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EMBEDDINGS BETWEEN DISCRETE WEIGHTED
LEBESGUE SPACES WITH VARIABLE EXPONENTS

ALES NEKVINDA

(communicated by L. Pick)

Abstract. Given mappings p,q,v,w : Z — (0, 00) we can consider discrete weighted Lebesgue
spaces (1Pn} (vn) and ¢lan} (wn) with variable exponents. The necessary and sufficient condi-
tion to the p, ¢, v, w for the embedding E{p”}(vn) — Z{q’l}(wn) is given.

1. Introduction

The generalized Lebesgue space ¢177} | [7¥) and the corresponding Sobolev space
W2 have attracted more and more interest in recent years. We refer to [9] for the
establishment of the fundamental properties of these spaces, to [4] for some properties
of the norm on 17", to [6] and [16] for the density of smooth functions in W'?*) and
to [7] for inequalities of Sobolev type. Further motivation for the study of these spaces
is provided in [14, 15] by means of mathematical models of electrorheological fluids
which involve nonlinear systems of partial differential equations with coefficients of
variable rate of growth.

A crucial difference between L/ and the classical Lebesgue spaces is that L/%)
is not, in general, invariant under translation.

The boundedness of Hardy-Littlewood maximal operator plays a very important
role in study of spaces 17"} . The basic result was done by L. Diening in [2]. Further
results are obtained in [1], [3], [8], [10], [12] and [13].

Consider a discrete analogue {7} of [7®). In [5] it is proved that under certain
assumptions on p : Z — R the norms of shift operators given by

Sca = {(Sxa)n}, (Ska)n = an—i,a = {an},

are uniformly bounded on ¢{P2}

In [11] a necessary and sufficient condition to exponent p,q : Z — R is found
to guarantee that the norms in spaces ¢{?} and ¢4} are equivalent. Moreover, the
norms of S; are uniformly bounded on ¢17} for a bounded p if and only if there exists
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166 ALES NEKVINDA

areal number r, 1 < r < oo, such that the norms in ¢”} and the classical space ¢"
are equivalent.

This paper generalizes results from [11]. Given p,q,v,w : Z — R consider
weighted discrete Lebesgue spaces (1P} (v,), £{9}(w,). We find a necessary and
sufficient condition to p, g, v, w to guarantee the embedding £} (v,) < 1@} (w,).

2. Preliminaries

Let Z denote the set of all integers and let M denote the set of all mappings
a:7Z — R. Given p € M denote by p* = sup{p,;n € Z} and set
B={p€ M1 <p,<p" <oo},
W= {veM;0 <}
Given p € B and v € W define for a € M anorm

Pn
lall oy, = inf {2 > 0.3 (B) "0, < 1}
keZ

and the discrete weighted Lebesgue space ¢{P"}(v,) as a set of all a € M with
lallptony (1) < 00

LEMMA 2.1. Let p,q € B, v,w € W. Then the following assertions are
equivalent:

(i) g{pn}(vn) AN g{qn}(wn) :

(ii) the implication
Z |an Py, < 1= Z |an| " w, < 0o

holds. keZ keZ

‘an‘
A

Proof. This lemma is proved in [11] for non-weighted case. It is not difficult to
rewrite this proof for weights to obtain our lemma.

3. Key assertions

Set Wy = {a € M;a, > 0}.
LEMMA 3.1. Let v,w € W, € € Wy. Assume sup{v, ' ~"®w,,n € Z} < oo.

Then the implication
Zanvn <l= Za,lfg"wn < 00
holds for all a e W,.  "€Z nez

Proof. Assume Y. _,a,v, < 1. Then a, < v, ! and so,

nez n

1+ _ & —1 —1—g —1—g
E a, "wy = g AnVn@,"Wyv, < g AnVpWpV, " K< supy,  w, < 00,
nez nez nez

which finishes the proof.
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LEMMA 3.2. Let viw € W, € € Wy and let there exists a positive number €*
such that &, < €*. Assume that v, 1=ty is unbounded. Then there is a sequence

a € Wy, such that
Z av, <1 and Z altenw, =
nez nez

Proof. Since {v, !~®w,} isunbounded we can take an infinite set S = {n,ny, ...}
of integers such that

—1=én k(1+e*
Vi Wy, =2 (1+€7)
Set
{ 0 ifngs
an - —k _1 .
27, if n=n.
Clearly,
S = S = 32l =
nez nes
and
> 1+,
—k — k
ZaillJrEan — Za,l,“”wn _ Z (2 kvnkl) Wi,

ne”z k=1

nes

oo oo

§ 2= k(l+8nk>v Wnk § 2~ kl+6 2/( 1+€ )
k=1

o~
Il
_

I
NE
"

8

o~
Il
_

Thus, the proof follows.

LEMMA 3.3. Let v,w,€ € W, &, < 1. Assume that there is a positive number ¢

such that )
1/€e,
K := Z (ﬁc) vy < 00. (3.1)

V,
nez n

Zanvn <l= Za,lfg”wn < 00

nez nez

Then the implication

holds for all a € W .

Proof. Let c satisfies (3.1) and assume Y, a,v, < 1. Set
nes

1/€n
7y = {n € Z;a, > (ﬁc) }
Vn

1/€n
Zzz{nEZ;ang (ﬁc) }

Vn
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Since Z; , Z, are pairwise disjoint and Z; U Z, = Z, we can write

- - 1-
E a,”w, = E a,”"w, + E a,” "w, =1 + b.

nez nez, neZ,
Clearly,
_ Vv, 1 1
I = E an a, wy, < g a,,( u )wn:— E apv, < —
WnC c c
nely nely nezy
and

1—¢&p
_ w, g
12: E Cl,ll E”Wn < E (V_nc) ! Wn
n

n€Zy n€Zy
w, \Ven s v, 1 Wy \ 1/en
= —cC Wy, = — g —cC Vv, < 00,
V, w,C C V,
neZy " n neZy "

which proves the lemma.

LEMMA 3.4. Let v,w, e €W, &, < 1. Assume that

> (2e) o 32)

ne”z

holds for each positive c. Then there is a sequence a € Wy, such that

E av, <1 and E al~®w, = oco.

nez nez
Proof. Set Ny = —1. We will construct sequences {Ni}ren, Ni € N, and
{cktken, cx > 0, satisfying for any k € N
1 w, N\ Ven
0<a<zy ad Y (—nck) — (3.3)
Ni— 1 <|n|<Ng
According to (3.2) we can find N, € N such that
Z (Wn 1)1/8»1
— = 12
Vn 2 n =
[n| <N
Then there exists a number 0 < ¢; < % such that
w, 1/€n w, 1/en
Z (—"cl) v, = Z (—"cl) v, =1
Vﬂ Vﬂ
[n] <N No<|n|<Ny
Assume that we have constructed positive integers Ny < N, < --- < N; and real
numbers ¢y, ¢a, ..., ¢y such that
1 Wy O\ e
0< Cr S 5 and Z (;Cr) =1
Ny—1<[n|<Nr

forr=1,2,...,k.
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According to (3.2), we can find Ny such that

w, 1 \Uen

SN
v, 2K+

Ni<|n| <Ny
Then we can take ¢, such that
1 Wy 1/en
0<cpqr < ) and Z (V—CkH) =1,

Np<|n|<Niyy

which proves (3.3).
Define a € W, by

1/(1—¢n) 1/€n
a, = (c,i/g") (ﬂ) if Ny—y < |n| < Ny
Vn

Using (3.3) we have

o
I—en ey (Wn\ L —n)/En
ay Wy = Ck V_ Wn
nez k=1 Np_,<|n|<N; "
o
Wy 1/en
= E E —Ck Vn
Vn
k=1 Ni_y<[n|<Ng
oo
k=1

Let us estimate > a,v,. Since ¢x < 1 and 1 — 8,% < 1 we obtain

ne”z
1/(178;1) 1+¢,
(C;/En) < (C;/&l) ,

which implies with (3.3)

and the lemma is proved.

169
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4. Embedding

Let p,g € B, vyw € W. Denote A= {n;p, > qu}, B={n;pn < qu}.

LEMMA 4.1. Let p,q,v,w satisfy

w _Pn__ 4qn
. n Pn—4i “on
1ng (—c) M+ sup v, Mw, < oo.
c>! V,

ne n nelB

Zaﬁ"vn <1l= Zaﬁ"wn < 00

nez nez

Then the implication

holds for all a € W .

Proof. Let ), ., ay'vy, < 1. Set b, = d" and €, = ’%.
Thus, ), buva < 1. Moreover,

ZaZ"wn = Z al'w, + Z al'w, =1 + b.
nez nGA nGB
Estimate [, . Since ¢, € (0,1) for n € A we have by (4.1) for some ¢ > 0
Wn \ & Wi \ i
> (3e) =30 ()™ T < oo
Vi Va
nc A ne
and by Lemma 3.3 we obtain
Il = Z aZ"w,, = Z b,llignwn < 00.
neA neA
Estimate I, . We have by (4.1)

_an
sup v;lfg"wn = sup v, "w, < 0.

nelB nelB
and since €, < 0 for n € B we obtain by Lemma 3.1
12 = Zaﬁ”wn = Z b,ll_gnwn < 00,
nelBB neBB

which finishes the proof.

LEMMA 4.2. Let p,q,v,w do not satisfy (4.1). Then there exists a € Wy such

that

Za’,’,”vn <1 A Zaﬁ”wn = 00.

nez nez
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Proof. Since (4.1) is not satisfied then either

Pn

inf (W—c) e, = o (4.2)
c>0 Vi
n€A
or
_an
sup vy " wy, = oo. (4.3)
nGB

Assume first (4.2). Denote ¢, = ’%. By Lemma 3.4 there exists a sequence
b, such that

> byva<1and Y by w, = oo. (4.4)
ne A ne A
Set .
4y = b if ne A;
{ 0 if neZ\ A
Thus,
Zaﬁ"vn = Z by, <1
n€Z ne A
and
Zaj{”wn = Z b=y, = oco.
n€Z ne A

. Since

Assume now (4.3). Denote ¢, = -2

_an
sup v, " w, = sup v, '\ "w, = oo
nelB nelB

there exists by Lemma 3.2 a sequence b, such that

> bwa<1and Y by w, = oo,

nEB nEB
Set .
) b if neB;
aﬂ - .
0 if neZ\B.
Thus,
Zaﬁ”vn = anvn <1
n€Z neBB
and
S = 3=
nez nelB

which proves the lemma.
The following theorem is an immediate consequence of Lemmas 2.1, 4.1 and 4.2.

THEOREM 4.3. The embedding (/" (v,) < €9 (wy,) holds if and only if p,q,v,w
satisfy (4.1).
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