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(communicated by Th. M. Rassias)

Abstract. Let n � 2 be an integer. In this paper, we investigate the generalized Hyers-Ulam-
Rassias stability of a n -dimensional quadratic functional equation on Banach spaces and Banach
modules over a Banach algebra;

(4 − n)f (
n∑

j=1

xj) +
n∑

i=1

f (
n∑

j=1

θ(i, j)xj) = 4
n∑

i=1

f (xi) ,

where the function θ is defined by θ(i, j) =

{
1 if i �= j

−1 if i = j
.

1. Introduction

In 1940, the problemof stability of functional equationswasoriginated byUlam [17]
as follows: Under what condition does there exist an additive mapping near an approx-
imately additive mapping?

The first partial solution to Ulam’s question was provided by D. H. Hyers [7]. Let
X and Y are Banach spaces with norms || · || and ‖ · ‖ , respectively. Hyers showed
that if a function f : X → Y satisfies the following inequality

‖ f (x + y) − f (x) − f (y) ‖� ε

for all ε � 0 and for all x, y ∈ X , then the limit

a(x) = lim
n→∞ 2−nf (2nx)

exists for each x ∈ X and a : X → Y is the unique additive function such that

‖ f (x) − a(x) ‖� ε

for any x ∈ X . Moreover, if f (tx) is continuous in t for each fixed x ∈ X , then a is
linear.
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Hyers’s theorem was generalized in various directions. In particular, Th. M.
Rassias [11] considered a generalized version of the theorem of Hyers which permitted
the Cauchy difference to become unbounded. He proved the following theorem by
using a direct method: if a function f : X → Y satisfies the following inequality

‖ f (x + y) − f (x) − f (y) ‖� θ(||x||p + ||x||p)
for some θ � 0 , 0 � p < 1 , and for all x, y ∈ X , then there exists a unique additive
function such that

‖ f (x) − a(x) ‖� 2θ
2 − 2p

||x||p

for all x ∈ X . Moreover, if f (tx) is continuous in t for each fixed x ∈ X , then a is
linear. Gǎvruta [6] generalized the Rassias’s result above.

The quadratic function f (x) = cx2 (c ∈ R) satisfies the functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) . (1.1)

Hence this question is called the quadratic functional equation, and every solution of
the quadratic equation (1.1) is called a quadratic function.

A Hyers-Ulam stability theorem for the quadratic functional equation (1.1) was
proved by Skof [16] for functions f : X → Y , where X is a normed space and Y is a
Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant
domain X is replaced by an abelian group. In [3], Czerwik proved the Hyers-Ulam-
Rassias stability of the quadratic functional equation. Several functional equations have
been investigated; see [4-6], [12-15]. Recently, Park [9] proved the Cauchy-Rassias
stability of the given functional equation in Banach spaces where the mapping must be
even.

In [10], the generalized Hyer-Ulam-Rassias stability problem for generalized A -
quadratic mappings, defined in [8], in Banach modules over a Banach ∗ -algebra has
been solved. Furthermore, Bae and Park [1] have proved the Hyer-Ulam-Rassias
stability problem in Banach modules over a Banach C∗ -algebra.

In this paper, we are going to introduce another kind of n -dimensional quadratic
mapping and to investigate the generalized Hyers-Ulam-Rassias stability of a n -
dimensional quadratic functional equation as follows:

(4 − n)f (
n∑

j=1

xj) +
n∑

i=1

f (
n∑

j=1

θ(i, j)xj) = 4
n∑

i=1

f (xi) , (1.2)

for all x1, · · · , xn ∈ X , where the function θ is defined by

θ(i, j) =
{

1 if i �= j

−1 if i = j
.

2. A n -dimensional quadratic mapping

Throughout this paper, the function θ is defined by

θ(i, j) =
{

1 if i �= j

−1 if i = j
.
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THEOREM 2.1. Let X, Y be vector spaces. The given mapping f : X → Y defined
by

(4 − n)f (
n∑

j=1

xj) +
n∑

i=1

f (
n∑

j=1

θ(i, j)xj) = 4
n∑

i=1

f (xi) ,

for all x1, · · · , xn ∈ X . Then f has the following properties:
(1) f (0) = 0
(2) f (x) = f (−x) , for all x ∈ X .
(3) f is a quadratic mapping.

Proof. (1) By letting xk = 0 (k = 1, · · · , n) , we have

(4 − n)f (0) + nf (0) = 4nf (0) .

Since n � 2 , f (0) = 0 .
(2) Let x1 = x and xk = 0 (k = 2, · · · , n) . Then

(4 − n)f (x) + f (−x) + (n − 1)f (x) = 4f (x) .

Thus f (x) = f (−x) , for all x ∈ X .
(3) Letting x1 = x, x2 = y , and xk = 0 (k = 3, · · · , n) , we have

(4−n)f (x+y)+ f (−x+y)+ f (x−y)+(n−2)f (x+y) = 4f (x)+4f (y)+(n−2)f (0) .

By (1) and (2), we may conclude that

f (x + y) + f (x − y) = 2f (x) + 2f (y) .

Thus f is quadratic. �

3. Stability of a n -dimensional quadratic mapping with zero terms

Throughout this section, let X be a normed vector space with norm || · || and Y a
Banach space with norm ‖ · ‖ . Let n � 2 be integer.

For the given mapping f : X → Y , we define

Df (x1, · · · , xn) := (4 − n)f (
n∑

j=1

xj) +
n∑

i=1

f (
n∑

j=1

θ(i, j)xj) − 4
n∑

i=1

f (xi) , (3.1)

for all x1, · · · , xn ∈ X .

THEOREM 3.1. Let n � 2 , and let f : X → Y be a mapping satisfying f (0) = 0
for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑
j=0

4−jφ(2jx1, · · · , 2jxn) < ∞ , (3.2)

‖ Df (x1, · · · , xn) ‖� φ(x1, · · · , xn) , (3.3)
for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 1
8
φ̃(x, x, 0, · · · , 0) , (3.4)

for all x ∈ X .
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Proof. Letting x1 = x2 = x and xk = 0 (k = 3, · · · , n) in (3.3), we have

‖ f (x) − 1
4
f (2x) ‖� 1

8
φ(x, x, 0, · · · , 0) , (3.5)

for all x ∈ X . Assume

‖ f (x) − (
1
4
)rf (2rx) ‖� 1

8

r−1∑
j=0

(
1
4
)jφ(2jx, 2jx, 0, · · · , 0) , (3.6)

for all x ∈ X . Now, letting x = 2x in the equation (3.6), we have

‖ f (2x) − (
1
4
)rf (2r+1x) ‖� 1

8

r∑
j=1

(
1
4
)j−1φ(2jx, 2jx, 0, · · · , 0) , (3.7)

for all x ∈ X .
Then (3.5) and (3.7) imply that

‖ f (x) − (
1
4
)r+1f (2r+1x) ‖ �‖ f (x) − 1

4
f (2x) ‖ + ‖ 1

4
f (2x) − (

1
4
)r+1f (2r+1x) ‖

� 1
8

r∑
j=0

(
1
4
)jφ(2jx, 2jx, 0, · · · , 0) ,

for all x ∈ X . Hence

‖ f (x) − (
1
4
)r+1f (2r+1x) ‖� 1

8

r∑
j=0

(
1
4
)jφ(2jx, 2jx, 0, · · · , 0) , (3.8)

for all x ∈ X and for all positive integer r .

LEMMA 3.2. For any positive integer m ,

‖ (
1
4
)m+1f (2m+1x) − (

1
4
)mf (2mx) ‖� (

1
4
)m 1

8
φ(2mx, 2mx, 0, · · · , 0) ,

for all x ∈ X .

Proof. Letting x = 2mx in (3.5), we get the desired result. �

Now, we will show that the sequence {2−2mf (2mx)} is a Cauchy sequence in a
Banach space Y . For all integers r > m > 0 ,

‖ (
1
4
)rf (2rx) − (

1
4
)mf (2mx) ‖

�‖ (
1
4
)rf (2rx) − (

1
4
)r−1f (2r−1x) ‖ + · · ·+ ‖ (

1
4
)m+1f (2m+1x) − (

1
4
)mf (2mx) ‖

� 1
8

r−1∑
j=m

(
1
4
)jφ(2jx, 2jx, 0, · · · , 0)
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for all x ∈ X. As r → ∞ , we may conclude that the sequence {2−2mf (2mx)} is a
Cauchy sequence. Hence the sequence {2−2mf (2mx)} converges in Y for all x ∈ X .
Thus we may define a mapping Q : X → Y via

Q(x) = lim
m→∞ 2−2mf (2mx) ,

for all x ∈ X . By (3.1), (3.2), and (3.3),

‖ DQ(x1, · · · , xn) ‖= lim
m→∞(

1
4
)m ‖ Df (2mx1, · · · , 2mxn) ‖

� lim
m→∞(

1
4
)mφ(2mx1, · · · , 2mxn) = 0 ,

for all x1, · · · , xn ∈ X . That is, DQ(x1, · · · , xn) = 0 . By Theorem 2.1, the mapping
Q : X → Y is quadratic. Also, letting m = 0 and passing the limit r → ∞ , we get
the (3.4).

Note that

Q(2jx) = lim
m→∞ 2−2mf (2m(2jx))

= 22j lim
m→∞ 2−2(m+j)f (2m+jx)

= 22jQ(x) .

Now, let Q′ : X → Y be another n -dimensional quadratic mapping satisfying
(3.4). Then by previous note, we have

‖ Q(x) − Q′(x) ‖ = 2−2j ‖ Q(2jx) − Q′(2jx) ‖
� 2−2j

(
‖ Q(2jx) − f (2jx) ‖ + ‖ Q′(2jx) − f (2jx) ‖

)
� 2 · 2−2j

8
φ̃(2jx, 2jx, 0, · · · , 0) ,

for all x ∈ X . As j → ∞ , we may conclude that Q(x) = Q′(x) , for all x ∈ X . Thus
such a n -dimensional quadratic mapping Q : X → Y is unique. �

THEOREM 3.3. Let n � 2 , and let f : X → Y be a mapping satisfying f (0) = 0
for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑
j=0

4jφ(2−jx1, · · · , 2−jxn) < ∞ ,

‖ Df (x1, · · · , xn) ‖� φ(x1, · · · , xn) ,

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 1
8
φ̃(x, x, 0, · · · , 0) ,

for all x ∈ X .
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Proof. Similar to the proof of Theorem 3.1, if the x is replaced by 1
2x (not 2x )

in the proof of Theorem 3.1, then we have the desired results. �

COROLLARY 3.4. Let p �= 2 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying f (0) = 0 and

‖ Df (x1, · · · , xn) ‖� θ
n∑

i=1

||xi||p ,

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� θ
|4 − 2p| ||x||

p ,

for all x ∈ X .

Proof. Let
φ(x1, · · · , xn) = θ

n∑
i=1

||xi||p ,

and then apply to Theorem 3.1 when p < 2 , or apply to Theorem3.3 when p > 2 . �

THEOREM 3.5. Let n � 2 , and let f : X → Y be a mapping satisfying f (0) = 0
for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑
j=0

9−jφ(3jx1, · · · , 3jxn) < ∞ , (3.9)

‖ Df (x1, · · · , xn) ‖� φ(x1, · · · , xn) , (3.10)

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 1
9
φ̃(x, x, x, 0, · · · , 0) , (3.11)

for all x ∈ X .

Proof. Letting x1 = x2 = x3 = x and xk = 0 (k = 4, · · · , n) in (3.10), we have

‖ f (x) − 1
9
f (3x) ‖� 1

9
φ(x, x, x, 0, · · · , 0) , (3.12)

for all x ∈ X .
Replacing x by 3x , inductively, we have the following equation,

‖ f (x) − (
1
9
)rf (3rx) ‖� 1

9

r−1∑
j=0

(
1
9
)jφ(3jx, 3jx, 3jx, 0, · · · , 0) , (3.13)

for all x ∈ X and all positive integer r . For the remaining proof see Theorem 3.1, since
the equation (3.13) is similar to the equation (3.8). �
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THEOREM 3.6. Let n � 2 , and let f : X → Y be a mapping satisfying f (0) = 0
for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑
j=0

9jφ(3−jx1, · · · , 3−jxn) < ∞ ,

‖ Df (x1, · · · , xn) ‖� φ(x1, · · · , xn) ,

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 1
9
φ̃(x, x, x, 0, · · · , 0) ,

for all x ∈ X .

Proof. Similar to the proof of Theorem 3.1, if the x is replaced by 1
3x (not 3x )

in the proof of Theorem 3.1, then we have the desired results. �

COROLLARY 3.7. Let p �= 2 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying f (0) = 0 and

‖ Df (x1, · · · , xn) ‖� θ
n∑

i=1

||xi||p ,

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� θ
|3 − 3p−1| ||x||

p ,

for all x ∈ X .

Proof. Let
φ(x1, · · · , xn) = θ

n∑
i=1

||xi||p ,

and then apply to Theroem 3.5 when p < 2 , or apply to Theroem3.6 when p > 2 . �

THEOREM 3.8. Let n � 2 , and let f : X → Y be a mapping satisfying f (0) = 0
for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑
j=0

4−jφ(2jx1, · · · , 2jxn) < ∞ , (3.14)

‖ Df (x1, · · · , xn) ‖� φ(x1, · · · , xn) , (3.15)
for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 1
16

φ̃(x, x, x, x, 0, · · · , 0) , (3.16)

for all x ∈ X .
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Proof. Letting x1 = x2 = x3 = x4 = x and xk = 0 (k = 5, · · · , n) in (3.15), we
have

‖ f (x) − 1
4
f (2x) ‖� 1

16
φ(x, x, x, x, 0, · · · , 0) , (3.17)

for all x ∈ X . Similarly, the remains follow from the proof of Theorem 3.1. �

THEOREM 3.9. Let n � 2 , and let f : X → Y be a mapping satisfying f (0) = 0
for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑
j=0

4jφ(2−jx1, · · · , 2−jxn) < ∞ ,

‖ Df (x1, · · · , xn) ‖� φ(x1, · · · , xn) ,

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 1
16

φ̃(x, x, x, x, 0, · · · , 0) ,

for all x ∈ X .

Proof. Similar to the proof of Theorem 3.1, if the x is replaced by 1
2x (not 2x )

in the proof of Theorem 3.1, then we have the desired results. �

COROLLARY 3.10. Let p �= 2 and θ be positive real numbers, and let f : X → Y
be a mapping satisfying f (0) = 0 and

‖ Df (x1, · · · , xn) ‖� θ
n∑

i=1

||xi||p ,

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� θ
|4 − 2p| ||x||

p ,

for all x ∈ X .

Proof. Let

φ(x1, · · · , xn) = θ
n∑

i=1

||xi||p ,

and then apply to Theorem 3.8 when p < 2 , or apply to Theorem3.9 when p > 2 . �
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4. Stability of a n -dimensional quadratic mapping without zero terms

THEOREM 4.1. Let n � 2 be even and let f : X → Y be an even mapping
satisfying f (0) = 0 for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑
j=0

4−jφ(2jx1, · · · , 2jxn) < ∞ , (4.1)

‖ Df (x1, · · · , xn) ‖� φ(x1, · · · , xn) , (4.2)

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 1
4n

φ̃(x,−x, x,−x, · · · , x,−x) , (4.3)

for all x ∈ X .

Proof. For each k = 1, · · · , n , xk = (−1)k−1x in (4.2), we have

‖ nf (2x) − 4nf (x) ‖� φ(x,−x, x,−x, · · · , x,−x) ,

for all x ∈ X . Then we write

‖ f (x) − 1
4
f (2x) ‖� 1

4n
φ(x,−x, x,−x, · · · , x,−x) , (4.4)

for all x ∈ X . If x is replaced by 2x in the equation(4.4), inductively, we have the
following form

‖ f (x) − (
1
4
)rf (2rx) ‖� 1

4n

r−1∑
j=0

(
1
4
)jφ(2jx,−2jx, 2jx,−2jx, · · · , 2jx,−2jx) , (4.5)

for all x ∈ X and all positive integer r . Given the equation (4.5) is similar to the
equation (3.8), see proof of Theorem 3.1. �

THEOREM 4.2. Let n � 2 be even and let f : X → Y be an even mapping
satisfying f (0) = 0 for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑
j=0

4jφ(2−jx1, · · · , 2−jxn) < ∞ , (4.6)

‖ Df (x1, · · · , xn) ‖� φ(x1, · · · , xn) , (4.7)

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 1
4n

φ̃(x,−x, x,−x, · · · , x,−x) , (4.8)

for all x ∈ X .

Proof. Similar to the proof of Theorem 4.1, if the x is replaced by 1
2x (not 2x )

in the proof of Theorem 4.1, then we have the desired results. �
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COROLLARY 4.3. Let n � 2 be even, let p �= 2 and θ be positive real numbers,
and let f : X → Y be an even mapping satisfying f (0) = 0 and

‖ Df (x1, · · · , xn) ‖� θ
n∑

i=1

||xi||p ,

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� θ
|4 − 2p| ||x||

p ,

for all x ∈ X .

Proof. Let
φ(x1, · · · , xn) = θ

n∑
i=1

||xi||p ,

and then apply to Theorem 4.1 when p < 2 , or apply to Theorem4.2 when p > 2 . �

THEOREM 4.4. Let n � 2 be odd and let f : X → Y be an even mapping
satisfying f (0) = 0 for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑
j=0

3−jφ(3jx1, · · · , 3jxn) < ∞ , (4.9)

‖ Df (x1, · · · , xn) ‖� φ(x1, · · · , xn) , (4.10)

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 2
9(n − 1)

φ̃(x,−x, x,−x, · · · , x) , (4.11)

for all x ∈ X .

Proof. For each k = 1, · · · , n , xk = (−1)k−1x in (4.10), we have

‖ f (x) − 1
9
f (3x) ‖� 2

9(n − 1)
φ(x,−x, x, · · · ,−x, x) , (4.12)

for all x ∈ X . replacing x by 3x in (4.12), inductively, we have the following form

‖ f (x) − (
1
9
)rf (3rx) ‖� 2

9(n − 1)

r−1∑
j=0

(
1
9
)jφ(3jx,−3jx, 3jx, · · · ,−3jx, 3jx) , (4.13)

for all x ∈ X . The remains are similar to the proof of Theorem 4.1. �

THEOREM 4.5. Let n � 2 be odd and let f : X → Y be an even mapping
satisfying f (0) = 0 for which there exists a function φ : Xn → [0,∞) such that

φ̃(x1, · · · , xn) :=
∞∑
j=0

3jφ(3−jx1, · · · , 3−jxn) < ∞ , (4.14)
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‖ Df (x1, · · · , xn) ‖� φ(x1, · · · , xn) , (4.15)

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 2
9n − 1

φ̃(x,−x, x,−x, · · · , x) , (4.16)

for all x ∈ X .

Proof. Similar to the proof of Theorem 4.4, if the x is replaced by 1
2x (not 2x )

in the proof of Theorem 4.4, then we have the desired results. �

COROLLARY 4.6. Let n � 2 be odd, let p �= 2 and θ be positive real numbers,
and let f : X → Y be an even mapping satisfying f (0) = 0 and

‖ Df (x1, · · · , xn) ‖� θ
n∑

i=1

||xi||p ,

for all x1, · · · , xn ∈ X . Then there exists a unique n -dimensional quadratic mapping
Q : X → Y such that

‖ f (x) − Q(x) ‖� 2nθ
n − 1

1
|9 − 3p| ||x||

p ,

for all x ∈ X .

Proof. Let
φ(x1, · · · , xn) = θ

n∑
i=1

||xi||p ,

and then apply to Theorem 4.4 when p < 2 , or apply to Theorem4.5 when p > 2 . �

5. Results in Banach modules over a Banach algebra

Throughout this section, let B be a unital Banach ∗ -algebra with norm | | and
B1 = {a ∈ B | |a| = 1} , let BB1 and BB2 be left Banach modules with norms ‖ ‖ and
‖ ‖ , respectively, and let

ϕ : [BB1 \ {0}]n → R

be the function such that

ϕ̃(x1, · · · , xn) :=
∞∑
j=0

4−jϕ(2jx1, · · · , 2jxn) < ∞ , (5.1)

for all x1, · · · , xn ∈B B1\{0} .

DEFINITION 5.1. An n -dimensional quadratic mapping

Q :B B1 →B B2
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is called n -dimensional B−quadratic if Q(ax) = a2Q(x) for all a ∈ B and all
x ∈B B1 .

DEFINITION 5.2. For a ∈ B , let b = aa∗, a∗a, or (aa∗ + a∗a)/2 . An n -
dimensional quadraticmapping Q :B B1 →B B2 is called n -dimensional Bsa−quadratic
if Q(ax) = bQ(x) , for all a ∈ B, and all x ∈B B1 .

Since Banach spaces BB1 and BB2 are considered as Banach modules over B :=
C , the Bsa−quadratic mapping Q :B B1 →B B2 implies Q(ax) = |a|2Q(x) , for all
a ∈ C .

We define the approximate remainder Daf for a mapping f :B B1 →B B2 ,

Daf (x1, · · · , xn) := (4 − n)f (
n∑

j=1

axj) +
n∑

i=1

f (
n∑

j=1

θ(i, j)axj) − 4b
n∑

i=1

f (xi) ,

for all x1, · · · , xn ∈B B1 .

THEOREM 5.1. Let f :B B1 →B B2 be a mapping with f (0) = 0 for the case
(3.3) which there is a mapping ϕ :B B1 → R satisfying

‖ Daf (x1, · · · , xn) ‖� ϕ(x1, · · · , xn) , (5.2)

for all a ∈ B1 , x1, · · · , xn ∈B B1\{0} . If either f is measurable or f (tx) is
continuous in t ∈ R , for each fixed x ∈B B1 , then there exists an unique n−dimensional
Bsa−quadratic mapping Q :B B1 →B B2 defined by

Q(x) = lim
m→∞ 2−2mf (2mx) ,

which satisfies the inequality (3.4) for all x ∈B B1 .

Proof. By the same reasoning as the proof of Theorem 3.1, it follows from the
inequality of the statement a = 1 that there exists a unique n−dimensional quadratic
mapping Q :B B1 →B B2 defined by

Q(x) = lim
m→∞ 2−2mf (2mx) ,

which satisfies the inequality (3.4) for all x ∈B B1 . Under the assumptions that either
f is measurable or f (tx) is continuous in t ∈ R , for each fixed x ∈B B1 , by the
same reasoning as the proof of [11], one can show that Q is R -quadratic, that is ,
Q(tx) = t2Q(x) for all t ∈ R , for all x ∈B B1 .

Putting x1 = x2 = x and xj = 0 (j = 3, · · · , n) in (5.2) and dividing the resulting
inequality by 22m,

1
22m

‖2f (a22mx)+2f (0)−4b(n−2)f (0)−8bf (2m−1x)‖� 1
22m

φ(2m−1x, 2m−1x, 0, · · ·, 0) ,

for all x1, · · · , xn ∈B B1 . By the definition of Q ,

Q(ax) = lim
m→∞

1
22m

f (2max) = lim
m→∞ b

1
22m−2

f (2m−1x) = bQ(x).
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for every x ∈B B1 , for every a ∈ B(|a| = 1) . For a ∈ B \ {0} ,

Q(ax) = Q(|a| a
|a|x) = |a|2Q(

a
|a|x) = |a|2 b

|a|2 Q(x) = bQ(x),

for all x ∈B B1 . Thus Q is n−dimensional Bsa−quadratic, which completes the
proof. �

COROLLARY 5.2. Let f :B B1 →B B2 be a mapping with f (0) = 0 for the case
(3.3) which there exists mapping ϕ :B B1 → R satisfying

‖ b(4 − n)f (
n∑

j=1

xj) + b
n∑

i=1

f (
n∑

j=1

θ(i, j)xj) − 4
n∑

i=1

f (axi) ‖� ϕ(x1, · · · , xn) ,

for all a ∈ B1 , for all x1, · · · , xn ∈B B1\{0} . If either f is measurable or f (tx) is
continuous in t ∈ R , for each fixed x ∈B B1 , then there is an unique n−dimensional
Bsa−quadratic mapping Q :B B1 →B B2 which satisfies the inequality (3.4) for all
x ∈B B1 .

Proof. By the similar method of the proof of Theorem 5.1, one can obtain the
result. �

An n−dimensional quadratic mapping Q : B → B is called an n−dimensional
A-quadratic mapping if Q(ax) = aQ(x)a∗ for all a ∈ B, x ∈ B.

THEOREM 5.3. Let f :B B1 →B B2 be a mapping with f (0) = 0 for the case
(3.3) which there is mapping ψ :B B1 → R satisfying

‖ Q(ax) − aQ(x)a∗ ‖� ψ(x) and lim
m→∞

ψ(22mx)
22m

= 0 (5.3)

for all a ∈ B1 , x ∈B B1 . If either f is measurable or f (tx) is continuous in t ∈ R , for
each fixed x ∈B B1 , then there exists an unique n−dimensional A−quadraticmapping
Q :B B1 →B B2 defined by

Q(x) = lim
m→∞ 2−2mf (2mx) ,

which satisfies the inequality (3.4) for all x ∈B B1 .

Proof. By the same reasoning as the proof of Theorem 3.1, there exists a unique
n−dimensional R−quadratic mapping Q :B B1 →B B2 defined by

Q(x) = lim
m→∞ 2−2mf (2mx) ,

which satisfies the inequality (3.4) for all x ∈B B1 . By (5.3), for each element a ∈ B1 ,
x ∈B B1 ,

Q(ax) = aQ(x)a∗.
Since Q is n−dimensional R -quadratic,

Q(ax) = Q(|a| a
|a|x) = |a|2Q(

a
|a|x) = |a|2 a

|a|Q(x)
a∗

|a| = aQ(x)a∗,

for all a ∈ B(|a| �= 0), x ∈B B1 . Thus Q is n−dimensional A−quadratic, as
desired. �
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