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ON A PROBLEM OF UNIVALENCE OF FUNCTIONS

SATISFYING A DIFFERENTIAL INEQUALITY
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(communicated by S. Owa)

Abstract. Let Hα (β) denote the class of normalized functions f , analytic in the unit disc E ,
which satisfy the condition

Re

[
(1 − α)f ′(z) + α

(
1 +

zf ′′(z)
f ′(z)

)]
> β , z ∈ E,

where α and β are pre-assigned real numbers. H. S. Al-Amiri and M. O. Reade, in 1975, have
shown that for α � 0 and also for α = 1 , the functions in Hα (0) are univalent in E . In
2005, V. Singh, S. Singh and S. Gupta proved that for 0 < α < 1 , functions in Hα (α) are
also univalent. In the present note, we establish that functions in Hα (β) are univalent for all
real numbers α and β satisfying α � β < 1 and that the result is sharp in the sense that the
constant β cannot be replaced by any real number less than α .

1. Introduction

Let A be the class of functions f , analytic in E = {z : |z| < 1} and normalized
by the conditions f (0) = f ′(0) − 1 = 0 . Denote by K , the class of functions f , with
f ′(0) �= 0 , which are convex (univalent) in E i.e. which satisfy

Re

[
1 +

zf ′′(z)
f ′(z)

]
> 0, z ∈ E.

A function f ∈ A is said to be close-to-convex if there is a real number α,−π/2 <
α < π/2 , and a convex function g (not necessarily normalized) such that

Re

[
eiα f ′(z)

g′(z)

]
> 0, z ∈ E.

It is well-known that every close-to-convex function is univalent. In 1934/35, Noshiro
[4] and Warchawski [6] obtained a simple but interesting criterion for univalence of
analytic functions. They proved that if an analytic function f satisfies Ref ′(z) > 0 for
all z in E , then f is univalent in E .
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For real numbers α and β , let

I(α, f (z)) = (1 − α)f ′(z) + α
(

1 +
zf ′′(z)
f ′(z)

)

and a class Hα(β) be defined as under:

Hα(β) = {f ∈ A : Re I(α, f (z)) > β , z ∈ E} . (1)

In fact, the class Hα(0) was first studied by Al-Amiri and Reade [2], in 1975. They
established that for α � 0 , each function f in Hα(0) satisfies Re f ′(z) > 0 in E and
so, is univalent in E . They were unable to settle the question of univalence for α > 0
except for α = 1 when, obviously, f is convex. Ahuja and Silverman [1] noticed that
the convex function f (z) = z/(1 − z) is not in Hα(0) for any real α, α �= 1 . In fact

Re{I(α, f (z))} = Re

[
1 − α

(1 − z)2
+ α

1 + z
1 − z

]
= − (1 − α) cos θ

2(1 − cos θ)
, z = eiθ �= 1,

which is negative for θ = θ0 = π/3 when α < 1 and for θ = θ0 = 2π/3 when
α > 1 . Thus H1(0) �⊂ Hα(0),α �= 1 and even for convex functions f , Ref ′(z) need
not be positive in E .

Recently, this problem was pursued by V. Singh, S. Singh and S. Gupta [5] and
they established that for 0 < α < 1 , the class Hα(α) consists of univalent functions.
They also showed that the functions f in Hα(1/2) satisfy Ref ′(z) > 1/2 for all z in
E and for all α � 0 .

In the present note, we prove that if f ∈ Hα(β) , then Ref ′(z) > 0 in E for all
real numbers α and β satisfying α � β < 1 . Further, it will be shown that our result
contains the result of Singh, Singh and Gupta [5] and improves the result of Al-Amiri
and Reade [2]. We claim that our result is the best possible one in the sense that β
cannot be replaced by any real number less than α . We use the following celebrated
lemma of Miller [3] to prove our result.

LEMMA 1.1. Let D be a subset of C × C (C is the complex plane) and let
φ : D → C be a complex function. For u = u1 + iu2, v = v1 + iv2 ( u1, u2, v1, v2 are
reals), let φ satisfy the following conditions:

(i) φ(u, v) is continuous in D ;
(ii) (1, 0) ∈ D and Reφ(1, 0) > 0 ; and
(iii) Re {φ(iu2, v1)} � 0 for all (iu2, v1) ∈ D such that v1 � −(1 + u2

2)/2 .
Let p(z) = 1 + p1z + p2z2 + . . . be regular in the unit disc E , such that

(p(z), zp′(z)) ∈ D for all z ∈ E . If

Re[φ(p(z), zp′(z))] > 0, z ∈ E,

then Re p(z) > 0, z ∈ E.
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2. Main result

THEOREM 2.1. Let α and β be real numbers such that α � β < 1 . Assume that
an analytic function f ∈ A satisfies

Re

[
(1 − α)f ′(z) + α

(
1 +

zf ′′(z)
f ′(z)

)]
> β , z ∈ E. (2)

Then Re f ′(z) > 0 in E . So, f is close-to-convex and hence univalent in E . The
result is sharp in the sense that the constant β on the right hand side of (2) cannot be
replaced by a constant smaller than α .

Proof. Let p(z) = 1 + p1z + p2z2 + . . . be analytic in E such that for all z ∈ E ,

f ′(z) = p(z) (3)

Then,

(1 − α)f ′(z) + α
(

1 +
zf ′′(z)
f ′(z)

)
= (1 − α)p(z) + α

[
1 +

zp′(z)
p(z)

]
.

Thus, condition (2) is equivalent to

Re

[
1 − α
1 − β

p(z) +
α

1 − β
zp′(z)
p(z)

+
α − β
1 − β

]
> 0, z ∈ E. (4)

If D = (C\{0})× C , define Φ(u, v) : D → C as under:

Φ(u, v) =
1 − α
1 − β

u +
α

1 − β
v
u

+
α − β
1 − β

.

Then Φ(u, v) is continuous in D , (1, 0) ∈ D and Re Φ(1, 0) = 1 > 0 . Further, in
view of (4), we get Re Φ(p(z), zp′(z)) > 0, z ∈ E. Let u = u1 + iu2, v = v1 + iv2 ,

where u1, u2, v1 and v2 are all reals. Then, for (iu2, v1) ∈ D , with v1 � − 1+u2
2

2 , we
have

Re Φ(iu2, v1) = Re

[
1 − α
1 − β

u2i +
α

1 − β
v1

u2i
+

α − β
1 − β

]

=
α − β
1 − β

� 0.

In view of (3) and Lemma 1.1, proof now follows.
To show that the constant β on the right hand side of (2) is the best possible one,

we consider the function f 0(z) = −z − 2 log(1 − z) . It can be easily verified that for
all z ∈ ∂E (boudary of E ), except z = ±1 ,

Re

[
(1 − α)f ′

0(z) + α
(

1 +
zf ′′

0 (z)
f ′
0(z)

)]
= α. (5)
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Moreover,

Re

[
(1 − α)f ′

0(z) + α
(

1 +
zf ′′

0 (z)
f ′
0(z)

)]
= 1

at z = 0 . Since α < 1 , so by minimum principle for harmonic functions, we conclude
that f 0 ∈ Hα(α) . Further, since Re f ′

0(z) > 0 in E , so the constant β on the right
side of (2) cannot be replaced by a constant smaller than α . This completes the proof
of our theorem. �

REMARK 2.1. Taking β = α , it is obvious that Theorem 2.1 completely contains
Theorem 1 proved in [5]. Moreover, it improves the result of Al-Amiri and M. O. Reade
[2] as shown by taking the function f 0 in Theorem 2.1 above. For example, writing
α = −1 in (5), we observe that at z = i ,

Re

[
2f ′

0(z) −
(

1 +
zf ′′

0 (z)
f ′
0(z)

)]
= −1.

Thus, the function f 0(z) fails to satisfy the condition of univalence laid down by
Al-Amiri and Reade in [2], although Re f ′

0(z) > 0 in E .
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