ∀t ∈ [a, b].

Then(∫
X

(
D(M(f )(t,ω), f (t,ω)

)q
dP(ω)

)1/q

� |mt−1|
(∫

X

(
D(f (t,ω), õ)

)q
P(dω)

)1/q

+ m
1− 1

q
t

(∫
[a,b]

(
1 +

|s − t|
h

)q

dμt(s)

)1/q

Ω(F)
1 (f , h)Lq , h > 0, ∀t ∈ [a, b].

(25)

Proof. Let q > 1 then by (21) we have(∫
X

D
(
M(f )(t,ω), f (t,ω)

)q
dP(ω)

)1/q

�
(∫

X

(∫
[a,b]

D
(
f (s,ω), f (t,ω)

)
μt(ds)

)q

P(dω)

)1/q

+ θ =: (∗),

where

θ := |mt − 1|
(∫

X

(
D(f (t,ω), õ)

)q
P(dω)

)1/q

. (26)

Let p > 1 such that 1
p + 1

q = 1 . Hence by Hölder’s inequality we have

(∗) � m1/p
t

(∫
X

(∫
[a,b]

Dq
(
f (s,ω), f (t,ω)

)
μt(ds)

)
P(dω)

)1/q

+ θ

(by Tonelli-Fubini’s theorem as in the proof of Theorem 5)

= m1/p
t

(∫
[a,b]

(∫
X

Dq
(
f (s,ω), f (t,ω)

)
P(dω)

)
μt(ds)

)1/q

+ θ

(let h > 0)

� m1/p
t

(∫
[a,b]

(
Ω(F)

1

(
f ,

|s − t|
h

h

)
Lq

)q

μt(ds)

)1/q

+ θ

(7)
� m1/p

t

(∫
[a,b]

(
1 +

|s − t|
h

)q

μt(ds)

)1/q

Ω(F)
1 (f , h)Lq + θ. �
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We examine two cases and we give

THEOREM 6. Here we assume all as in Proposition 5 .
1) Let q ∈ N − {1} . Then(∫
X

Dq
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/q

� |L̃(1)(t) − 1|
(∫

X
Dq
(
f (t,ω), õ

)
P(dω)

)1/q

+ (L̃(1)(t))1− 1
q

(
q∑

k=0

(
q
k

)
(L̃(1)(t))1− k

q

)1/q

Ω(F)
1

(
f , ((L̃(1 · −t|q))(t))1/q

)
Lq
,

∀t ∈ [a, b].

(27)

2) Let q > 1 real. Then(∫
X

Dq
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/q

� |L̃(1)(t) − 1|
(∫

X
Dq
(
f (t,ω), õ

)
P(dω)

)1/q

+ 21− 1
q (L̃(1)(t))1− 1

q (L̃(1)(t)+1)1/qΩ(F)
1

(
f , ((L̃(| · −t|q))(t))1/q

)
Lq ,

∀t ∈ [a, b].

(28)

When q ∈ N − {1} then (27) is sharper than (28) . Furthermore we have
3) Let q ∈ N − {1} . Then

sup
t∈[a,b]

(∫
X

Dq
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/q

� ‖L̃(1) − 1‖∞ sup
t∈[a,b]

(∫
X

Dq
(
f (t,ω), õ

)
P(dω)

)1/q

+ ‖L̃(1)‖1− 1
q∞

(∥∥∥∥∥
q∑

k=0

(
q
k

)
(L̃(1))1− k

q

∥∥∥∥∥
∞

)1/q

Ω(F)
1

(
f , ‖(L̃(| · −t|q))(t)‖1/q

∞
)

Lq .

(29)

4) Let q > 1 real. Then

sup
t∈[a,b]

(∫
X

Dq
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/q

� ‖L̃(1) − 1‖∞ sup
t∈[a,b]

(∫
X

Dq
(
f (t,ω), õ

)
P(dω)

)1/q

+ 21− 1
q ‖L̃(1)‖1− 1

q∞ ‖L̃(1) + 1‖1/q
∞ Ω(F)

1

(
f , ‖(L̃(| · −t|q))(t)‖1/q

∞
)

Lq .

(30)

When q ∈ N − {1} inequality (29) is sharper than (30) .
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Proof. 1) We notice that∫
[a,b]

(
1 +

|s − t|
h

)q

dμt(s) =
∫

[a,b]

(
q∑

k=0

(
q
k

)
|s − t|k

hk

)
dμt(s)

= mt +
q−1∑
k=1

(
q
k

)
1
hk

∫
[a,b]

|s − t|kdμt(s) +
1
hq

∫
[a,b]

|s − t|qdμt(s).

Also we see for k = 1, . . . , q − 1 that

∫
[a,b]

|s − t|kdμt(s) � m
1− k

q
t

(∫
[a,b]

|s − t|qdμt(s)

)k/q

Hence∫
[a,b]

(
1 +

|s − t|
h

)q

dμt(s)

� mt +
q−1∑
k=1

(
q
k

)
1
hk

m
1− k

q
t

(∫
[a,b]

|s − t|qdμt(s)

)k/q

+
1
hq

∫
[a,b]

|s − t|qdμt(s)

=
q∑

k=0

(
q
k

)
m1−(k/q)

t

hk

(∫
[a,b]

|s − t|qdμt(s)

)k/q

(
by choosing

h :=

(∫
[a,b]

|s − t|qdμt(s)

)1/q

=
(
(L̃(| · −t|q))(t)

)1/q
> 0
)

=
q∑

k=0

(
q
k

)
m

1− k
q

t .

(31)

I.e. we got that ∫
[a,b]

(
1 +

|s − t|
h

)q

dμt(s) �
q∑

k=0

(
q
k

)
m

1− k
q

t .

Hence proving (27) with the use of (25). The inequality (27) is true easily if our choice
is easily

hq :=
∫

[a,b]
|s − t|qdμt(s) = 0.

2) The function xq is convex for x � 0 , q > 1 . Therefore(
1 + |s−t|

h

2

)q

�
1 + |s−t|q

hq

2
, h > 0.

I.e. (
1 +

|s − t|
h

)q

� 2q−1

(
1 +

|s − t|q
hq

)
, ∀s, t ∈ [a, b].
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Hence(∫
[a,b]

(
1 +

|s − t|
h

)q

dμt(s)

)1/q

� 21− 1
q

(∫
[a,b]

(
1 +

|s − t|q
hq

)
dμt(s)

)1/q

= 21− 1
q

(
mt +

1
hq

(∫
[a,b]

|s − t|qdμt(s)

))1/q

(
by choosing again

h :=

(∫
[a,b]

|s − t|qdμt(s)

)1/q

> 0
)

= 21− 1
q (mt + 1)1/q.

I.e. we got that (∫
[a,b]

(
1 +

|s − t|
h

)q

dμt(s)

)1/q

� 21− 1
q (mt + 1)1/q.

Using (25) and the last estimate we obtain (28). Again if our above choice is h = 0
then (28) is still valid.

When q ∈ N − {1} and mt > 0 we would like to prove that(
q∑

k=0

(
q
k

)
m

1− k
q

t

)1/q

� 21− 1
q (mt + 1)1/q, (32)

hence (27) is better than (28). Notice that (32) is trivially true when mt = 0 .
Equivalently we need valid

q∑
k=0

(
q
k

)
m

1− k
q

t � 2q−1(mt + 1)

⇔
q∑

k=0

(
q
k

)
m−k/q

t � 2q−1(1 + m−1
t ).

By calling z := m−1
t > 0 , equivalently we need true

q∑
k=0

(
q
k

)
zk/q � 2q−1(1 + z)

⇔
(1 + z1/q)q � 2q−1(1 + z).

The last is true by the convexity of zq , z � 0 , q ∈ N−{1} . If mt = 0 , then both (27)
and (28) are trivially the same.
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It is easy to derive (29) and (30) from (27) and (28), respectively. Clearly
Dq(f (t,ω), õ) is a real random variable in ω ∈ X , ∀t ∈ [a, b] . Additionally, we notice
that ∀ε > 0 ∃δ > 0 such that whenever x, y ∈ [a, b] with |x − y| � δ then∣∣∣∣∣
(∫

X
Dq(f (x,ω), õ)dP(ω)

)1/q

−
(∫

X
Dq(f (y,ω), õ)dP(ω)

)1/q
∣∣∣∣∣

�
(∫

X
Dq(f (x,ω), f (y,ω))dP(ω)

)1/q

� ε, by f ∈ CU
FR([a, b]).

Hence proving that the function

G(x) :=
(∫

X
Dq(f (x,ω), õ)dP(ω)

)1/q

,

is continuous in x ∈ [a, b] . Therefore ‖G‖∞ < ∞ , making the inequalities (29), (30)
valid. �

Similar general results using a different initial estimate follow.

LEMMA 3. Let f : [a, b] → LF(X,B, P) be fuzzy random function, 1 � q < ∞ ,
δ > 0 . Then

Ω(F)
1 (f , |x − y|)Lq �

(
1 +

(x − y)2

δ 2

)
Ω(F)

1 (f , δ)Lq , ∀x, y ∈ [a, b]. (33)

Proof. We have by (7) that

Ω(F)
1 (f , |x − y|)Lq �

(
1 +

|x − y|
δ

)
Ω(F)

1 (f , δ)Lq . (34)

Let |x − y| > δ , thus |x−y|
δ > 1 . Then

R. H. S. (34) �
(

1 +
(x − y)2

δ 2

)
Ω(F)

1 (f , δ)Lq .

Let |x − y| � δ then

Ω(F)
1 (f , |x − y|) � Ω(F)

1 (f , δ)Lq �
(

1 +
(x − y)2

δ 2

)
Ω(F)

1 (f , δ)Lq . �

Now, we present

THEOREM 7. Assume all terms and assumptions of Proposition 4 and∫
X

D
(
f (t,ω), õ

)
dP(ω) < ∞, ∀t ∈ [a, b].

Then
1)

∫
X

D
(
M(f ), (t,ω), f (t,ω)

)
dP(ω)

� |L̃(1)(t) − 1|
(∫

X
D
(
f (t,ω), õ

)
dP(ω)

)

+ (L̃(1)(t) + 1)Ω(F)
1

(
f ,
(
L̃((· − t)2)(t)

)1/2
)

L1
, ∀t ∈ [a, b],

(35)
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and
2) sup

t∈[a,b]

∫
X

D
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

� ‖L̃(1) − 1‖∞ sup
t∈[a,b]

(∫
X

D
(
f (t,ω), õ

)
dP(ω)

)

+ ‖L̃(1) + 1‖∞Ω(F)
1

(
f , ‖L̃((· − t)2)(t)‖1/2

∞
)

L1 .

(36)

Proof. Initially from the proof of Theorem 5 we have∫
X

D
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

� |mt−1|
(∫

X
D
(
f (t,ω), õ)dP(ω)

)
+
∫

[a,b]
Ω(F)

1 (f , |s − t|)L1μt(s)

(let h > 0)

(33)
� |mt−1|

(∫
X
D
(
f (t,ω), õ)dP(ω)

)
+

(∫
[a,b]

(
1+

(s−t)2

h2

)
μt(ds)

)
Ω(F)

1 (f , h)L1

= |mt−1|
(∫

X
D
(
f (t,ω), õ)dP(ω)

)
+

(
mt+

1
h2

∫
[a,b]

(s−t)2μt(ds)

)
Ω(F)

1 (f , h)L1

taking

h :=

(∫
[a,b]

(s − t)2μt(dt)

)1/2

=
(
L̃((· − t)2)(t)

)1/2
> 0

= |mt−1|
(∫

X
D
(
f (t,ω), õ

)
dP(ω)

)
+(mt+1)Ω(F)

1

(
f ,
(
L̃((·−t)2)(t)

)1/2
)

L1
,

(37)

∀t ∈ [a, b] . That is proving (35).
The above choice (37) of h if h = 0 makes again (35) valid. Inequality (36) is

now clear. �
Finally we get the very useful

THEOREM 8. Assume all terms and assumptions of Proposition 4 and∫
X

D
(
f (t,ω), õ

)
dP(ω) < ∞, ∀t ∈ [a, b].

Then
1)

∫
X

D
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

� |L̃(1)(t) − 1|
(∫

X
D
(
f (t,ω), õ

)
dP(ω)

)

+ min

{(
L̃(1)(t) +

√
L̃(1)(t)

)
, (L̃(1)(t) + 1)

}
×

×Ω(F)
1

(
f , (L̃((· − t)2)(t))1/2

)
L1 , ∀t ∈ [a, b],

(38)
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and
2) sup

t∈[a,b]

(∫
X

D
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

)

� ‖L̃(1) − 1‖∞ sup
t∈[a,b]

(∫
X

D
(
f (t,ω), õ

)
dP(ω)

)

+ min

{
‖L̃(1) +

√
L̃(1)‖∞, ‖L̃(1) + 1‖∞

}
×

×Ω(F)
1

(
f , ‖L̃((· − t)2)(t)‖1/2

∞
)

L1 .

(39)

Proof. Obvious from Theorems 5 and 7. �

The corresponding results for q > 1 follow.

THEOREM 9. Here we assume all as in Proposition 5 . Let q ∈ N − {1} . Then
1) (∫

X
Dq
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

)1/q

� |L̃(1)(t) − 1|
(∫

X

(
D(f (t,ω), õ)

)q
dP(ω)

)1/q

+ (L̃(1)(t))1− 1
q

(
q∑

k=0

(
q
k

)(
(L̃(1))(t)

)1− k
q

)1/q

×

×Ω(F)
1

(
f , ((L̃(· − t)2q)(t))1/2q

)
Lq , ∀t ∈ [a, b].

(40)

And also holds
2)

sup
t∈[a,b]

(∫
X

D
(
M(f )(t,ω), f (t,ω)

)q
dP(ω)

)1/q

� ‖L̃(1) − 1‖∞ sup
t∈[a,b]

(∫
X

Dq
(
f (t,ω), õ

)
dP(ω)

)1/q

+ ‖L̃(1)‖1− 1
q∞

(∥∥∥∥∥
q∑

k=0

(
q
k

)
(L̃(1))1− k

q

∥∥∥∥∥
∞

)1/q

Ω(F)
1

(
f , ‖(L̃(· − t)2q)(t)‖1/2q

∞
)

Lq .

(41)

Let q > 1 real. Then
3)(∫

X
D
(
M(f )(t,ω), f (t,ω)

)q
dP(ω)

)1/q

� |L̃(1)(t) − 1|
(∫

X

(
D(f (t,ω), õ)

)q
dP(ω)

)1/q

+ 21− 1
q (L̃(1)(t))1− 1

q (L̃(1)(t)+1)1/qΩ(F)
1

(
f , ((L̃(· − t)2q)(t))1/2q

)
Lq ,

(42)

∀t ∈ [a, b] . And also holds
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4)
sup

t∈[a,b]

(∫
X

D
(
M(f )(t,ω), f (t,ω)

)q
dP(ω)

)1/q

� ‖L̃(1) − 1‖∞ sup
t∈[a,b]

(∫
X

Dq(f (t,ω), õ)dP(ω)
)1/q

+ 21− 1
q ‖L̃(1)‖1− 1

q∞ ‖L̃(1) + 1‖1/q
∞ Ω(F)

1

(
f , ‖(L̃(· − t)2q)(t)‖1/2q

∞
)

Lq .

(43)

When q ∈ N − {1} then inequality (40) is sharper than (42) and inequality (41) is
sharper than (43) .

Note. Later we will see that inequalities (40)–(43) and/or inequalities (27)–(30)
can be used to prove “q -mean” convergence with rates of a sequence of M ’s to unit
operator I .

Proof. Initially from the proof of Proposition 5 we get(∫
X

(
D(M(f )(t,ω), f (t,ω)

)q
dP(ω)

)1/q

� θ +

(∫
X

(∫
[a,b]

D
(
f (s,ω), f (t,ω)

)
μt(dt)

)q

dP(ω)

)1/q

(θ as in (26))

� θ + m
1− 1

q
t

(∫
[a,b]

(
Ω(F)

1 (f , |s − t|)Lq
)q

dμt(s)

)1/q

(let h > 0)

(by (33))
� θ + m

1− 1
q

t

(∫
[a,b]

(
1 +

(s − t)2

h2

)q

dμt(s)

)1/q

Ω(F)
1 (f , h)Lq =: (ξ).

1) Let q ∈ N − {1} . We observe that∫
[a,b]

(
1 +

(s − t)2

h2

)q

dμt(s) =
∫

[a,b]

(
q∑

k=0

(
q
k

)
(s − t)2k

h2k

)
dμt(s)

= mt +
q−1∑
k=1

(
q
k

)
1

h2k

(∫
[a,b]

(s − t)2kdμt(s)

)
+

1
h2q

(∫
[a,b]

(s − t)2qdμt(s)

)
.

For k = 1, . . . , q − 1 , q
k > 1 and by Hölder’s inequality we have

∫
[a,b]

(s − t)2kdμt(s) � m
1− k

q
t

(∫
[a,b]

(s − t)2qdμt(s)

)k/q

.

Hence∫
[a,b]

(
1 +

(s − t)2

h2

)q

dμt(s) �
q∑

k=0

(
q
k

)
m1−(k/q)

t

h2k

(∫
[a,b]

(s − t)2qdμt(s)

)k/q
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(
by choosing

h : =

(∫
[a,b]

(s − t)2qdμt(s)

)1/2q

=
(
(L̃((· − t)2q))(t)

)1/2q
> 0
)

�
q∑

k=0

(
q
k

)
m

1− k
q

t .

(44)

That is (∫
[a,b]

(
1 +

(s − t)2

h2

)q

dμt(s)

)1/q

�
(

q∑
k=0

(
q
k

)
m

1− k
q

t

)1/q

. (45)

Thus by (44) and (45) we have

(ξ) � θ +
(
L̃(1)(t)

)1− 1
q

(
q∑

k=0

(
q
k

)
(L̃(1)(t))1− k

q

)1/q

×

× Ω(F)
1

(
f , ((L̃((· − t)2q))(t))1/2q

)
Lq , ∀t ∈ [a, b].

That is establishing (40). When the choice (44) of h = 0 then again (40) is trivially
valid.

2) Let now q > 1 real, then again by convexity of xq , x � 0 we have(
1 +

(s − t)2

h2

)q

� 2q−1

(
1 +

(s − t)2q

h2q

)
, h > 0, ∀s, t ∈ [a, b].

Hence

(ξ) � θ + m
1− 1

q
t 21− 1

q

(∫
[a,b]

(
1 +

(s − t)2q

h2q

)
dμt(s)

)1/q

Ω(F)
1 (f , h)Lq

= θ + 21− 1
q m

1− 1
q

t

[
mt +

1
h2q

∫
[a,b]

(s − t)2qdμt(s)

]1/q

Ω(F)
1 (f , h)Lq

(let h > 0 as in (44))

= θ + 21− 1
q m

1− 1
q

t (mt + 1)1/qΩ(F)
1 (f , h)Lq

= θ + 21− 1
q (L̃(1)(t))1− 1

q (L̃(1)(t) + 1)1/qΩ(F)
1

(
f , ((L̃((· − t)2q))(t))1/2q

)
Lq ,

∀t ∈ [a, b] . That is proving (42).
When the choice (44) for h = 0 then inequality (42) is trivially valid. Inequal-

ities (41) and (43) derive easily from (40) and (42), respectively, and they are valid,
similarly, as inequalities (29) and (30). The comparison of inequalities is the same as
in Theorem 6.

Finally we derive

THEOREM 10. Here we assume all as in Proposition 5 . Let q ∈ N − {1} . Then
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1)
(∫

X
Dq
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

)1/q

� |L̃(1)(t) − 1|
(∫

X
Dq
(
f (t,ω), õ

)
dP(ω)

)1/q

+ (L̃(1)(t))1− 1
q

(
q∑

k=0

(
q
k

)
((L̃(1))(t))1− k

q

)1/q

×

× min
{
Ω(F)

1

(
f , ((L̃(| · −t|q))(t)1/q

)
Lq ,

Ω(F)
1

(
f , ((L̃(· − t)2q)(t))1/2q

)
Lq

}
, ∀t ∈ [a, b].

(46)

And also holds
2)

sup
t∈[a,b]

(∫
X

Dq
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

)1/q

� ‖L̃(1) − 1‖∞ sup
t∈[a,b]

(∫
X

Dq
(
f (t,ω), õ

)
dP(ω)

)1/q

+ ‖L̃(1)‖1− 1
q∞

(∥∥∥∥∥
q∑

k=0

(
q
k

)
(L̃(1))1− k

q

∥∥∥∥∥
∞

)1/q

×

× min
{
Ω(F)

1

(
f , ‖(L̃(| · −t|q))(t)‖1/q

∞
)

Lq ,

Ω(F)
1

(
f , ‖(L̃(· − t)2q)(t)‖1/2q

∞
)

Lq

}
.

(47)

Let q > 1 real. Then
3) (∫

X
D
(
M(f )(t,ω), f (t,ω)

)q
dP(ω)

)1/q

� |L̃(1)(t) − 1|
(∫

X

(
D(f (t,ω), õ)

)q
dP(ω)

)1/q

+ 21− 1
q (L̃(1)(t))1− 1

q (L̃(1)(t) + 1)1/q×
× min

{
Ω(F)

1

(
f , ((L̃(| · −t|q))(t))1/q

)
Lq ,

Ω(F)
1

(
f , ((L̃(· − t)2q)(t))1/2q

)
Lq ,
}
, ∀t ∈ [a, b].

(48)

And also holds
4)

sup
t∈[a,b]

(∫
X

Dq
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/q

� ‖L̃(1) − 1‖∞ sup
t∈[a,b]

(∫
X

Dq
(
f (t,ω), õ

)
P(dω)

)1/q

+ 21− 1
q ‖L̃(1)‖1− 1

q∞ ‖L̃(1) + 1‖1/q
∞ ×

× min
{
Ω(F)

1

(
f , ‖(L̃(| · −t|q))(t)‖1/q

∞
)

Lq ,

Ω(F)
1

(
f , ‖(L̃(· − t)2q)(t)‖1/2q

∞
)

Lq

}
.

(49)
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When q ∈ N − {1} then inequality (46) is sharper than (48) and (47) sharper than
(49) .

Proof. By Theorems 6 and 9. �

We give

COROLLARY 1. All here as in Proposition 4 and∫
X

D2
(
f (t,ω), õ

)
dP(ω) < ∞, ∀t ∈ [a, b].

Then
1)

(∫
X

D2
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/2

� |L̃(1)(t) − 1|
(∫

X
D2
(
f (t,ω), õ

)
P(dω)

)1/2

+ (L̃(1)(t))1/2
(
L̃(1)(t) + 2(L̃(1)(t))1/2 + 1

)1/2×
×Ω(F)

1

(
f , ((L̃((· − t)2))(t))1/2

)
L2 , ∀t ∈ [a, b].

(50)

and
2)

sup
t∈[a,b]

(∫
X

D2
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/2

� ‖L̃(1) − 1‖∞ sup
t∈[a,b]

(∫
X

D2
(
f (t,ω), õ

)
P(dω)

)1/2

+ ‖L̃(1)‖1/2
∞ ‖L̃(1) + 2(L̃(1))1/2 + 1‖1/2

∞ Ω(F)
1

(
f , ‖(L̃((· − t)2))(t)‖1/2

∞
)

Lq .

(51)

Proof. By Theorem 6, inequalities (27) and (29). �

All inequalities produced in this article are of Shisha–Mond type (see [16]) in the
fuzzy-random sense. We will derive next some Fuzzy-Random Korovkin Theorems
regarding the spaces of functions

Kq([a, b]) :=
{

f ∈ CU
FR([a, b]):

∫
X

Dq
(
f (t,ω), õ

)
dP(ω) < ∞, ∀t ∈ [a, b]

}
,

where 1 � q < ∞ . We observe that if 1 � k < ∞ such that k � q then

Kq([a, b]) ⊆ Kk([a, b]).

For the above purpose we need to put together the following assumptions and
settings.

Assumption 2 . Let (X,B, P) be a probability space, [a, b] ⊂ R , f ∈ CU
FR([a, b]) .

Let {Ln}n∈N be a sequence of fuzzy positive linear operators from CF ([a, b]) into itself
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for which there exists a corresponding sequence of positive linear operators {L̃}n∈N

from C([a, b]) into itself such that

(Lng)(r)
± = L̃n(g

(r)
± ), (52)

respectively, ∀r ∈ [0, 1] , ∀n ∈ N , ∀g ∈ CF ([a, b]) . We then consider the sequence
of positive fuzzy random linear operators {Mn}n∈N from CU

FR([a, b]) into CFR([a, b])
defined by

Mn(f )(t,ω) := Ln(f (·,ω))(t), (53)

∀(t,ω) ∈ [a, b] × X , ∀n ∈ N , ∀f ∈ CU
FR([a, b]) . Here I is the fuzzy random

unit operator, i.e. I(f )(t,ω) = f (t,ω) , ∀(t,ω) ∈ [a, b] × X . We assume also that
{L̃n(1)}n∈N is bounded.

From Theorem 8 we have

COROLLARY 2. Here all are as in Assumption 2 , and∫
X

D
(
f (t,ω), õ

)
dP(ω) < ∞, ∀t ∈ [a, b].

Then
1)

∫
X

D
(
Mn(f )(t,ω), f (t,ω)

)
dP(ω)

� |L̃n(1)(t) − 1|
(∫

X
D
(
f (t,ω), õ

)
dP(ω)

)

+ min

{(
L̃n(1)(t) +

√
L̃n(1)(t)

)
,
(
L̃n(1)(t) + 1

)}
×

×Ω(F)
1

(
f , (L̃n((· − t)2)(t))1/2

)
L1 , ∀t ∈ [a, b], ∀n ∈ N,

(54)

and
2) sup

t∈[a,b]

(∫
X

D
(
Mn(f )(t,ω), f (t,ω)

)
dP(ω)

)

� ‖L̃n(1) − 1‖∞ sup
t∈[a,b]

(∫
X

D
(
f (t,ω), õ

)
dP(ω)

)

+ min

{
‖L̃n(1) +

√
L̃n(1)‖∞, ‖L̃n(1) + 1‖∞

}
×

×Ω(F)
1

(
f , ‖L̃n((· − t)2)(t)‖1/2

∞
)

L1 , ∀n ∈ N.

(55)

From Corollary 1 we get

COROLLARY 3. Here all are as in Assumption 2 , and∫
X

D2
(
f (t,ω), õ

)
dP(ω) < ∞, ∀t ∈ [a, b].
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Then
1)

(∫
X

D2
(
Mn(f )(t,ω), f (t,ω)

)
P(dω)

)1/2

� |L̃n(1)(t) − 1|
(∫

X
D2
(
f (t,ω), õ

)
P(dω)

)1/2

+ (L̃n(1)(t))1/2
(
L̃n(1)(t) + 2(L̃n(1)(t))1/2 + 1

)1/2×
×Ω(F)

1

(
f , ((L̃n((· − t)2))(t))1/2

)
L2 , ∀t ∈ [a, b], ∀n ∈ N.

(56)

And also holds
2)

sup
t∈[a,b]

(∫
X

D2
(
Mn(f )(t,ω), f (t,ω)

)
P(dω)

)1/2

� ‖L̃n(1) − 1‖∞ sup
t∈[a,b]

(∫
X

D2
(
f (t,ω), õ

)
P(dω)

)1/2

+ ‖L̃n(1)‖1/2
∞ ‖L̃n(1) + 2(L̃n(1))1/2 + 1‖1/2

∞ ×
×Ω(F)

1

(
f , ‖(L̃n((· − t)2))(t)‖1/2

∞
)

L2 , ∀n ∈ N.

(57)

Note. One sees from [16] that∥∥(L̃n((·−t)2)
)
(t)
∥∥
∞�‖L̃n(x2)(t)−t2‖∞+2c‖Ln(x)(t)−t‖∞+c2‖Ln(1)(t)−1‖∞, (58)

where c := max(|a|, |b|) , ∀n ∈ N . Then one from the above fuzzy random Shisha–
Mond type inequalities (55) and (57) derives the following basic fuzzy randomKorovkin
Theorems, see also [15].

THEOREM 11. Here all are as in Assumption 2 . Furthermore assume that

L̃n(1) u→ 1, L̃n(id) u→ id, L̃n(id2) u→ id2,

as n → ∞ , where u means uniformly and id is the identity map. Then

lim
n→∞

∥∥∥∥
∫

X
D
(
Mn(f )(t,ω), f (t,ω)

)
dP(ω)

∥∥∥∥
∞,t

= 0, ∀f ∈ K1([a, b]). (59)

I.e.

Mn(f )(t,ω)
“1-mean”
−−→
n→∞

f (t,ω), (60)

uniformly, ∀f ∈ K1([a, b]) , that is uniformly Mn
“ 1 -mean”−→ I , as n → ∞ , on K1([a, b]) .

Proof. Using (55), (58) and Proposition 2(ii) . �

We continue with the second basic fuzzy random Korovkin theorem.

THEOREM 12. Here all are as in Assumption 2 . Furthermore assume that

L̃n(1) u→ 1, L̃n(id) u→ id, L̃n(id2) u→ id2, as n → ∞.
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Then

lim
n→∞

∥∥∥∥
∫

X
D2
(
Mn(f )(t,ω), f (t,ω)

)
P(dω)

∥∥∥∥
∞,t

= 0, ∀f ∈ K2([a, b]). (61)

I.e.
Mn(f )(t,ω) “2-mean”−→ f (t,ω), (62)

uniformly, ∀f ∈ K2([a, b]) , that is uniformly Mn
“2-mean”−→ I , as n → ∞ , on K2([a, b]) .

Proof. From (57), (58) and Proposition 2(ii) . �
The related general fuzzy random Korovkin theorem follows.

THEOREM 13. Here all are as in Assumption 2 , q > 2 . Furthermore we assume
that

(i) L̃n(1)
u

−→
n → ∞

1 ,

and
(ii) limn→∞ ‖(L̃n(| · −t|q))(t)‖∞ = 0, (63)

or
(ii)′ lim

n→∞ ‖(L̃n(· − t)2q)(t)‖∞ = 0 .

Then

lim
n→∞

∥∥∥∥
∫

X
Dq
(
Mn(f )(t,ω), f (t,ω)

)
P(dω)

∥∥∥∥
∞,t

= 0, ∀f ∈ Kq([a, b]). (64)

I.e.
Mn(f )(t,ω)

“ q -mean”−→ f (t,ω), (65)

uniformly, ∀f ∈ Kq([a, b]) , that is uniformly Mn
“ q -mean”−→ I , as n → ∞ , on Kq([a, b]) .

Proof. By (30) or (43) and Proposition 2(ii) . In fact (ii)′ implies (ii) . So one
can use (ii) or (ii)′ as long as it is easier to be verified. �

The case mt = L̃(1)(t) = 1 , ∀t ∈ [a, b] is a very important and common one.
Then all results of the paper simplify a lot as follows.

PROPOSITION 6. All here as in Proposition 4 and mt = 1 , ∀t ∈ [a, b] . Then

D
(
M(f )(t,ω), f (t,ω)

)
�
∫

[a,b]
D
(
f (s,ω), f (t,ω)

)
μt(ds), ∀(t,ω) ∈ [a, b] × X, (66)

where μt is as in (10) .

Proof. We notice that the B -measurable function

D
(
M(f )(t,ω), f (t,ω)

) (15)
= D

(∫
[a,b]

f (s,ω)μt(ds),
∫

[a,b]
f (t,ω)μt(ds)

)

� (by Theorem 2(2))
∫

[a,b]
D
(
f (s,ω), f (t,ω)

)
μt(ds). �
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Thus we obtain

THEOREM 14. All here as in Proposition 6 . Then

1)
∫

X
D
(
M(f )(t,ω), f (t,ω)

)
dP(ω) � 2Ω(F)

1

(
f , (L̃((· − t)2)(t))1/2

)
L1 , (67)

∀t ∈ [a, b],
and

2) sup
t∈[a,b]

∫
X
D
(
M(f )(t,ω), f (t,ω)

)
dP(ω) � 2Ω(F)

1

(
f , ‖L̃((·−t)2)(t)‖1/2

∞
)

L1 . (68)

Proof. By integrating (66), the proof follows, in a simpler way, as the proof of
Theorem 5. �

Also we have

PROPOSITION 7. All here as in Proposition 6 , q > 1 . Then(∫
X

(
D(M(f )(t,ω), f (t,ω)

)q
dP(ω)

)1/q

�
(∫

[a,b]

(
1 +

|s − t|
h

)q

dμt(s)

)1/q

Ω(F)
1 (f , h)Lq , h > 0, ∀t ∈ [a, b].

(69)

Proof. Using (66) in exactly the same but simpler manner as in the proof of
Proposition 5. �

We present

THEOREM 15. All here as in Proposition 6 , q > 1 . Then
1)

(∫
X

Dq
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/q

� 2Ω(F)
1

(
f , ((L̃(| · −t|q))(t))1/q

)
Lq , ∀t ∈ [a, b],

(70)

and
2) sup

t∈[a,b]

(∫
X

Dq
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/q

� 2Ω(F)
1

(
f , ‖(L̃(| · −t|q))(t)‖1/q

∞
)

Lq .

(71)

Proof. We use (69) and it follows similarly as the proof of Theorem 6. �
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We also give

THEOREM 16. Here all as in Proposition 4 , mt = 1 , ∀t ∈ [a, b] and q > 1 . Then
1) (∫

X
Dq
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

)1/q

� 2Ω(F)
1

(
f , ((L̃(· − t)2q)(t))1/2q

)
Lq , ∀t ∈ [a, b],

(72)

and
2)

sup
t∈[a,b]

(∫
X

Dq
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

)1/q

� 2Ω(F)
1

(
f , ‖(L̃(· − t)2q)(t)‖1/2q

∞
)

Lq .

(73)

Proof. Similar to the proof of Theorem 9. �

We derive

THEOREM 17. Here all as in Proposition 4 , mt = 1 , ∀t ∈ [a, b] and q > 1 . Then
1) (∫

X
Dq
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

)1/q

� 2 min
{
Ω(F)

1

(
f , ((L̃(| · −t|q))(t))1/q

)
Lq ,

Ω(F)
1

(
f , ((L̃(· − t)2q)(t))1/2q

)
Lq

}
, ∀t ∈ [a, b],

(74)

and
2)

sup
t∈[a,b]

(∫
X

Dq
(
M(f )(t,ω), f (t,ω)

)
dP(ω)

)1/q

� 2 min
{
Ω(F)

1

(
f , ‖(L̃(| · −t|q))(t)‖1/q

∞
)

Lq ,

Ω(F)
1

(
f , ‖(L̃(· − t)2q)(t)‖1/2q

∞
)

Lq

}
.

(75)

Proof. From Theorems 15 and 16. �

We have

COROLLARY 4. All here as in Proposition 4 , mt = 1 , ∀t ∈ [a, b] . Then
1) (∫

X
D2
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/2

� 2Ω(F)
1

(
f , ((L̃((· − t)2))(t))1/2

)
L2 , ∀t ∈ [a, b],

(76)

and
2)

sup
t∈[a,b]

(∫
X

D2
(
M(f )(t,ω), f (t,ω)

)
P(dω)

)1/2

� 2Ω(F)
1

(
f , ‖(L̃((· − t)2))(t)‖1/2

∞
)

L2 .

(77)

Proof. By Theorem 15, q = 2 . �

COROLLARY 5. Here all as in Assumption 2 , mt = 1 , ∀t ∈ [a, b] . Then
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1)
∫

X
D
(
Mn(f )(t,ω), f (t,ω)

)
dP(ω)

� 2Ω(F)
1

(
f , (L̃n((· − t)2)(t))1/2

)
L1 , ∀t ∈ [a, b], ∀n ∈ N,

(78)

and
2) sup

t∈[a,b]

(∫
X

D
(
Mn(f )(t,ω), f (t,ω)

)
dP(ω)

)

� 2Ω(F)
1

(
f , ‖(L̃n((· − t)2))(t)‖1/2

∞
)

L1 , ∀n ∈ N.

(79)

Proof. By Theorem 14. �

COROLLARY 6. Here all as in Assumption 2 , mt = 1 , ∀t ∈ [a, b] . Then
1) (∫

X
D2
(
Mn(f )(t,ω), f (t,ω)

)
P(dω)

)1/2

� 2Ω(F)
1

(
f , ((L̃n((· − t)2))(t))1/2

)
L2 , ∀t ∈ [a, b], ∀n ∈ N.

(80)

and
2) sup

t∈[a,b]

(∫
X

D2
(
Mn(f )(t,ω), f (t,ω)

)
P(dω)

)1/2

� 2Ω(F)
1

(
f , ‖(L̃n((· − t)2))(t)‖1/2

∞
)

L2 , ∀n ∈ N.

(81)

Proof. By Theorem 15, q = 2 . �

We give now the following fuzzy random Korovkin Theorems for the case of
L̃(1)(t) = 0 , ∀t ∈ [a, b] .

THEOREM 18. Here all are as in Assumption 2 . Furthermore assume that

L̃n(1)(t) = 1, ∀t ∈ [a, b], L̃n(id) u→ id, L̃n(id2) u→ id2, as n → ∞.

Then

lim
n→∞

∥∥∥∥
∫

X
D
(
Mn(f )(t,ω), f (t,ω)

)
dP(ω)

∥∥∥∥
∞,t

= 0, ∀f ∈ CU
FR([a, b]). (82)

I.e.
Mn(f )(t,ω) “ 1 -mean”−→ f (t,ω), (83)

uniformly, ∀f ∈ CU
FR([a, b]) , that is uniformly Mn

“ 1 -mean”−→ I , as n → ∞ , on
CU
FR([a, b]) .

Proof. Using (79) and (58) and Proposition 2(ii) . �

We continue with

THEOREM 19. Here all are as in Assumption 2 . Furthermore assume that

L̃n(1)(t) = 1, ∀t ∈ [a, b], L̃n(id) u→ id, L̃n(id2) u→ id2, as n → ∞.
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Then

lim
n→∞

∥∥∥∥
∫

X
D2
(
Mn(f )(t,ω), f (t,ω)

)
P(dω)

∥∥∥∥
∞,t

= 0, ∀f ∈ CU
FR([a, b]). (84)

I.e.

Mn(f )(t,ω) “ 2 -mean”−→ f (t,ω), (85)

uniformly, ∀f ∈ CU
FR([a, b]) , that is uniformly Mn

“ 2 -mean”−→ I , as n → ∞ , on

CU
FR([a, b]) . Notice here that Mn

“ 2 -mean”−→ I implies Mn
“ 1 -mean”−→ I , uniformly, i.e.

Theorem 18 .

Proof. Using (81) and (58) and Proposition 2(ii) . �

Finally we present

THEOREM 20. Here all are as in Assumption 2 , L̃n(1)(t) = 1 , ∀t ∈ [a, b] and
q > 2 . We assume further that
(i) lim

n→∞ ‖(L̃n(| · −t|q))(t)‖∞ = 0 ,
or

(ii)′ limn→∞ ‖(L̃n(· − t)2q)(t)‖∞ = 0. (86)
Then

lim
n→∞

∥∥∥∥
∫

X
Dq
(
Mn(f )(t,ω), f (t,ω)

)
P(dω)

∥∥∥∥
∞,t

= 0, ∀f ∈ CU
FR([a, b]). (87)

I.e.

Mn(f )(t,ω)
“ q -mean”−→ f (t,ω), (88)

uniformly, ∀f ∈ CU
FR([a, b]) that is uniformly Mn

“ q -mean”−→ I , as n → ∞ , on
CU
FR([a, b]) .

Proof. By (71) or (73) and Propositoin 2(ii) . �

REMARK 6.
1) Notice here from (87), that Mn

“ q -mean”−→ I implies Mn
“ k -mean”−→ I , uniformly for

any 1 � k � q < ∞ on CU
FR([a, b]) .

2) In the case of mt = 1 , ∀t ∈ [a, b] , all presented results here did not require
the condition ∫

X
Dq
(
f (t,ω), õ

)
P(dω) < ∞, ∀t ∈ [a, b], 1 � q < ∞,

as they did the earlier ones for general mt � 0 .
3) One can do related research for other domains other than [a, b] , e.g. [0, +∞) ,

multivariate domains in R
k , k > 1 and K compact convex subset of a metric space.

Of course not all results can pass through there.
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5. Application

We consider here the fuzzy random Bernstein polynomials

B(F)
n (f )(x,ω) =

n∑∗

k=0

(
n
k

)
xk(1 − x)n−k � f

(
k
n
,ω
)

,

∀x ∈ [0, 1] , ∀ω ∈ X , ∀f ∈ CU
FR([0, 1]) , ∀n ∈ N , see (18). We apply first here (79)

for
Mn(f )(t,ω) = B(F)

n (f )(t,ω), ∀(t,ω) ∈ [a, b] × X,

and L̃n = Bn the real Bernstein operator

Bn(g)(x) =
n∑

k=0

(
n
k

)
xk(1 − x)n−kg

(
k
n

)
, ∀g ∈ C([0, 1]), ∀x ∈ [0, 1], ∀n ∈ N.

Clearly
Bn((· − t)2)(t) =

t(1 − t)
n

, t ∈ [0, 1].

Hence ∥∥Bn((· − t)2)(t)
∥∥1/2

∞ � 1
2
√

n
, ∀n ∈ N.

Notice also that (Bn(1))(t) = 1 , ∀t ∈ [0, 1] .
Clearly here B(F)

n (f )(t,ω) fulfill Assumption 2. Thus by (79) we obtain

sup
t∈[0,1]

(∫
X

D
(
B(F)

n (f )(t,ω), f (t,ω)
)
dP(ω)

)

� 2Ω(F)
1

(
f ,

1
2
√

n

)
L1

, ∀f ∈ CU
FR([0, 1]), ∀n ∈ N.

(89)

Similarly, from (81) we obtain

sup
t∈[0,1]

(∫
X

D2
(
B(F)

n (f )(t,ω), f (t,ω)
)
dP(ω)

)1/2

� 2Ω(F)
1

(
f ,

1
2
√

n

)
L2

, ∀f ∈ CU
FR([0, 1]), ∀n ∈ N.

(90)

Finally, from (75) for q > 2 we obtain

sup
t∈[0,1]

(∫
X

Dq
(
B(F)

n (f )(t,ω), f (t,ω)
)
dP(ω)

)1/q

� 2 min
{
Ω(F)

1

(
f , ‖(Bn(| · −t|q))(t)‖1/q

∞
)

Lq ,

Ω(F)
1

(
f , ‖(Bn(· − t)2q)(t)‖1/2q

∞
)

Lq ,
}
, ∀f ∈ CU

FR([0, 1]), ∀n ∈ N.

(91)

In particular, if f is additionally of Lipschitz type, i.e.∫
X

D
(
f (x,ω), f (y,ω)

)
P(dω) � θ|x − y|, θ > 0, ∀x, y ∈ [0, 1], (92)

then
Ω(F)

1 (f , δ)L1 � θ · δ, δ > 0, (93)
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and
Ω(F)

1

(
f ,

1
2
√

n

)
L1

� θ
2
√

n
, ∀n ∈ N. (94)

Hence
sup

t∈[0,1]

(∫
X

D
(
B(F)

n (f )(t,ω), f (t,ω)
)
dP(ω)

)
� θ√

n
, ∀n ∈ N, (95)

∀f ∈ CU
FR([0, 1]) which is of Lipschitz type (92).

Inequality (95) improves the corresponding inequality from (8), since over there
we only get

sup
x∈[0,1]

(∫
X

D
(
B(F)

n (f )(x,ω), f (x,ω)
)
P(dω)

)
� 3θ

2
√

n
, ∀n ∈ N. (96)
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