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GENERALIZED MONOTONE ITERATIVE METHOD

FOR INTEGRO DIFFERENTIAL EQUATIONS

WITH PERIODIC BOUNDARY CONDITIONS

IANNA H. WEST AND A. S. VATSALA

(communicated by V. Lakshmikantham)

Abstract. In this paper, we will develop a generalized monotone iterative method for first order
nonlinear integro differential equations with periodic boundary conditions when the forcing
function is the sum of an increasing and decreasing function. We obtain natural monotone
sequences or alternating monotone sequences depending on the coupled upper and lower solution
used and depending on the iterative scheme used to develop the sequence. These sequences
converge to coupled extremal solutions of the integro differential equation.

1. Introduction

It is well known that the method of lower and upper solutions coupled with the
monotone iterative technique is used to obtain the existence of extremal solutions for
both nonlinear initial value problems and nonlinear boundary value problems. In recent
years, the method has been used to obtain existence of solutions to nonlinear integro
differential equations of the form

u′(t) = f (t, u(t), Tu(t)), u(0) = u(2π).

See [5] for details. In this paper, we extend this method to nonlinear integro differential
equations with nonlinear periodic boundary conditions of the form

u′ = f (t, u(t), Tu(t)) + g(t, u(t), Tu(t)), u(0) = u(2π) on J = [0, 2π], (1.1)

where f , g ∈ C[J × R × R, R] , f is increasing in u and Tu , and g is decreasing in u
and Tu . Also, Tu(t) =

∫ t
0 K(t, s)u(s)ds and K ∈ C[J × J, R+].

It is known that equation (1.1) possess four types of lower and upper solutions as
in [7, 8]. However, we recall only the two types of coupled upper and lower solutions
which we need to develop our results. They are defined as follows:
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DEFINITION 1.1. The functions v, w ∈ C1[J, R] are said to be
(i) coupled lower and upper solutions of type I, if

v′ � f (t, v(t), Tv(t)) + g(t, w(t), Tw(t)), v(0) � v(2π) on J

w′ � f (t, w(t), Tw(t)) + g(t, v(t), Tv(t)), w(0) � w(2π) on J;

(ii) coupled lower and upper solutions of type II, if

v′ � f (t, w(t), Tw(t)) + g(t, v(t), Tv(t)), v(0) � v(2π) on J

w′ � f (t, v(t), Tv(t)) + g(t, w(t), Tw(t)), w(0) � w(2π) on J.

Wewill obtain two results using equation (1.1)whenwe consider coupled lower and
upper solutions of type 1 or type II. Additionally, we will show that type II can be easily
constructed when f is nondecreasing in u and Tu , and where g is nonincreasing in u
and Tu . Using an appropriate iterative scheme and coupled lower and upper solutions
of type I, we obtain natural sequences which converge to coupled extremal solutions
of (1.1). Similarly, we also prove the existence of coupled extremal solutions of (1.1)
using coupled lower and upper solutions of type II and an appropriate iterative scheme.
In the latter case, we obtain intertwined alternating sequences. Our result generalizes
the earlier known results on the monotone method for integro differential equations
with periodic boundary conditions. See [3] for details. Further, we prove the coupled
extremal solutions reduce to the unique solution of (1.1) under suitable uniqueness
assumptions of f and g . We provide a numerical example to demonstrate the use of
our generalized monotone method.

For each theorem, we will develop monotone sequences using one of two types of
iterative schemes. Moreover,we will develop naturalmonotone sequences or alternating
sequences which converge to coupled extremal solutions of (1.1).

2. Preliminaries

In this section, we recall some known results, see [5], relative to the following
integro equation

u′ = f (t, u(t), Tu(t)),
u(0) = u(2π) on J = [0, 2π],

(2.1)

where f ∈ C[J × R × R, R] , Tu(t) =
∫ t

0 K(t, s)u(s)ds , and K ∈ C[J × J, R+] , which
we need in our main results.

We will also recall an important comparison result and an existence result using
Schauder’s fixed point theorem, which are needed in our main results. We merely state
the theorems without proof. See [5] for details.

LEMMA 1. Let p ∈ C1[J, R] be such that

p′ � −Mp − NTp,

p(0) � p(2π),
(2.2)

where M > 0, N � 0 . Then p(t) � 0 for 0 � t � 2π provided the following condition
holds 2Nk0π(e2Mπ − 1) � M, where 0 � k0 = maxK(t, s) for (t, s) ∈ [0, 2π]× [0, 2π]
and K(t, s) � 0. If the inequalities are reversed, then p(t) � 0 on J.
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THEOREM 2.1. (Schauder) If E is a closed, bounded, convex subset of a Banach
space B and T : E → E is completely continuous, then T has a fixed point.

THEOREM 2.2. Assume that f ∈ C[J × Rn, Rn] , K ∈ C[J × J × Rn, Rn] and∫ t
s |K(σ, s, u(s))|dσ � N , for t0 � s � t � t0 + a , u ∈ Ω = φ ∈ C[J, Rn] : φ(t0) = u0

and |φ(t) − u0| � b .
Then equation (1.1) possesses at least one solution u(t) on t0 � t � t0 � t0 +α ,

for some 0 < α � a .

3. Main results

The usualmonotonemethod developed in literature proves the existence of extremal
solutions of equation (2.1) when f is nondecreasing in u and Tu , or when f can be
made nondecreasing by adding a linear term to u and Tu respectively. This is precisely
the onesided Lipschitz condition of f in u and Tu . In this section, we extend the
monotone method to equation (1.1) where f is nondecreasing in u and Tu , and g is
nonincreasing in u and Tu .

To develop our theorems, we will consider equation (1.1), and relative to the lower
and upper solutions v, w ∈ C1[J, R] of (1.1) defined in the introduction section of this
paper, we list the following assumptions for convenience.

(A0) Assume v0, w0 ∈ C1[J, R] are the coupled lower and upper solutions of (1.1) with
v0(t) � u � w0 and v0 � Tu � w0 on J .

(A1) Assume f , g ∈ C[J × R, R] , and M1 + M2 > 0 , N1 + N2 � 0 satisfying

2(N1 + N2)k0π(e2(M1+M2)π − 1) � M1 + M2

where k0 is the maxK(t, s) on [0, 2π] × [0, 2π] , and either
(i) f (t, u, Tu) = F(t, u, Tu) − M1u − N1Tu is nondecreasing in u and Tu , and

g(t, u, Tu) = G(t, u, Tu) − M2u − N2Tu , where G is nonincreasing in u and Tu , or
(ii) f (t, u, Tu) is nondecreasing in u and Tu , and g(t, u, Tu) = G(t, u, Tu)−

M2u − N2Tu , where G is nonincreasing in u and Tu or
(iii) f (t, u, Tu) = F(t, u, Tu) − M1u − N1u is nondecreasing in u and Tu , and

g(t, u, Tu) is nonincreasing in u and Tu .

THEOREM 3.1. Assume that (A0) and (A1)(i) hold. If u(t) is any solution of
equation (1.1) with v0(t) � u � w0(t) where v = v0 , w = w0 are lower and upper
solutions of type I, then there exists natural monotone sequences {vn(t)} and {wn(t)}
on J such that vn(t) −→ ρ(t) and wn(t) −→ r(t) uniformly and monotonically and
(ρ, r) are coupled minimal and maximal solutions respectively to equation (1.1) . That
is, (ρ, r) satisfy

ρ′ = F(t, ρ, Tρ) − M1ρ − N1Tρ + G(t, r, Tr) − M2ρ − N2Tρ
= f (t, ρ, Tρ) − M2ρ − N2Tρ + G(t, r, Tr),

ρ(0) = ρ(2π),
(3.1)
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and
r′ = F(t, r, Tr) − M2r − N2Tr + G(t, ρ, Tρ) − M2r − N2Tr

= f (t, r, Tr) − M2r − N2Tr + G(t, ρ, Tρ),
r(0) = r(2π).

(3.2)

Also ρ � u � r on J , where the iterative schemes are given by the following linear
integro differential equations with periodic boundary conditions:

v′n+1 = F(t, vn, Tvn)−M1vn+1−N1Tvn+1+G(t, wn, Twn)−M2vn+1−N2Tvn+1,

vn+1(0) = vn+1(2π)
(3.3)

and

w′
n+1 = F(t, wn, Twn)−M1wn+1−N1Twn+1+G(t, vn, Tvn)−M2wn+1−N2Twn+1,

wn+1(0) = wn+1(2π)
(3.4)

Proof. For any vn+1 ∈ C[[0, 2π], R] such that v0 � vn+1 � w0 , the linear integro
differential equation (3.3) reduces to a simpler linear integro differential equation given
by

v′n+1 + Mvn+1 = −NTvn+1 + σ1(t), vn+1(0) = vn+1(2π), (3.5)

where M = (M1 + M2) , N = (N1 + N2) and σ1(t) = F(t, vn, Tvn) + G(t, wn, Twn) .
Furthermore, for any wn+1 ∈ C[0, 2π], R] such that v0 � wn+1 � w0 , the linear integro
differential equation (3.4) reduces to

w′
n+1 + M̃wn = −ÑTwn+1 + σ2(t), wn+1(0) = wn+1(2π), (3.6)

where M̃ = (M1 + M2) , Ñ = (N1 + N2) and σ2(t) = F(t, wn, Twn) + G(t, vn, Tvn) .
Then, using the method of variation of parameters and the boundary condition

vn+1(0) = vn+12π) , we get

vn+1(t) = e−Mt{ 1
e2Mπ − 1

∫ 2π

0
[σ(s) − N

∫ s

0
K(s, ξ)vn(ξ)dξ ]eMsds}

+ e−Mt
∫ t

0
[σ(s) − N

∫ s

0
K(s, ξ)vn(ξ)dξ ]eMsds.

(3.7)

In view of the condition 2Nk0π(e2Mπ − 1) � M , applying Theorem 2.2 to (3.7), we
can show that there exists a solution vn+1(t) for equation (3.5). Similarly, we can show
that there is a solution wn+1(t) to equation (3.6).

We claim that the solutions of equations (3.5) and (3.6) are unique. For this
purpose, let u, v be two distinct solutions of either (3.5) or (3.6), and let p(t) =
u(t) − v(t) , then we get

p′(t) = u′(t) − v′(t)
= −Mu(t) − NTu(t) + σ(t) + Mv(t) + NTv(t) − σ(t)
= −Mp − NTp,

where p(0) = p(2π) . Hence by Lemma 1 it follows u ≡ v .
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Now our aim is to show that

v0 � v1 � v2 � ... � vk � wk � ... � w2 � w1 � w0 on J. (3.8)

Since v0 is a lower solution and v0 � w0 , we obtain

v′0 � F(t, v0, Tv0) − M1v0 − N1Tv0 + G(t, w0, Tw0) − M2w0 − N2Tw0

� F(t, v0, Tv0) − M1v0 − N1Tv0 + G(t, w0, Tw0) − M2v0 − N2Tv0.

and since w0 is an upper solution, we obtain

w′
0 � F(t, w0, Tw0) − M1w0 − N1Tw0 + G(t, v0, Tv0) − M2v0 − N2Tv0

� F(t, w0, Tw0) − M1w0 − N1Tw0 + G(t, v0, Tv0) − M2w0 − N2Tw0.

Then, our claim is to show that v0 � v1 . For this purpose let p(t) = v0 − v1 , then

p′(t) = v′0 − v′1 � F(t, v0, Tv0) − M1v0 − N1Tv0 + G(t, w0, Tw0) − M2v0 − N2v0

− F(t, v0, Tv0) + M1v1 + N1Tv1 − G(t, w0, Tw0) + M2v1 + N2Tv1

= −(M1 + M2)(v0 − v1) − (N1 + N2)T(v0 − v1)
= −Mp − NTp,

where (M1 + M2) = M > 0 and (N1 + N2) = N � 0 . Also p(0) = v0(0) − v1(0) �
v0(2π) − v1(2π) = p(2π) . Hence by Lemma 1, p(t) � 0 , which proves that v0 � v1

on J . Similarly, we can show that w0 � w1 . Next, we will show that v1 � w1

p′(t) = v′1 − w′
1 = F(t, v0, Tv0) − M1v1 − N1Tv1 + G(t, w0, Tw0) − M2v1 − N2v1

− F(t, w0, Tw0) + M1w1 + N1Tw1 − G(t, v0, Tv0) + M2w1 + N2Tw1

� −(M1 + M2)(v1 − v2) − (N1 + N2)T(v1 − v2)
= −Mp − NTp,

by the monotone nature of f and g ,where (M1+M2) = M>0 and (N1+N2) = N�0 .
Also p(0) = p(2π) , hence by Lemma 1, p(t) � 0 , which proves that v1 � w1 Thus,
giving us v0(t) � v1(t) � w1(t) � w0(t) holds on J . Hence (3.8) is true for k = 1 .

Now assume that (3.8) holds for some k > 1 , such that,

vk−1 � vk � wk � wk−1 on J. (3.9)

Thus, our aim is to show that (3.8) holds for k + 1 by proving that

vk � vk+1 � wk+1 � wk (3.10)

holds on J . For this purpose, let p(t) = vk(t) − vk+1(t) , and note that p(0) =
vk(0) − vk+1(0) = vk(2π) − vk+1(2π) = p(2π) . We get

p′(t) = v′k(t) − v′k+1(t)
= F(t, vk−1, Tvk−1) − M1vk − N1Tvk + G(t, wk−1, Twk−1) − M2vk − N2Tvk

− F(t, vk, Tvk) + M1vk+1 + N1Tvk+1 − G(t, wk, Twk) + M2vk+1 + N2Tvk+1

� −(M1 + M2)(vk − vk+1) − (N1 + N2)T(vk − vk+1)
= −Mp − NTp
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using (3.9) and the monotone nature of f and g . By Lemma 1 p(t) � 0 which proves
vk(t) � vk+1(t) . Similarly, we can prove that wk+1(t) � wk(t) and vk+1(t) � wk+1(t) .
This proves that (3.8) holds for k + 1 . Hence (3.8) is valid for all k = 1, 2... .

Also, the sequences {vk(t)} and {wk(t)} can be shown to be equicontinuous and
uniformly bounded using (3.7) and a similar form for wn . Thus by Ascoli-Arzela’s
Theorem, subsequences {vnk(t)}, {wnk (t)} converge to ρ(t) and r(t) respectively on
J . Since both the sequences {vk(t)} and {wk(t)} are monotone, the entire sequences
converge uniformly and monotonically to ρ(t) and r(t) respectively on J . Therefore,
ρ(t) and r(t) satisfy the integro period boundary value problems (3.1) and (3.2).

Finally, we claim that ρ and r are coupled minimal and maximal solutions of
(1.1). Thus we need to show that

vk(t) � ρ(t) � u(t) � r(t) � wk(t) on J.

Suppose that u is any solution of (1.1), such that v0(t) � u(t) � w0(t) on J . It is
easy to show as before using induction that vk(t) � u(t) � wk(t) on J for all k � 1 .
Then, taking the limit, we get limk→∞ vk(t) = ρ(t) and limk→∞ wk(t) = r(t) . This
completes the proof.

LEMMA 2. In addition to the assumptions of Theorem 3.1 , if for u � ū , f and
G satisfy

f (t, u, Tu) − f (t, ū, Tū) � K1(u − ū) + L1T(u − ū), t ∈ J;

G(t, u, Tu) − G(t, ū, Tū) � −K2(u − ū) − L2T(u − ū), t ∈ J,

where Kμ > 0, Lμ � 0, μ = 0, 1 , then ρ = u = r is the unique solution of (1.1) ,
provided M2 − (K1 + K2) > 0 and N2 − (L1 + L2) � 0 .

Proof. Since we have ρ � r , it is enough to show that r � ρ . For this purpose,
set p(t) = r − ρ , we have p(0) = p(2π) , and

p′(t) = r′(t) − ρ′(t)
= f (t, r, Tr)−M2r−N2Tr+G(t, ρ, Tρ)−f (t, ρ, Tρ)+M2ρ+N2Tρ−G(t, r, Tr)
� K1(r−ρ)+L1T(r−ρ)+K2(r−ρ)+L2T(r−ρ)−M2(r−ρ)−N2T(r−ρ)
= (K1 + K2 − M2)(r − ρ) + (L1 + L2 − N2)T(r − ρ).

This implies that p′(t) � −Mp−NTp , where (K1+K2−M2) = M and (L1+L2−N2) =
N . Thus p(t) � 0 which proves r � ρ . Therefore, ρ = u = r is the unique solution.
This completes the proof.

REMARK 3.1. When f is nondecreasing and g is non-increasing, we can always
construct coupled upper and lower solutions of type II. We state this result below as a
lemma. Then we will use the constructed upper and lower solutions to develop the next
result.

LEMMA 3. Suppose that f (t, u, Tu) , g(t, u, Tu) are monotone nondecreasing
and monotone nonincreasing in u respectively on J , then there exists coupled lower
and upper solutions of type II for equation (1.1) .
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Proof. Choose a constant R0 large enough such that

v(t) = z(t) − R0 � 0, v(0) � v(2π) and w(t) = z(t) + R0 � 0, w(0) � w(2π),

where z(t) is the solution of

z′(t) = f (t, 0, 0) + g(t, 0, 0), z(0) = z(2π) on J.

Then

v′(t) = z′(t) − 0 = f (t, 0, 0) + g(t, 0, 0) � f (t, w, Tw) + g(t, v, Tv), v(0) � (2π),
w′(t) = z′(t) + 0 = f (t, 0, 0) + g(t, 0, 0) � f (t, v, Tv) + g(t, w, Tw), w(0) � w(2π).

THEOREM 3.2. Assume the hypothesis of Lemma 3.2 holds, and let v0 , w0 be
constructed coupled lower and upper solutions respectively of type II with v0(t) �
w0(t) on J , and let (A1) (i) hold. Then for any solution u(t) of equation (1.1) with
v0(t) � u � w0(t) on J , we get the intertwining alternating sequences { v2n, w2n+1 }
and { w2n, v2n+1 } satisfying

v0 � w1 � ... � v2n � w2n+1 � u � v2n+1 � w2n � ... � v1 � w0 (3.11)

for every n � 1 , provided v0 � w1 and w0 � v1, where the iterative schemes are
given by

v′n+1 = F(t, wn, Twn)−M1vn+1−N1Tvn+1+G(t, vn, Tvn)−M2vn+1−N2Tvn+1, (3.12)

where vn+1(0) = vn+1(2π) on J ,

w′
n+1=F(t, vn, Tvn)−M1wn+1−N1Twn+1+G(t, wn, Twn)−M2wn+1−N2Twn+1, (3.13)

where wn+1(0) = wn+1(2π) on J .
Moreover, the monotone sequence {v2n, w2n+1} converges to ρ and {w2n, v2n+1}

converges to r on J, where (ρ, r) are coupled minimal and maximal solutions of
equation (1.1) respectively, satisfying the coupled system

ρ′ = F(t, ρ, Tρ) − M1ρ − N1Tρ + G(t, r, Tr) − M2ρ − N2Tρ
= f (t, ρ) − M2ρ − N2Tρ + G(t, r),

(3.14)

where ρ(0) = ρ(2π) on J,

r′ = F(t, r, Tr) − M2r − N2Tr + G(t, ρ, Tρ) − M2r − N2Tr

= f (t, r) − M2r − N2Tr + G(t, ρ),
(3.15)

where r(0) = r(2π) on J .
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Proof. Similar to the results of Theorem 3.1, we can show the existence and
uniqueness of the solution of the linear integro differential equations (3.12) and (3.13).

Now our aim is to show that equation (3.11) holds for every n � 1 . First, we need
to show that (3.11) is true for k = 1 . Thus we need to show that

v0 � w1 � v2 � w3 � u � v3 � w2 � v1 � w0

holds on J. Now, since v0 ,w0 are lower and upper solutions respectively, and v0 � w0 ,
we obtain

v′0 � F(t, w0, Tw0) − M1w0 − N1Tw0 + G(t, v0, Tv0) − M2v0 − N2Tv0

� F(t, w0, Tw0) − M1v0 − N1Tv0 + G(t, v0, Tv0) − M2v0 − N2Tv0.

and

w′
0 � F(t, v0, Tv0) − M1v0 − N1Tv0 + G(t, w0, Tw0) − M2w0 − N2Tw0

� F(t, v0, Tv0) − M1w0 − N1Tw0 + G(t, w0, Tw0) − M2w0 − N2Tw0.

We can now show that v0 � v1 . For this purpose let p(t) = v0(t) − v1(t) , then

p′(t) = v′0 − v′1 � F(t, w0, Tw0) − M1v0 − N1Tv0 + G(t, v0, Tv0) − M2v0 − N2v0

− F(t, w0, Tw0) + M1v1 + N1Tv1 − G(t, v0, Tv0) + M2v1 + N2Tv1

= −(M1 + M2)(v0 − v1) − (N1 + N2)T(v0 − v1)
= −Mp − NTp,

where (M1 + M2) = M > 0 and (N1 + N2) = N � 0 . Also p(0) = p(2π) . Thus,
from Lemma 1, we get p(t) � 0 , which proves v0(t) � v1(t) on J . Similarly, we can
show w0 � w1 .

Also, let u be any solution of equation (1.1) such that v0(t) � u � w0(t) on J and
set p(t) = u − v1 , we get

p′(t) = u′ − v′1 = F(t, u, Tu) − M1u − N1Tu + G(t, u, Tu) − M2u − N2u

− F(t, w0, Tw0) + M1v1 + N1Tv1 − G(t, v0, Tv0) + M2v1 + N2Tv1

� −(M1 + M2)(u − v1) − (N1 + N2)T(u − v1)
= −Mp − NTp,

where (M1+M2) = M > 0 and (N1+N2) = N � 0 using themonotone nature of f and
g and the fact that v0 � u � w0 . Also p(0) = u(0)−v1(0) = u(2π)−v1(2π) = p(2π) .
Thus p(t) � 0 . From Lemma 1 we get u � v1 . A similar argument yields u � w1 .
To avoid repetition, we can prove u � v2 , u � w2 , u � v3 , and u � w3 in a similar
fashion. Now we want to show that v0 � w1 � v2 � w3 , and v3 � w2 � v1 � w0 . We
have by hypothesis that v0 � w1 and w0 � v1 . For this purpose let p(t) = w1 − v2 ,
then

p′(t) = w′
1 − v′2 = F(t, v0, Tv0) − M1w1 − N1Tw1 + G(t, w0, Tw0) − M2w1 − N2w1

− F(t, w1, Tw1)+M1v2+N1Tv2−G(t, v1, Tv1)+M2v2+N2Tv2

� −(M1 + M2)(w1 − v2) − (N1 + N2)T(w1 − v2)
= −Mp − NTp,
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by the monotone nature of f and G . Also p(0) = p(2π). Hence by Lemma 1,
p(t) � 0, giving us w1 � v2 . Similarly, v1 � w2 , v2 � w3 and v3 � w2 . Hence, it is
clear that (3.11) is true for k = 1 .

Now assume that (3.11) holds for some k > 1 , such that,

wk−2 � vk−1 � wk � u � vk � wk−1 � vk−2 on J.

We will use this and prove that (3.11) holds for k + 1 . Thus we need to show that the
inequality

vk−1 � wk � vk+1 � u � wk+1 � vk � wk−1

holds on J . For this purpose, let p(t) = vk−1(t) − wk(t) , then we have

p′(t) = v′k−1(t) − w′
k(t)

= F(t, wk−2, Twk−2)−M1vk−1−N1Tvk−1+G(t, vk−2, Tvk−2)−M2vk−1−N2vk−1

− F(t, vk−1, Tvk−1)+M1wk+N1Twk−G(t, wk−1, Twk−1)+M2wk + N2Twk

� −(M1 + M2)(vk−1 − wk) − (N1 + N2)T(vk−1 − wk)
= −Mp − NTp,

using (3.14) and by the monotone nature of f and G . We also have that p(0) =
vk−1(0) − wk(0) = vk−1(2π) − wk(2π) = p(2π) , thus by Lemma 1, p(t) � 0 , giving
us vk−1(t) � wk(t) . Similarly, we can show wk(t) � vk+1(t) , wk+1(t) � vk(t) , and
vk(t) � wk−1(t) . We can also show in a similar fashion as before that u � vk+1 and
u � wk+1 on J . Thus (3.11) holds for k + 1 . Hence, by induction, (3.11) is valid for
all k = 0, 1, 2, ... .

Also the sequences {v2k, w2k+1} and { w2k, v2k+1} can be shown to be equicon-
tinuous and uniformly bounded. So by Ascoli-Arzela’s Theorem, the subsequences
{w2nk , w(2n+1)k} and {w2nk , v(2n+1)k} converge to ρ(t) and r(t) respectively on J .
Since the sequences { v2k, w2k+1} and {w2k, v2k+1} are monotone, the entire sequences
converge uniformly and monotonically to ρ(t) and r(t) respectively on J . Thus the
coupled system (3.12) and (3.13) are satisfied.

Finally, we can show that ρ(t) and r(t) are coupledminimal andmaximal solutions
of equation (1.1) in a fashion similar to the one in the proof of Theorem 3.1. This
completes the proof.

REMARK 3.2. We can prove uniqueness of the solution of equation (1.1) on the
same lines as in Theorem 3.1.

REMARK 3.3. If we would consider the assumptions (A1)(ii) or (A1)(iii) , we
would get the same results as we did using assumption (A1)(i) in Theorems 3.1 and
3.2.

REMARK 3.4. If g ≡ 0 and f is not nondecreasing in u and Tu , but

f̃ (t, u, Tu) = f (t, u, Tu) + Mu + NTu

is nondecreasing in u and Tu for M > 0 , N � 0 . Then we can write

u′ = f (t, u, Tu) + Mu + NTu − Mu − NTu

= f̃ (t, u, Tu) + g̃(t, u, Tu),
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where g̃ = −Mu − NTu is nonincreasing in u and Tu . Then, if v0, w0 are lower and
upper solutions of the original problem with v0 � w0 , then they are lower and upper
solutions of the integro differential equation with boundary conditions

u′ = f̃ (t, u, Tu) − Mu − NTu,

u(0) = u(2π).
(3.18)

Then we can construct upper and lower solutions of type II, given by

v′0 � f (t, v0, Tv0) + Mv0 + NTv0 − Mv0 − NTv0

� f (t, w0, Tw0) + Mw0 + NTw0 − Mv0 − NTv0

= f̃ (t, w0, Tw0) − Mv0 − NTv0,

= f̃ (t, w0, Tw0) + g̃(t, v0, Tv0)
v0(0) � v0(2π)

and

w′
0 � f (t, w0, Tw0) + Mw0 + Nw0 − Mw0 − Nw0

� f (t, v0, Tv0) + Mv0 + NTv0 − Mw0 − NTw0

= f̃ (t, v0, Tv0) − Mw0 − NTw0,

= f̃ (t, v0, Tv0) + g̃(t, w0, Tw0)
w0(0) � w0(2π).

Note that we get the same results as in Theorem 3.2, using an appropriate iterative
scheme.

REMARK 3.5 If f ≡ 0 and g is not nonincreasing in u and Tu , but

g̃(t, u, Tu) = g(t, u, Tu) − Mu − NTu

is nonincreaing in u and Tu for M > 0 , N � 0 . Then we can write

u′ = g(t, u, Tu) − Mu − NTu + Mu + NTu

= g̃(t, u, Tu) + f̃ (t, u, Tu),

where f̃ = Mu + NTu is nondecreasing in u and Tu . Then, if v0, w0 are lower and
upper solutions of the original problem with v0 � w0 , then they are lower and upper
solutions of the integro differential equation with boundary conditions

u′ = g̃(t, u, Tu) + Mu + NTu,

u(0) = u(2π).
(3.19)

Then we can construct upper and lower solutions of type II, given by

v′0 � g(t, v0, Tv0) − Mv0 − NTv0 + Mv0 + NTv0

� g(t, v0, Tv0) − Mv0 − NTv0 + Mw0 + NTw0

= g̃(t, v0, Tv0) + Mw0 + NTw0

= g̃(t, v0, Tv0) + f̃ (t, w0, Tw0),
v0(0) � v0(2π)
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and

w′
0 � g(t, w0, Tw0) − Mw0 − NTw0 + Mw0 + NTw0

� g(t, w0, Tw0) − Mw0 − NTw0 + Mv0 + NTv0

= g̃(t, w0, Tw0) + Mv0 + NTv0

= g̃(t, w0, Tw0) + f̃ (t, v0, Tv0),
w0(0) � w0(2π).

Note that we get the same results as in Theorem 3.2, using an appropriate iterative
scheme.

4. Numerical results

In this section we give an example of a nonlinear integro-differential equation
with periodic boundary conditions to demonstrate a special case of Theorem 3.2 by
using Mathematica to compute the iterates of the sequences which converge to the
solution of the nonlinear problem. For this purpose we will consider the nonlinear
integro-differential equation with periodic boundary conditions given by

u′ =
1
π4

u4 − 1
24π2

− 1
16π2

∫ t

0
uds − 5

8π
u,

u(0) = u(2π) on J = [0, 2π].
(4.1)

Note that

f (t, u, Tu) = F(t, u, Tu) − M1u − N1Tu

=
1
π4

u4 − 1
24π2

is nondecreasing in u , where −M1 = 0 and −N1 = 0 .
Also

g(t, u, Tu) = G(t, u, Tu) − M2u − N2Tu

= − 5
8π

u − 1
16π2

∫ t

0
uds

is nonincreasing in u and Tu , where G(t, u, Tu) = 0,−M2u = 5
8π u and −N2Tu(t) =

− 1
16π2

∫ t
0 u(s)ds . Furthermore, the equation (4.1) satisfies the condition

2(N1 + N2)k0π(e2(M1+M2)π − 1) � M1 + M2,

since
(

1
8π

)(e
5
4 − 1) � 5

8π
.

Also, we have v0 = − 1
3 and w0 = 3

4 are lower and upper solutions of type II of
(4.1). Using v0, w0 and a special case of the iterative scheme given by equations (3.12)
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and (3.13), we have used Laplace Transform and Mathematica to compute v1 and w1

analytically as follows:

v1 =
1

36π2
{e−t

8π [211 − 96π3(−211(−1 + e
1
4 )(1 + 2e

1
4 + 3

√
e)

384(1 + e
1
4 +

√
e)π3

)]}

+
1

144π2
{e−t

2π [−211 + 384π3(−211(−1 + e
1
4 )(1 + 2e

1
4 + 3

√
e)

384(1 + e
1
4 +

√
e)π3

)]}

and

w1 =
2

243π2
e
−t
2π {[19 + 324π3(

19(−1 + e
1
4 )(1 + 2e

1
4 + 3

√
e)

324(1 + e
1
4 +

√
e)π3

)]}

− 8
243π2

e
−t
8π [19 + 81π3(

19(−1 + e
1
4 )(1 + 2e

1
4 + 3

√
e)

324(1 + e
1
4 +

√
e)π3

)]}

We illustrate in Figure 4.1 the lower and upper solutions v0, w0 and the two iterates
v1, w1 , and we show clearly that v0 � w1 and w0 � v1 , therefore the conditions of
Theorem 3.2 are satisfied. Also, it is clear that the periodic boundary conditions are
met. Furthermore, the graph illustrates intertwined alternating sequences, which are
converging to the solution of equation (4.1). Note, we have chosen appropriate scales
to demonstrate these conditions. Therefore the graphs of v1 and w1 appear to be linear.

1 2 3 4 5 6
t
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-0.75

-0.5

-0.25

0.25

0.5

0.75

1
y

w1

v1

w0

v0

Figure 4.1.

We illustrate v1 and w1 in Figures 4.2 and 4.3. Note, we have chosen appropriate
small scales to clearly see the curves of the graphs.
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Figure 4.2 Figure 4.3
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Conclusion. It was known that when using the monotone iterative technique
coupled with lower and upper solutions for nonlinear integro differential equations
with periodic boundary conditions, we obtained natural sequences which converge to
minimal andmaximal solutions of the nonlinear problems. Our results prove that we can
obtain natural sequences as well as alternating intertwining sequences when the forcing
function is the sum of a nondecreasing and nonincreasing function. We have shown,
that it depends entirely on the construction of the sequences. We have also shown that
the solutions to the nonlinear problem is unique. Our result generalizes the monotone
method for periodic boundary value problems for the nonlinear integro equation 1.1,
which includes some earlier known results.
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