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EMBEDDINGS BETWEEN DISCRETE WEIGHTED

LEBESGUE SPACES WITH VARIABLE EXPONENTS

ALEŠ NEKVINDA

(communicated by L. Pick)

Abstract. Given mappings p, q, v, w : Z → (0,∞) we can consider discrete weighted Lebesgue
spaces �{pn}(vn) and �{qn}(wn) with variable exponents. The necessary and sufficient condi-

tion to the p , q , v , w for the embedding �{pn}(vn) ↪→ �{qn}(wn) is given.

1. Introduction

The generalized Lebesgue space �{pn} , Lp(x) and the correspondingSobolev space
W1,p(x) have attracted more and more interest in recent years. We refer to [9] for the
establishment of the fundamental properties of these spaces, to [4] for some properties
of the norm on Lp(x) , to [6] and [16] for the density of smooth functions in W1,p(x) and
to [7] for inequalities of Sobolev type. Further motivation for the study of these spaces
is provided in [14, 15] by means of mathematical models of electrorheological fluids
which involve nonlinear systems of partial differential equations with coefficients of
variable rate of growth.

A crucial difference between Lp(x) and the classical Lebesgue spaces is that Lp(x)

is not, in general, invariant under translation.
The boundedness of Hardy-Littlewood maximal operator plays a very important

role in study of spaces Lp(x) . The basic result was done by L. Diening in [2]. Further
results are obtained in [1], [3], [8], [10], [12] and [13].

Consider a discrete analogue �{pn} of Lp(x) . In [5] it is proved that under certain
assumptions on p : Z → R the norms of shift operators given by

Ska = {(Ska)n}, (Ska)n = an−k, a = {an},
are uniformly bounded on �{pn} .

In [11] a necessary and sufficient condition to exponent p, q : Z → R is found
to guarantee that the norms in spaces �{pn} and �{qn} are equivalent. Moreover, the
norms of Sk are uniformly bounded on �{pn} for a bounded p if and only if there exists
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a real number r , 1 � r < ∞ , such that the norms in �{pn} and the classical space �r

are equivalent.
This paper generalizes results from [11]. Given p, q, v, w : Z → R consider

weighted discrete Lebesgue spaces �{pn}(vn), �{qn}(wn) . We find a necessary and
sufficient condition to p, q, v, w to guarantee the embedding �{pn}(vn) ↪→ �{qn}(wn) .

2. Preliminaries

Let Z denote the set of all integers and let M denote the set of all mappings
a : Z → R . Given p ∈ M denote by p∗ = sup{pn; n ∈ Z} and set

B = {p ∈ M; 1 � pn � p∗ < ∞},
W = {v ∈ M; 0 < vn}.

Given p ∈ B and v ∈ W define for a ∈ M a norm

‖a‖�{pn}(vn) := inf
{
λ > 0;

∑
k∈Z

( |an|
λ

)pn
vn � 1

}

and the discrete weighted Lebesgue space �{pn}(vn) as a set of all a ∈ M with
‖a‖�{pn}(vn) < ∞ .

LEMMA 2.1. Let p, q ∈ B , v, w ∈ W . Then the following assertions are
equivalent:
(i) �{pn}(vn) ↪→ �{qn}(wn) ;
(ii) the implication ∑

k∈Z

|an|pnvn � 1 ⇒
∑
k∈Z

|an|qnwn < ∞
holds.

Proof. This lemma is proved in [11] for non-weighted case. It is not difficult to
rewrite this proof for weights to obtain our lemma.

3. Key assertions

Set W0 = {a ∈ M; an � 0}.
LEMMA 3.1. Let v, w ∈ W , ε ∈ W0 . Assume sup{v−1−εn

n wn, n ∈ Z} < ∞ .
Then the implication ∑

n∈Z

anvn � 1 ⇒
∑
n∈Z

a1+εn
n wn < ∞

holds for all a ∈ W0 .

Proof. Assume
∑

n∈Z
anvn � 1 . Then an � v−1

n and so,∑
n∈Z

a1+εn
n wn =

∑
n∈Z

anvna
εn
n wnv

−1
n �

∑
n∈Z

anvnwnv
−1−εn
n � sup v−1−εn

n wn < ∞,

which finishes the proof.



EMBEDDINGS BETWEEN DISCRETE WEIGHTED LEBESGUE SPACES WITH VARIABLE EXPONENTS 167

LEMMA 3.2. Let v, w ∈ W , ε ∈ W0 and let there exists a positive number ε∗
such that εn � ε∗ . Assume that v−1−εn

n wn is unbounded. Then there is a sequence
a ∈ W0 , such that ∑

n∈Z

anvn � 1 and
∑
n∈Z

a1+εn
n wn = ∞.

Proof. Since {v−1−εn
n wn} is unboundedwe can take an infinite set S = {n1, n2, . . . }

of integers such that

v
−1−εnk
nk wnk � 2k(1+ε∗).

Set

an =
{

0 if n /∈ S

2−kv−1
nk

if n = nk.

Clearly, ∑
n∈Z

anvn =
∑
n∈S

anvn =
∞∑
k=1

2−kv−1
nk

vnk = 1

and

∑
n∈Z

a1+εn
n wn =

∑
n∈S

a1+εn
n wn =

∞∑
k=1

(
2−kv−1

nk

)1+εnk
wnk

=
∞∑
k=1

2−k(1+εnk )v
−1−εnk
nk wnk �

∞∑
k=1

2−k(1+ε∗)2k(1+ε∗)

=
∞∑
k=1

1 = ∞.

Thus, the proof follows.

LEMMA 3.3. Let v, w, ε ∈ W , εn � 1 . Assume that there is a positive number c
such that

K :=
∑
n∈Z

(wn

vn
c
)1/εn

vn < ∞. (3.1)

Then the implication ∑
n∈Z

anvn � 1 ⇒
∑
n∈Z

a1−εn
n wn < ∞

holds for all a ∈ W0 .

Proof. Let c satisfies (3.1) and assume
∑
n∈Z

anvn � 1 . Set

Z1 =
{

n ∈ Z; an >
(wn

vn
c
)1/εn}

Z2 =
{

n ∈ Z; an �
(wn

vn
c
)1/εn}

.



168 ALEŠ NEKVINDA

Since Z1 , Z2 are pairwise disjoint and Z1 ∪ Z2 = Z , we can write∑
n∈Z

a1−εn
n wn =

∑
n∈Z1

a1−εn
n wn +

∑
n∈Z2

a1−εn
n wn = I1 + I2.

Clearly,

I1 =
∑
n∈Z1

an a−εn
n wn �

∑
n∈Z1

an

( vn

wnc

)
wn =

1
c

∑
n∈Z1

anvn � 1
c

and

I2 =
∑
n∈Z2

a1−εn
n wn �

∑
n∈Z2

(wn

vn
c
) 1−εn

εn
wn

=
∑
n∈Z2

(wn

vn
c
)1/εn( vn

wnc

)
wn =

1
c

∑
n∈Z2

(wn

vn
c
)1/εn

vn < ∞,

which proves the lemma.

LEMMA 3.4. Let v, w, ε ∈ W , εn < 1 . Assume that∑
n∈Z

(wn

vn
c
)1/εn

vn = ∞ (3.2)

holds for each positive c . Then there is a sequence a ∈ W0 , such that∑
n∈Z

anvn � 1 and
∑
n∈Z

a1−εn
n wn = ∞.

Proof. Set N0 = −1 . We will construct sequences {Nk}k∈N , Nk ∈ N , and
{ck}k∈N , ck > 0 , satisfying for any k ∈ N

0 < ck � 1
2k

and
∑

Nk−1<|n|�Nk

(wn

vn
ck

)1/εn
vn = 1. (3.3)

According to (3.2) we can find N1 ∈ N such that∑
|n|�N1

(wn

vn

1
2

)1/εn
vn � 1.

Then there exists a number 0 < c1 � 1
2 such that

∑
|n|�N1

(wn

vn
c1

)1/εn
vn =

∑
N0<|n|�N1

(wn

vn
c1

)1/εn
vn = 1.

Assume that we have constructed positive integers N1 < N2 < · · · < Nk and real
numbers c1, c2, . . . , ck such that

0 < cr � 1
2r

and
∑

Nr−1<|n|�Nr

(wn

vn
cr

)1/εn
= 1

for r = 1, 2, . . . , k .
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According to (3.2), we can find Nk+1 such that

∑
Nk<|n|�Nk+1

(wn

vn

1
2k+1

)1/εn
� 1.

Then we can take ck+1 such that

0 < ck+1 � 1
2k+1

and
∑

Nk<|n|�Nk+1

(wn

vn
ck+1

)1/εn
= 1,

which proves (3.3).
Define a ∈ W0 by

an =
(
c1/εn
k

)1/(1−εn)(wn

vn

)1/εn
if Nk−1 < |n| � Nk.

Using (3.3) we have

∑
n∈Z

an
1−εnwn =

∞∑
k=1

∑
Nk−1<|n|�Nk

c1/εn
k

(wn

vn

)(1−εn)/εn
wn

=
∞∑
k=1

∑
Nk−1<|n|�Nk

(wn

vn
ck

)1/εn
vn

=
∞∑
k=1

1 = ∞.

Let us estimate
∑
n∈Z

anvn . Since ck � 1 and 1 − ε2
n < 1 we obtain

(
c1/εn
k

)1/(1−εn)
�

(
c1/εn
k

)1+εn
,

which implies with (3.3)

∑
n∈Z

anvn �
∞∑
k=1

∑
Nk−1<|n|�Nk

(
c1/εn
k

)1/(1−εn)(wn

vn

)1/εn
vn

�
∞∑
k=1

∑
Nk−1<|n|�Nk

(
c1/εn
k

)1+εn(wn

vn

)1/εn
vn

=
∞∑
k=1

ck

∑
Nk−1<|n|�Nk

(wn

vn
ck

)1/εn
vn

�
∞∑
k=1

1
2k

= 1

and the lemma is proved.
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4. Embedding

Let p, q ∈ B , v, w ∈ W . Denote A = {n; pn > qn} , B = {n; pn � qn} .

LEMMA 4.1. Let p, q, v, w satisfy

inf
c>0

∑
n∈A

(wn

vn
c
) pn

pn−qn vn + sup
n∈B

v
− qn

pn
n wn < ∞. (4.1)

Then the implication ∑
n∈Z

apn
n vn � 1 ⇒

∑
n∈Z

aqn
n wn < ∞

holds for all a ∈ W0 .

Proof. Let
∑

n∈Z
apn

n vn � 1 . Set bn = apn
n and εn = pn−qn

pn
.

Thus,
∑

n∈Z
bnvn � 1 . Moreover,

∑
n∈Z

aqn
n wn =

∑
n∈A

aqn
n wn +

∑
n∈B

aqn
n wn = I1 + I2.

Estimate I1 . Since εn ∈ (0, 1) for n ∈ A we have by (4.1) for some c > 0

∑
n∈A

(wn

vn
c
) 1

εn
vn =

∑
n∈A

(wn

vn
c
) pn

pn−qn vn < ∞

and by Lemma 3.3 we obtain

I1 =
∑
n∈A

aqn
n wn =

∑
n∈A

b1−εn
n wn < ∞.

Estimate I2 . We have by (4.1)

sup
n∈B

v−1−εn
n wn = sup

n∈B
v
− qn

pn
n wn < ∞.

and since εn � 0 for n ∈ B we obtain by Lemma 3.1

I2 =
∑
n∈B

aqn
n wn =

∑
n∈B

b1−εn
n wn < ∞,

which finishes the proof.

LEMMA 4.2. Let p, q, v, w do not satisfy (4.1) . Then there exists a ∈ W0 such
that ∑

n∈Z

apn
n vn � 1 ∧

∑
n∈Z

aqn
n wn = ∞.
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Proof. Since (4.1) is not satisfied then either

inf
c>0

∑
n∈A

(wn

vn
c
) pn

pn−qn vn = ∞ (4.2)

or

sup
n∈B

v
− qn

pn
n wn = ∞. (4.3)

Assume first (4.2). Denote εn = pn−qn
pn

. By Lemma 3.4 there exists a sequence
bn such that ∑

n∈A
bnvn � 1 and

∑
n∈A

b1−εn
n wn = ∞. (4.4)

Set

an =

{
b

1
pn
n if n ∈ A;

0 if n ∈ Z \ A.

Thus, ∑
n∈Z

apn
n vn =

∑
n∈A

bnvn � 1

and ∑
n∈Z

aqn
n wn =

∑
n∈A

b1−εn
n wn = ∞.

Assume now (4.3). Denote εn = qn−pn
pn

. Since

sup
n∈B

v
− qn

pn
n wn = sup

n∈B
v−1−εn
n wn = ∞

there exists by Lemma 3.2 a sequence bn such that∑
n∈B

bnvn � 1 and
∑
n∈B

b1+εn
n wn = ∞.

Set

an =

{
b

1
pn
n if n ∈ B;

0 if n ∈ Z \ B.

Thus, ∑
n∈Z

apn
n vn =

∑
n∈B

bnvn � 1

and ∑
n∈Z

aqn
n wn =

∑
n∈B

b1+εn
n wn = ∞,

which proves the lemma.

The following theorem is an immediate consequence of Lemmas 2.1, 4.1 and 4.2.

THEOREM 4.3. The embedding �pn(vn) ↪→ �qn(wn) holds if and only if p, q, v, w
satisfy (4.1) .
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