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ON THE HYERS-ULAM-RASSIAS STABILITY OF A
n-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATION

DONG SEUNG KANG AND HAHNG-YUN CHU

(communicated by Th. M. Rassias)

Abstract. Let n > 2 be an integer. In this paper, we investigate the generalized Hyers-Ulam-
Rassias stability of a n -dimensional quadratic functional equation on Banach spaces and Banach
modules over a Banach algebra;

@=mf Q_x)+ > O 0G.0)x) =4> f(xi),
j=1 =1 j=1 i=1

1 ifi#j

where the function 0 is defined by 0(i,j) = { | i
—1 ifi=j

1. Introduction

In 1940, the problem of stability of functional equations was originated by Ulam [17]
as follows: Under what condition does there exist an additive mapping near an approx-
imately additive mapping?

The first partial solution to Ulam’s question was provided by D. H. Hyers [7]. Let
X and Y are Banach spaces with norms || - || and || - ||, respectively. Hyers showed
that if a function f : X — Y satisfies the following inequality

1f+y) =f) =fO) <€

forall € > 0 and for all x,y € X, then the limit

a(x) = lim 27" (2"x)

n—o0

exists for each x € X and a : X — Y is the unique additive function such that

1/ () —a(x) <€

for any x € X. Moreover, if f (¢x) is continuous in ¢ for each fixed x € X, then «a is
linear.
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Hyers’s theorem was generalized in various directions. In particular, Th. M.
Rassias [11] considered a generalized version of the theorem of Hyers which permitted
the Cauchy difference to become unbounded. He proved the following theorem by
using a direct method: if a function f : X — Y satisfies the following inequality

1 et 3) =f () =F ) 1< O+ [Ix[1")

forsome 6 > 0, 0 < p < 1, and forall x,y € X, then there exists a unique additive
function such that -0
170 a) 1< 5=
for all x € X. Moreover, if f (¢x) is continuous in ¢ for each fixed x € X, then a is
linear. Gévruta [6] generalized the Rassias’s result above.
The quadratic function f (x) = cx? (c € R) satisfies the functional equation

fr+y)+fx—y) =2/ () +2f (y). (L.1)

Hence this question is called the quadratic functional equation, and every solution of
the quadratic equation (1.1) is called a quadratic function.

A Hyers-Ulam stability theorem for the quadratic functional equation (1.1) was
proved by Skof [16] for functions f : X — Y, where X is a normed space and Y is a
Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant
domain X is replaced by an abelian group. In [3], Czerwik proved the Hyers-Ulam-
Rassias stability of the quadratic functional equation. Several functional equations have
been investigated; see [4-6], [12-15]. Recently, Park [9] proved the Cauchy-Rassias
stability of the given functional equation in Banach spaces where the mapping must be
even.

In [10], the generalized Hyer-Ulam-Rassias stability problem for generalized A -
quadratic mappings, defined in [8], in Banach modules over a Banach x-algebra has
been solved. Furthermore, Bae and Park [1] have proved the Hyer-Ulam-Rassias
stability problem in Banach modules over a Banach C* -algebra.

In this paper, we are going to introduce another kind of n-dimensional quadratic
mapping and to investigate the generalized Hyers-Ulam-Rassias stability of a n-
dimensional quadratic functional equation as follows:

[ ”

@=nmf Q)+ > O 0% =4 f(x), (1.2)
j=1 =1 j=1 i=1
forall xy,---,x, € X, where the function 0 is defined by
1 ifi#)
9(1,1)—{ L
-1 ifi=j

2. A n-dimensional quadratic mapping

Throughout this paper, the function 0 is defined by

. L ifi#j
6(0) _{ —1 ifi=j
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THEOREM 2.1. Let X, Y be vector spaces. The given mapping f : X — Y defined

by
4 —n)f Zx] +Zf ZQUXJ —4Zf Xi),

i=1 j=1
forall x;,--- ,x, €X. Thenf has the following propemes.

(1) () 0
E) fx)=f(=x), forall xe X.

3) f is aquadratic mapping.
Proof. (1) By letting x, =0(k=1,--- ,n), we have
(4 = n)f (0) + nf (0) = 4nf (0) .

Since n > 2, f(0) =
(2) Let X =x andxk:O(k:2,-~- ,n). Then

(4 = n)f () +f(=x) + (n = 1)f (x) = 4f (x) .
Thus f (x) =f(—x), forall x € X.
(3) Letting x; =x, x, =y, and x; =0(k=3,--- ,n), we have
(4=n)f (x+y)+f (=x4y) +f (x =) + (1 =2)f (x+y) = 4 (x) +4f (v) + (2= 2)7(0) .
By (1) and (2), we may conclude that
Fa+y)+fx—y) =2 (x)+2 ().
Thus f is quadratic. [

3. Stability of a n-dimensional quadratic mapping with zero terms

Throughout this section, let X be a normed vector space with norm || - || and Y a
Banach space with norm || - || . Let n > 2 be integer.
For the given mapping f : X — Y, we define

Df (x1,--+ ,x,) 1= ij +Zf Zﬂl]x] 4Zf(xi), (3.1)
i=1 j=1 i=1
forall xp,-- -, xneX

THEOREM 3.1. Let n > 2, andlet f : X — Y be a mapping satisfying f (0) =
Sfor which there exists a function ¢ : X" — [0, 00) such that

O(xr, - 1 x,) = Z47jq>(2jx1,-~- ,2x,) < oo, (3.2)
|| Df(XI,"' a-xn) ||< (P(-xh“' 7xﬂ)a (33)
forall x,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping

0 : X — Y such that
1~
Hf(‘x)_Q(x) H< §¢(x>x>07 70)7 (34)
forall x € X.
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Proof. Letting x; =x; =x and x; =0(k=3,--- ,n) in (3.3), we have
1 1
£~ 3 (29 1< g0(rx,0,-+-,0), (33)
forall x € X. Assume
Lreor LS L
176) ~ (7 < g SV 2000, (36)

I
=

J
forall x € X. Now, letting x = 2x in the equation (3.6), we have
Lyre (gt L~ Lyt i o
1720 = (F @0 < g Y 9@x2x0,.0),  (37)

j=1

forall x € X.
Then (3.5) and (3.7) imply that

£ = (@) | <) — 3 @)+ 1 3 (20— (@) |

< )J¢(2]x7 2jx7 Oa e 70) ’

FNgI,

(

0| —

j=0

forall x € X. Hence

~

1

||f(x) - (Z)r+lf(2r+1x) ||< )i¢(2jx> 2jx7 0,--- >0)7 (3'8)

A=

(

0| —
~.

Il
o

for all x € X and for all positive integer r.
LEMMA 3.2. For any positive integer m ,

1 m+1 m+1 1 m m 1 m 1 m m
_ — (= < (=YY"=
|G @) = ()" 27 [I< ()" 502", 2"%.0,+-,0),

forall x € X.

Proof. Letting x = 2"x in (3.5), we get the desired result. O

Now, we will show that the sequence {272"f(2"x)} is a Cauchy sequence in a
Banach space Y. For all integers » > m > 0,

1))~ (e |

S GF@D) = QY@ 4+ | (@) — ()" (@) |

r—1

1 1. S
< - Ny (g
<3 g (4)(}5(2)6,2)6,07 ,0)

j=m
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for all x € X. As r — oo, we may conclude that the sequence {272"f(2"x)} is a
Cauchy sequence. Hence the sequence {272"f(2"x)} convergesin Y forall x € X.
Thus we may define a mapping Q : X — Y via

0(x) = lim 2727 (2")
forall x € X. By (3.1), (3.2), and (3.3),
| DO, %) 1= Jim ()" 1| DF (2", 2"%) |
< lim (302", 2") = 0,

for all xy,---,x, € X. Thatis, DQ(xi,--- ,x,) = 0. By Theorem 2.1, the mapping
Q : X — Y is quadratic. Also, letting m = 0 and passing the limit r — co, we get

the (3.4).
Note that
0(2x) = lim 272"f (2" (2}))
— 92 im 2-2ms) (gt
= 290(x).

Now, let Q' : X — Y be another n-dimensional quadratic mapping satisfying
(3.4). Then by previous note, we have

o) — Q') | =277 || 0(2x) — Q'(2x) ||
<27¥( 1 0@x) ~f (@) | + 11 @' @) ~ £ () | )

2.2
< 8 ¢(2Jx> 2Jx> 07 e 70) 9

forall x € X. As j — oo, we may conclude that Q(x) = Q'(x), forall x € X. Thus
such a n-dimensional quadratic mapping Q : X — Y is unique. [

THEOREM 3.3. Let n > 2, andlet f : X — Y be a mapping satisfying f (0) = 0
Jor which there exists a function ¢ : X" — [0, 00) such that

O(xr, ) ==Y 49(27x, -+, 27x,) < o0,
Jj=0

|| Df(x1>"' 7-xn) ||< ¢(x17"‘ ,)Cn),

forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping
0 : X — Y such that

1
Hf(‘x) —Q()C) H< §¢(x>x>07 70)7
forall x € X.
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Proof. Similar to the proof of Theorem 3.1, if the x is replaced by %x (not 2x)
in the proof of Theorem 3.1, then we have the desired results. [

COROLLARY 3.4. Let p # 2 and 0 be positive real numbers, and let f : X — Y
be a mapping satisfying f (0) = 0 and

n
H Df(xh'" 7xﬂ) H< QZHX,'HP,
i=1

forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping
0 : X — Y such that
0
- ST )
I1£() = 0) IS =5
forall x € X.
Proof. Let

‘P(xla T 7xﬂ) = GZ HX,‘HP )
i=1
and then apply to Theorem 3.1 when p < 2, orapply to Theorem3.3when p >2. 0

THEOREM 3.5. Let n > 2, andlet f : X — Y be a mapping satisfying f (0) =0
for which there exists a function ¢ : X" — [0, 00) such that

O(xr, -, x,) = Z9‘j¢(3jx1,-~- ,3x,) < oo, (3.9)
j=0
|| Df(XI,"' a-xn) ||< (P(-xh“' 7xﬂ)a (310)
forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping

0 : X — Y such that

1~
||f(x)—Q(x) ||< §¢(x7x7x70a"' 70)’ (311)
forall x € X.
Proof. Letting x; =x; =x3 =x and x, =0 (k=4,--- ,n) in (3.10), we have
1 1
||f(‘x) - §f(3‘x) ||< §¢(x7x7x7 Oa T ?0)7 (312)
forall x € X.

Replacing x by 3x, inductively, we have the following equation,

r—1
170) ~ ()73 1< 5 S5V ¥ Fn0,0,0),  (313)

j=0

for all x € X and all positive integer r. For the remaining proof see Theorem 3.1, since
the equation (3.13) is similar to the equation (3.8). O
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THEOREM 3.6. Let n > 2, andlet f : X — Y be a mapping satisfying f (0) =0
for which there exists a function ¢ : X" — [0, 00) such that

O(xr,,xy) ==Y Y37 xy, -+, 37x,) < 00,
Jj=0

|| Df(x1>"' 7-xn) ||< ¢(x17"‘ ,)Cn),

forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping
0 : X — Y such that

1~
||f(x) 7Q(X) ||< §¢(x,x,x,0,--- ?0)7
forall x € X.

Proof. Similar to the proof of Theorem 3.1, if the x is replaced by %x (not 3x)
in the proof of Theorem 3.1, then we have the desired results. [

COROLLARY 3.7. Let p # 2 and 0 be positive real numbers, and let f : X — Y
be a mapping satisfying f (0) = 0 and

| Df ey, ) [0 [l
i=1

forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping
0 : X — Y such that
1709~ 03 1< 5=l
x)—0O(x —||x|",
T3 -3
forall x € X.
Proof. Let

‘P(xla T 7xﬂ) = GZ Hxin?
i=1
and then apply to Theroem 3.5 when p < 2, orapply to Theroem3.6 when p > 2. 0O

THEOREM 3.8. Let n > 2, andlet f : X — Y be a mapping satisfying f (0) =0
Sfor which there exists a function ¢ : X" — [0, 00) such that

O(x1, - x) =Y 479(2xy, -, 2x,) < oo, (3.14)
j=0
|| Df(XI,"' a-xn) ||< (P(-xh“' 7xﬂ)a (315)
forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping

0 : X — Y such that

1
||f(x)—Q(x) ||< E¢(x7x7x7x70a"' 70)’ (316)
forall x € X.
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Proof. Letting x; =x; =x3 =xg =x and x; =0(k=5,--- ,n) in (3.15), we
have

1 1
||f(‘x) - Zf(z‘x) ||< E¢(x7x7x7x7 Oa T 70)’ (317)

forall x € X. Similarly, the remains follow from the proof of Theorem 3.1. [

THEOREM 3.9. Let n > 2, andlet f : X — Y be a mapping satisfying f (0) =0
Sfor which there exists a function ¢ : X" — [0, 00) such that

O(xr, o x) ==Y 492 7x, -+, 27x,) < o0,
Jj=0

|| Df(x1>"' 7-xn) ||< ¢(x17"‘ ,)Cn),

forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping
Q : X — Y such that

1
Hf(x) —Q()C) ||< 1—6¢()C,)C,)C,)C,0,"' 70)7
forall x € X.

Proof. Similar to the proof of Theorem 3.1, if the x is replaced by %x (not 2x)
in the proof of Theorem 3.1, then we have the desired results. [

COROLLARY 3.10. Let p # 2 and 0 be positive real numbers, and let f : X — Y
be a mapping satisfying f (0) = 0 and

n
H Df(xh'" 7xﬂ) H< QZHX,'HP,
i=1

forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping
0 : X — Y such that
0
- ST )
I1£() = 0 < =5
forall x € X.
Proof. Let

¢()C1,"' ,)Cn) = QZH-XI'HP>
i=1

and then apply to Theorem 3.8 when p < 2, orapply to Theorem3.9when p > 2. 0O
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4. Stability of a n -dimensional quadratic mapping without zero terms

THEOREM 4.1. Let n > 2 be even and let f : X — Y be an even mapping
satisfying f (0) = 0 for which there exists a function ¢ : X" — [0,00) such that

O(xr, - x) =Y 479(2xy, - 2x,) < 00, (4.1)
j=0
|| Df(-xla"' ,.X'n) ||< (P(-xh'" 7xn)a (42)
forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping

Q : X — Y such that

170) = 00) 1< 305, %, —x,++ 3, ). 43)
forall x € X.
Proof. Foreach k=1,--- ,n, x = (—1)*1x in (4.2), we have
| nf (2x) — 4nf (x) [|< o(x, —x, %, —x, -+, x, —x),

forall x € X. Then we write
1 1
Hf(X) - Zf(z‘x) ||< E‘P(“n XX, =X, L X, 7x) ) (44)

for all x € X. If x is replaced by 2x in the equation(4.4), inductively, we have the

following form |

1 1 1 . L , . ,
199 = YT Q) 1< 5, S G0 22— oo 22, (49
for all x € X and all positive integer r. Given the equation (4.5) is similar to the
equation (3.8), see proof of Theorem 3.1. [J

THEOREM 4.2. Let n > 2 be even and let f : X — Y be an even mapping
satisfying f (0) = O for which there exists a function ¢ : X" — [0,00) such that

Olxr, - X)) == Z4j¢(2_jx1, e, 27x,) < o0, (4.6)
j=0
|| Df(-xl7"' 7-xn) ||< ¢(-xl>"' ,)Cn), (47)
forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping

0 : X — Y such that

1 ~
—¢(X, X, X, =X, L, X, —)C) ) (48)

17 - 00 1< o

forall x € X.

Proof. Similar to the proof of Theorem 4.1, if the x is replaced by %x (not 2x)
in the proof of Theorem 4.1, then we have the desired results. [
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COROLLARY 4.3. Let n > 2 be even, let p # 2 and 0 be positive real numbers,
andlet f : X — Y be an even mapping satisfying f (0) = 0 and

| Df ey, ) [0 [l
i=1

forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping
0 : X — Y such that

109~ 009 1< gl
forall x € X.

Proof. Let n
‘P(xla T 7xﬂ) = GZ HX,‘HP )
i=1

and then apply to Theorem 4.1 when p < 2, or apply to Theorem4.2when p >2. [

THEOREM 4.4. Let n > 2 be odd and let f : X — Y be an even mapping
satisfying f (0) = O for which there exists a function ¢ : X" — [0,00) such that

O(xr, - x) =Y 379(3xy, -+, 3x,) < o0, (4.9)
j=0
|| Df(-xla"' ,.X'n) ||< (P(-xh'" 7xn)a (410)
forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping

Q : X — Y such that

2~

||f(x) - Q(X) H< mq)(xa XX, X 7x)7 (411)

forall x € X.

Proof. Foreach k=1,--- ,n, x = (—1)*1x in (4.10), we have

1700~ 5 (39) 1€ gromr e —vx, o —xx),  (412)

2
(n—1)
forall x € X . replacing x by 3x in (4.12), inductively, we have the following form

1

156) = ()7 (39 1< 5o (50~ 3o 3.3, (4.13)

J

Il
o

forall x € X. The remains are similar to the proof of Theorem4.1.

THEOREM 4.5. Let n > 2 be odd and let f : X — Y be an even mapping
satisfying f (0) = O for which there exists a function ¢ : X" — [0,00) such that

¢(-x17 e ,)Cn) = Z 3j¢(3_jx17 e 73_jxn) < 00, (414)
j=0
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|| Df(-xl7"' 7-xn) ||< ¢(-xl>"' ,)Cn), (415)

forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping
Q : X — Y such that

|| f(x) - Q(x) ||< q~>(x7 XX, X, ,)C) ) (4'16)

9n—1
forall x € X.

Proof. Similar to the proof of Theorem 4.4, if the x is replaced by %x (not 2x)
in the proof of Theorem 4.4, then we have the desired results. [

COROLLARY 4.6. Let n > 2 be odd, let p # 2 and 0 be positive real numbers,
andlet f : X — Y be an even mapping satisfying f (0) = 0 and

n
H Df(xb e 7xn) H< GZ Hxi|‘p7
i=1
forall xi,--- ,x, € X. Then there exists a unique n-dimensional quadratic mapping

0 : X — Y such that

2n0 1

_ S a.— T

R eI
forall x € X.

Proof. Let

‘P(xla"' 7xﬂ) = QZHX,'HP7
i=1

and then apply to Theorem 4.4 when p < 2, or apply to Theorem4.5when p >2. [

5. Results in Banach modules over a Banach algebra

Throughout this section, let B be a unital Banach x*-algebra with norm | | and
By ={a € B||a| =1}, let gB; and gB, be left Banach modules with norms || || and
|| || , respectively, and let

¢ [Bi\{0}]" >R
be the function such that

Pl x) = 47p(2xy, -, 2x,) < 00, (5.1)
j=0

forall x,---,x, €5 B;\{0}.

DEFINITION 5.1. An 7n-dimensional quadratic mapping

Q3B —p B
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is called n-dimensional B— quadratic if Q(ax) = a’Q(x) for all a € B and all
x € By .

DEFINITION 5.2. For a € B, let b = aa*, a*a, or (aa* + a*a)/2. An n-
dimensional quadratic mapping Q :p B; —p B, iscalled n -dimensional By,— quadratic
if Q(ax) = bQ(x), forall a € B, and all x €5 B, .

Since Banach spaces gB; and 3B, are considered as Banach modules over B :=
C, the By,— quadratic mapping Q :z B; —p B, implies Q(ax) = |a|>Q(x), for all
acC.

We define the approximate remainder D,f for a mapping f 3 B} —p B;,

Daf (et %) = (@ = mf (3 a) + 37 (O 0 jary) — 463 f (x),
j=1 i=1

=1 j=1
for all xy,--- ,x, €p By .

THEOREM 5.1. Let f :5 By —p By be a mapping with f(0) = 0 for the case
(3.3) which there is a mapping @ :g By — R satisfying

HDaf(xh"'rxn) ||< qo(x1,~-~,xn), (52)
for all a € By, x1,---,x, €g Bi\{0}. If either f is measurable or f(tx) is

continuousin t € R, foreach fixed x €g B, then there exists an unique n— dimensional
By,— quadratic mapping Q 3 By —p B, defined by
O(x) = lim 272"f (2"x),

m—o0

which satisfies the inequality (3.4) forall x € B; .

Proof. By the same reasoning as the proof of Theorem 3.1, it follows from the
inequality of the statement a = 1 that there exists a unique n— dimensional quadratic
mapping Q :g B, —5 B, defined by

() = lim 272 (2"x),
which satisfies the inequality (3.4) for all x €5 B; . Under the assumptions that either
Jf is measurable or f (zx) is continuous in ¢ € R, for each fixed x € B;, by the
same reasoning as the proof of [11], one can show that Q is R-quadratic, that is ,
O(tx) = 2Q(x) forall t € R, forall x €3 B .

Putting x; =x, =x and x; =0(j = 3,--- ,n) in (5.2) and dividing the resulting
inequality by 2",

1 1
o 12f (a22™x)+2f (0)—4b(n—2)f (0)—8bf (2" 'x) ngﬂ (2" 1x,2"1x,0,---,0),

forall xy,---,x, €g B, . By the definition of Q,
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forevery x €g By , forevery a € B(|la] = 1). For a € B\ {0},

0(ax) = Oflal ) = la 0 )—|a\%g<x>=bg<x>,

for all x €g B; . Thus Q is n—dimensional B,,— quadratic, which completes the
proof. [

COROLLARY 5.2. Let f :p B —p By be a mapping with f(0) = 0 for the case
(3.3) which there exists mapping ¢ :p By — R satisfying

| b(4 = n)f Zx, +be Ze (i,0)x5) =4 _flax) < @i, x),
i=1 j=1 i=1

forall a € Bl,for all xy,--- ,x, €g B1\{0}. If either f is measurable or f(tx) is

continuous in t € R, for each fixed x €g By, then there is an unique n— dimensional

By, — quadratic mapping Q :p By —p B, which satisfies the inequality (3.4) for all

x € By.

Proof. By the similar method of the proof of Theorem 5.1, one can obtain the

result. [

An n— dimensional quadratic mapping Q : B — B is called an n— dimensional
A-quadratic mapping if Q(ax) = aQ(x)a* forall a € B,x € B.

THEOREM 5.3. Let f :3 By —p By be a mapping with f(0) = 0 for the case
(3.3) which there is mapping v :p B; — R sarisfying

2m
| 0(ax) - a0()a" < () and tim Y2

forall a € By, x € By . Ifeither [ is measurable or f (tx) is continuousin t € R, for
each fixed x €g By, then there exists an unique n— dimensional A— quadratic mapping

0 :p B) —p B, defined by

=0 (5.3)

0(x) = lim 272 (2"),

m—0o0

which satisfies the inequality (3.4) forall x € B; .

Proof. By the same reasoning as the proof of Theorem 3.1, there exists a unique
n— dimensional R— quadratic mapping Q :5 B —p B, defined by

0(x) = lim 2727 ("),

which satisfies the inequality (3.4) for all x €5 B; . By (5.3), for each element a € By,
x €p By,

O(ax) = aQ(x)a*
Since Q is n— dimensional R -quadratic,

*

Q(aX)=Q(\a|‘Z—|) jal? Q(‘ ) = la |2| ‘ o) =

la

= aQ(x)a*

for all a € B(la| # 0),x € B;. Thus Q is n—dimensional A— quadratic, as
desired. 0



124

[1]

DONG SEUNG KANG AND HAHNG-YUN CHU

REFERENCES

J. H. BAE, W. G. PARK, On the generalized Hyer-Ulam-Rassias in Banach modules over C* — algebra,
J. Math. Anal. Appl., 294, (2004), 196-205.

[2] P. W. CHOLEWA, Remarks on the stability of functional equations, Aequationes. Math., 27, (1984),
76-86.
[3] S. CZERWIK, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ.
Hamburg, 62, (1992), 59-64.
[4] G. L. FORTL, Hyer-Ulam stabilty of functional equations in several variables, Aequationes Math., 50,
(1995), 143-190.
[5] G.L.FoRTI, Comments on the core of the direct method for proving Hyer-Ulam stabilty of functional
equations, J. Math. Anal. Appl., 295, (2004), 127-133.
[6] P. GAVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive map-
pings, J. Math. Anal. Appl., 184, (1994), 431-436.
[7] D. H. HYERS, On the stability of the linear equation, Proc. Nat. Acad. Sci. U.S.A., 27, (1941),
222-224.
[8] C. S. LIN, Sesquilinear and quadratic forms on modules over x— algebra, Publ. Inst. Math., 51,
(1992), 81-86.
9] C. G. PARK, Generalized quadaratic mapping in several variables, Nonlinear Anal. Theor. Method.
Appl., 57, (2004), 713-722.
[10] C. G. PARK, On the Hyer-Ulam-Rassias stabilty of generalized quadratic mappings in Banach mod-
ules, J. Math. Anal. Appl., 291, (2004), 214-223.
[11] TH. M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.,
72, (1978), 297-300.
[12] TH. M. RASSIAS, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl.,
251, (2000), 264-284.
[13] TH. M. RASSIAS, P. SEMRL, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl.,
173, (1993), 325-338.
[14] TH. M. RASSIAS, K. SHIBATA, Variational problem of some quadratic functions in complex analysis,
J. Math. Anal. Appl., 228, (1998), 234-253.
[15] TH. M. RASSIAS, On the stability of functional equations and a problem of Ulam, Acta Appl. Math.,
62, (2000), 23-130.
[16] F. SKOF, Proprieta locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano, 53, (1983),
113-129.
[17] S. M. ULAM, Problems in Morden Mathematics, Wiley, New York (1960).
(Received June 8, 2005) Dong Seung Kang

Mathematical Education
Dankook University

147, Hannam, Yongsan

Seoul, 140-714

KOREA

e-mail: dskang@dankook.ac.kr

Corresponding author Hahng-Yun Chu
School of Mathematics

Korea Institute for Advanced Study
207-43, Cheongnyangni 2
Dongdaemun, Seoul, 130-722
KOREA

e-mail: hychu@kias.re.kr

Mathematical Inequalities & Applications



