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HANKEL CONVOLUTION ON THE DUAL
OF A SPACE OF ENTIRE FUNCTIONS

JORGE J. BETANCOR

(communicated by A. Laforgia)

Abstract. In this paper we study the Hankel convolution on a certain space Q of entire functions
rapidly increasing on each horizontal strip in the complex plane. We also describe the # -

convolution operators on the dual space Q/ of Q.

1. Introduction and preliminaries

The Hankel transformation is defined by ([12])

hu(9)(y) = /Ooo(xy)_“Ju(xy)¢(X)x2““dx, y € (0,00),

where ¢ is a Lebesgue measurable function on (0, 00) such that [, [¢(x)|x**'dx <
oo. Here J, represents, as usual, the Bessel function of the first kind and order
> -1

The study of Hankel transforms on distribution spaces was started by A. H. Zema-
nian ([17] and [18]) who defined h,, transforms on distributions of slow growth and of
rapid growth. More recently, J. J. Betancor and L. Rodriguez-Mesa ([4] and [6]) have
defined Hankel transforms on distributions of exponential growth.

The convolution operation for A, -transforms was investigated by 1. I. Hirschman
[13], D. T. Haimo [10] and F. M. Cholewinski [7].

Suppose that ¢; is a Lebesgue measurable function on (0,00) such that
Jo~ 19i(x)[x*dx < oo, for i = 1,2. The Hankel convolution of u, ¢#,¢, of
¢, and ¢, is given by
2u+1

(G1#0) (x /¢z (101 () 5o——dy, x € (0,00),

24T (u+1)

where

(uTed1)(y) = /000 u(%,y,2)01(z )m
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Here D, denotes the Delsarte kernel given by

Du (x,y7z) = (Z“F(u + 1))2 /()Oo(xt)ﬂjﬂ (XI)(yt)7“1,1(yt)(zt)iﬂ.]#(zt)tzﬂﬂdt’
x,y,z € (0,00).

The Hankel transform £, is closely connected with #, -convolution and 7, -
translations, x € (0, 00), as the following formulas ([13]) show

hu(¢l#u¢2) = hu(¢l)hu(¢2)7

and
M (uTepr) (v) = 28T (0 + 1) () ™ (e9) e (01) (v), %,y € (0, 00).

In the sequel, I will write #, 7., x € [0,00), and D, instead #,, 4,7, x € [0,00),
and D, , respectively, to simplify notations. I do not think that this lead to any problem.

The study of Hankel convolutions in distribution spaces was begun by J. Sousa-
Pinto [15] who considered distributions having compact support on (0,00) and the
order u = 0. J. J. Betancor and I. Marrero ([3] and [14]) completed the investigations
of J. de Sousa-Pinto. The Hankel convolution was studied on Zemanian’s distribution
spaces of slow growth in [14] and of rapid growth in [3].

In [4] Hankel transform and Hankel convolution were investigated on distribution
spaces of exponential growth.

We now collect some definitions and results stated in [4] which will be very useful
in the sequel.

By X we represent the space constituted by all those C>° -functions ¢ on (0, c0)

such that, for every m,n € N,
1d\"
(; E) ¢(x)

The space X is Fréchet when on X we consider the topology generated by the family
{Ymntmnen of seminorms.

For every x € [0, 00), the Hankel translation operator 7, is continuous from X
into itself ([4, Proposition 3.1]). If T € A’, the dual space of X, and ¢ € X, the
Hankel convolution T#¢ of T and ¢ is defined by

Ymn(@) = sup ™ < 00.

x€(0,00)

(T#)(x) = (T, 7u9), x € [0,00).

In [4] the space of Hankel convolution operators on X was investigated.

The space Q consists of all those even and entire functions ® such that, for every
m,k €N,

nm,k(q)) = Ssup (1 + |Z‘2)k‘q)(z)‘ < o0.
[Im z|<m

Q is endowed with the topology associated with the system {7 }mien Of norms.
Thus Q is a Fréchet space. The Hankel transformation A, is an isomorphism from
X onto Q ([4, Theorem 2.1]). hy is defined on the corresponding dual spaces by
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transposition, that is, if 7 € &’ (respectively, Q', the dual space of Q) the Hankel
transform h,(T) is the element of Q' (respectively, X" ) given by

(hy(T), ®) = (T, hy(®)), ® € Q (respectively, X).

Our objective in this paper is to study the Hankel convolution on the spaces Q and
Q. We need previously to establish in Section 2 new properties of the spaces X and
Q.

Throughout this paper C always represents a suitable positive constant that can be
changed from line to line.

2. Function spaces X and Q

In this section we establish new properties for the function spaces X and Q that
were introduced in [4].

As it was mentioned in Section 1 the space X is constituted by all those C* -
functions ¢ on (0, 00) such that, for every m,n € N,

(32) ot

The space X is equipped with the topology generated by the family {Vn}mnpen Of
seminorms. Thus X is a Fréchet space.
G. Altenburg [1] introduced the space H that consists of all those C*° -functions

¢ on (0,00) such that, for every m,n € N,
1d\"
(;5) o (x)

H is endowed with the topology associated with the system {04y » }mnen of seminorms.
By virtue of [8, p. 86], H coincides with the space S, of the even functions in the
Schwartz class S§. The space X is continuously contained in H .

H. Hasumi [11] considered the space E constituted by the C*° -functions ¢ on R
such that, for each m,n € N,

< 00.

Vm,n(‘l)): sup ™
x€(0,00)

O (@) = sup (1 +x2)"’ < 0.

x€(0,00)

n

d—q>(x)’ < 0.

xﬂ

Bm,n(‘p) = sup em|x|
xeR

We denote by E, the space that consists of the even functions in E.

PROPOSITION 2.1. E, = X where the equality is algebraic and topological.

Proof. Let ¢ € X. Since X is contained in S,, ¢ can be extended to R as an
even function. Moreover, for every n € N, we can write

=, (1dY
e =2 (15).
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where a;, € R and @, € N, j=0,...,n. Hence, for every m,n € N,

ﬁmn CZYm+1,} (21)

Thus we proved that ¢ € E, .
Suppose now ¢ € E,. For every n € N, we have that

72n+]
<x dx) Z Binx dyi’

where b;, € R, j=0,...,n. Then, foreach m,n € N,

<C Z B (0 (2.2)

On the other hand, since E, is contained in S, , we get, for every m,n € N,

- 1 d n 1 d n
o | (5a) o] < s |(5) o0
AV &
<C ggeglfgg(l + )| 50 () (2.3)
w| &
< C({r\l?i;lflelge @d)(x) ,

where [ € N is depending on n.

By combining (2.2) and (2.3) we conclude that ¢ € X.

Moreover, (2.1), (2.2) and (2.3) imply that the families {B.n }mnen and {Yun bmnen
are equivalenton X. [

Now, using [2, (2.2) and (2.3)] we can see that for every y > —1, the system

{Ymn}mnen of seminorms, where, for each m,n € N,
Tma(9) = sup ™|ALO(X)], ¢ € X,
x€(0,00)

generates the topology of X. Here A, denotes the Bessel operator x"#=Ipy?Hip

We now introduce new families of seminorms defining the topology of X which
will be useful in the sequel.

We denote by

[ee] 2j

X
IH()C) = Z AT L L1 x€R.
£ TG+ p+ 1)

Note that Z,, is closely connected with the modified Bessel function I, of the first
kind and order u ([16, p. 77]). According to [19, (5) and (6), Chapter 6] we have that,
for a certain C > 0,

1
Exf"*l/zex < Zu(x) < Ce, x € (0,00). (2.4)
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Moreover, for every k € N,

k

PROPOSITION 2.2. We define for every m,n € N and ¢ € X,

Wy — 1d\"
0 = s 7w (L5 ) o0
VD () = sup (11)"@ (mx)o(1))
" x€(0,00) X dx H ’
FEO@) = sup Ty (my)ALY())

x€(0,00)
VED(0) = sup |AL (T (mx)o ().
x€(0,00)

Then, {y,ff”,qm}m’,,eN is a family of seminorms equivalent to {Ymn}mneN on X, for
every j =1,2,3,4.

Proof. Wedenoteby T; the topology on X associated with the system {y,f,‘j,gj)}m,neN
of seminorms, for j = 1,2,3,4. We represent by T the topology generated by
{%n,n}m,nGN on X.

Note firstly that by virtue of (2.4) T coincides with T.

1. T, is finer than T) . Indeed, let m,n € N and ¢ € X. Leibniz formula leads

2y o =3 (%) (i%)j<zu<z<m+1>x>¢<x>> (%)(W)

j=0

to

x € (0,00).

Then, from (2.4) and (2.5) we deduce that
1d\"

(; E) ¢(x)‘
LAy L]
x dx Zu(2(m + 1)x)

« sup ’(§%>j<zﬂ<z<m+ D000

x€(0,00)

(@) = sup T (mx)
’ x€(0,00)

n
<C Z sup ™
=0 x€(0,00)

Hence T is stronger than T .
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2. Ty is finer than T,. To see this we use again (2.4) and (2.5). Indeed, let
m,n € N and ¢ € X. We can write
1dY
’ <)_c a) o (x)

u 1d\"7
AO0) < €S sup ‘(——) 7, (m2)
' FZOXE(O,OO> xdx K

- 1dY

< C supIn_mx<—)q>x’
3 sup Tannmd|{ ) 009
- 1d

g C mx
> (1) o
J=0 ’

(1
< cy oy’
=0

3. T is finer than Tz . To prove this we note that, for every n € N, we can find
crj €R, j=mn,...,2n, such that

Z cn 2V (i i) (2.6)

j=n

Hence, according to (2.4), for every m,n € N, we have

Ym n < CZY}?1+1J ¢ € X

4. Ty is finer than T, . Let myn € N and ¢ € X. From (2.5) and (2.6) we infer
that

A (T (mx)$ chx " zj: (i) m¥2- ’Iqul(mx)(lZC)jiqﬁ(x), x € (0,00).

i=0

Then, (2.4) implies that

2n
Ym n < CZ,}/}?1+1J

5. T is finer than T. By using [2, (2.2) and (2.3)] we can conclude that, for
every m,n € N, there exist [ € N and C > 0 such that

l
Ton(9) SCY_1(9), ¢ € X. (2.7)

According to (2.4), (2.7) allows us to see that T5 is stronger than T .
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6. Ty is finer than T . By [2, (2.2)] we have that, for every ¢ € H and n € N,

1 X
(xai) o(x 2(u+n) / xn/ Xpn_1. / 2ﬂ+1An¢(x1)dx1...dxn, x € (0, 00).

(2.8)
On the other hand, from (2.4) and (2.5) we deduce that, for every m,n € N,

(1) aim

Hence, for every m € N and ¢ € X, Z,,(mx)¢ € X. Then, by using (2.8), we can
write, for every m,n € N and ¢ € X,

Kld)<QWM¢wﬂ

< Ce™, x € (0,00).

x dx

X Xn X2
@%M/M/MM/Qmemowwm%

Therefore,

T (9) < Craa(9), mn €N and ¢ € X.
Thus the proof of the proposition is finished. [

The space of pointwise multipliers of X can be characterized as follows ([4]). A
smooth function f on (0,00) is a pointwise multiplier of X if, and only if, f can
be extended to R as an even and smooth function and, for every n € N, there exists

m € N for which
—mx 1 d "
¢ (x dx) f(x)

is bounded on (0,00). We denote by Oy the space of pointwise multipliers of X'
As it was mentioned in the proof of Proposition 2.2, according to (2.4) and (2.5),
Zu(mx) € Oy, forevery m € N.

On Oy we consider the topology defined by the family {¥n¢}nnengpex Of
seminorms, where

Ym,n,(p(f) = '}/m,n(f(p)7 f S OX7
forevery m,n € N and ¢ € X.

PROPOSITION 2.3. Let m € N. Then

k_,ooz 221]!1" IJ' +]+ ) 7IM(mx)a

in the sense of convergence in O y.



180 JORGE J. BETANCOR

Proof. We are going to see that, for every ¢ € X,

kli)ngo(P Z 22]]'F H +] ) ¢(x)Iﬂ(mx)7

in the sense of convergence in X'.
Let ¢ € X, € >0 and I,n € N. According to (2.4), we can write

() (092 st 7))
< CZ o

(-) N|G) (2 mmien)

(mx)z(jfnﬂx)

C Yl m+1 m+1) - s s
Z +m+ 06 j_kZJrl 22(/fn+oc)(]7n+a)!l—*(“ +J+1)
CZ Yi+m+1, oc mH)XI;Hn—oc(mx)

< Ce™ Z)meH’a((p), x € (0,00) and k € N.

Then, there exists xo € (0, 00) such that, for every x € (xp,00) and k € N,

Ix (%%>"<¢(x) i %)‘ <e. (2.9)

j=k+1

Moreover, we have

61X<xdx) ( Z 22/]vru+1+ )> 210
S oo () (S ) o

a=0

as k — oo, uniformly in x € [0, xo] .
By combining (2.9) and (2.10) we conclude that

S (mx)¥ )
Yin| O(x - - — 0, as k — oo.
b ( ( )jzzk% 2% (1 +j + 1)
Thus we have proved that
k .
, (mx)*
1 = T, ,
Jim_ ¢ (x) ; 2T (u+j + 1) O(x)Zy (mx)

in the sense of convergencein X. [
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The dual space of X is denoted by &’. If f is a Lebesgue measurable function on
(0, 0) such that, for some k € N, e ¥ (x)x?*! is absolutely integrable on (0, ),
then f defines an element of &”, that we continue denoting by f , through

2u+1
o) = [ 7000 g o x

Thus X and Oy can be seen as subspaces of X'.

The space Q was introduced in [4] as follows. An even and entire function @ is
in Q if, and only if, for every m,k € N,

Mui(®) = sup (1+|2)|@(2)] < oc.
[Im z| <m

Q is a Fréchet space when Q is endowed with the topology associated with the family
{Nmptmren of seminorms.

The Hankel transformation A, is an isomorphism from X onto Q ([4, Theorem
2.1]).

We now give a new family of seminorms on Q that generates the same topology

as {nm,k}m,keN on Q.
If m € N and ® is an smooth function on (0, c0) we define

(=1 m* AL d(x)
Tum (@) (x) = kZ:; 22T (1 +‘;c+ n "

€ (0, 00),

provided that the series converges for every x € (0,00). Note that J,, is closely
related to the Bessel function J,, .
For every m,k € N and ® € Q we define 1), ,(®) as follows
775171((@) = sup (1 +xz)k|~7u,n1(q))(x)|~
x€(0,00)
Note that in the definition of ”i.k(q’) we consider only the restriction of @ to

(0,00) in contrast to the definition of 1, x(®) where @ is considered on the whole
complex plane.

PROPOSITION 2.4. The family {nf:,,k}m,keN of seminorms generates the topology
of Q, that is, the topology associated with {Nm i }mkeN -

Proof. Let m,k € N. According to Proposition 2.3, [4, Theorem 2.1] and [1, (6)]
we can write
n 2j

a8 (7 (9)))(2) = <—1>’<z2"hu(nlggo > G ®)

= Y2k i Z 1)””2’A] (z)
M 2 G )
= (1) Tum(®)(2), z€C, (2.11)

forevery ® € Q.
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Equality (2.11) and again [4, Theorem 2.1] and Proposition 2.3 allow us to find
I € N for which

nmk < CZ Slgp Ay (& (Iu(mt)hu((l))()))(x)\
j= OXE )

< Sup g (A (Zy () (@) (1)) ()|
Imx|<
< Cny(P), ¢ e Q.
We have also taken into account that Z,,(mx) € Oy and that A, defines a continuous

linear mapping from X into itself.
On the other hand we have, since z*J,(z) is bounded on (0, 00),

nm,k(q)) = nmk(hu(h ((I))))

< h, (®
Corg3§l% Y (@)

< C max su Iy (T (@)(2) (x
i, sup (@) 0) 0

< C max sup/ |(xz) "M (x2) |24 22 T (@) (2) dz
0y xe(0,00) J0

< Cmax sup |(142°)'J(P)(2)|
0S5 26(0,00)

< Cmaxnf( ), ®€Q,

0<s

for certain I, s € N.
Thus we conclude that {N},}maen and {Nmntmaen are equivalenton Q. [

According to Proposition 2.4, for every m € N, the operator 7, , defines a
continuous mapping from Q into itself. The operator 7}, ,,, m € N, is defined on Q'
by transposition.

By Og we denote the space of pointwise multipliers of Q. We now obtain a new
characterization of the elements of Og .

PROPOSITION 2.5. A function F isin Og if, and only if, F is even and entire and,
for every m € N, there exists k € N such that

sup (14 |z]3)¥IF(z)| < .

[Im z|<m

Proof. Suppose that F isin Og . We consider the function D(z) = e ,zeC.
Thus @ is even and entire and itis in Q. Indeed, if m,k € N we can write

(14 [2PD(2)] < (1 + |Rez]? + m? ke (Rear+n’
< C(1+ |Rez )ke_ (Rez)? , |Imz] <m

Hence, 1,1 (®) < oo, forevery m,k € N.
Since F € Og, FO =Y € Q. Then F = ¥/® is an even and entire function.
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Assume that there exists m € N such that sup;;,, .| <,,(1 + |2[*) *|F(2)| = oo, for
every k € N.
Hence, for every k € N there exists z; such that [Imz| < m and

(1 + ) IF (20)] > .

Moreover we can suppose that |[Rez¢| > k+ 1, k € N.
We define, for every k € N, the function ®; by

Di(z) = (P(z —z) + Pz + ) (1 + | )%, zeC.

The sequence {®;}yen converges to zero in Q. Indeed, let [,n € N. We can write,
forevery k€ N and z € C,

(142" |®e(2)| < CO1+]ze?)" ™ (1 +|z—2e )" | D (a—ze) [+ (14 a2 )" | @ (z+2x) -
Hence, there exists C > 0 such that
nl,n(q)k) < C(l + |Zk‘2)n7knl+m,n(q))a k €N.

Then ®; — 0,as k — 00,in Q.

As a consequence of the closed graph theorem, since F is a pointwise multiplier
of 9, the mapping ® — F® is continuous from Q into itself. Hence F®; — 0, as
k— o0o0,in Q.

However, we have, since ®(2z;) — 0, as k — oo,

|F (z) P ()| [F(ze) (1 + [z[*) 7H(@(0) + D(2z4))]

IF(zo)| (1 + |ze) (1 — |@(220)])
k(1 — |@(2z)])

VoWV

WV
| =

)

provided that k is large enough.

Hence T]m,o(F‘I)k) > %, when k is large enough. Thus, we conclude that
{F®;}ren does not converge to zero in Q in contradiction to the fact that F is a
multiplier of Q. Therefore, if F is a multiplier of Q, for every m € N, there exist

k € N and C > 0 for which
sup (14 [z[))*|F(z)| < C.

[Imz|<m

Suppose now that F is an even and entire function and that, for every m € N, we
can find k € N such that (1 + |z|*)*F is a bounded function on the strip {z € C :
[Imz] < m}. Let ® € Q and m,n € N. We can write

Mna(®F) = sup (1+[z")"|@(2)F(2)]

|[Imz|<m

< Cnm,n+k(q))>

for a certain k € N. Thus we have proved that ®F € Q.
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On Og we consider the topology associated with the family {110}, en0cQ
of seminorms, where, for every m,n € N and ® € Q,

nm,n,CD(F) = nm,n(q)F), F e OQ

By Q' we represent the dual space of Q. We now obtain a representation of the
elements of Q' that will be very useful in the sequel. [J

PROPOSITION 2.6. Let T € Q'. There exist m € N and m + 1 complex Borel
measures Yo, Y1, .-, Ym on the strip I, = {z € C: |Imz| < m} such that

(T, ®) Z/ w2dy(w), @€ Q.
Im

Proof. Since T € Q' there exist C > 0 and m € N such that

(T,@)| < C sup (1+]z*)"|@()]

[Im z| <m

< Cmax sup |ZD(7)], @€ Q.
OIS | I 2| <m

We now define the mappings J and H as follows

J: 9 — 9ox."l x0
® — (D,7D,..,77"D)

and
H: J(Q) — C
(@, 72D, ...,7"®) — (T, D).

Thus H is a continuous mapping from J(Q) into C when on J(Q) we consider the
topology induced by the product topology L2 x .m*1. x L2 where L° denotes the
space of essentially (with respect to the Lebesgue measure on the strip I,, = {z €
C : |Imz] < m}) bounded functions on [,,. Note also that J(Q) is contained in
CO x M1 x CY ) where CY represents the subspace L2° constituted by all those
functions ¥ € Ly such that limp,|_, o ¢, ¥(z) = 0.

By invoking now the Hahn-Banach theorem and the Riesz representation theorem
we can conclude that there exist m 4+ 1 complex Borel measures ¥y, 71, ..., Yim On I,

such that
(T, ®) Z/ wrdy(w), ¢€9. O
In

If f is a Lebesgue measurable function on (0, 00) such that, for some k € N,
(14 x2)7*f (x)x®#*! is absolutely integrable on (0, 00), then f defines an element on
@', that we denote again by f , through

2u+1
(f,®) /f 2ur( )dx ®co.

Thus Q and Og can be identified with subspaces of Q.
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3. Hankel convolutionon Q and Q'

In this section we study Hankel translation and Hankel convolutions on the space
Q and Q.

The space X is contained in . Hence, according to [1, Satz 5], Q is also a
subspace of H. Then, by using [3, (3.2)], we have that

(7 @) (v) = 2T (1 + Dy ((e1) ™ () (@) (1)) (), %,y € (0, 00), (3.1)

forevery @ € Q.
By invoking [19, (7), Chapter 5], we can write

1d\*
(? E) ((xt) Iy (xt)) = (= 1" (et) Ty yx (1), x,2 € C and k € N.
From [9, 7.12, (6)] we deduce

ld ¢ — 2k t|Imx|

T ((xr)MJy(xr))| < Clx|™e , x€C, t€(0,00) and k € N.
Hence (xr)"*J,(xt) € Oy, for every x € C. Then, for each x € C, [4, Theorem 1]
implies that Ay ((xt)~*J,(xt)h, (P)(r)) € Q, provided that @ € Q. In the sequel we

will adopt as definition of the Hankel translated (7,®)(y), x,y € C,and ® € Q, the
right hand side of (3.1), that is,

(.0)(y) = 2“T(1t + Dy (x1) S () (D)) (), x,y € € and D € Q.

PROPOSITION 3.1.

(a) Let x € C. The Hankel translated T, defines a continuous linear mapping
from Q into itself.

(b) Let ® € Q. The mapping My defined by

Mo(z) =1.®, ®€Q,
is holomorphic from C into Q.

Proof. (a) Itis a consequence of [4, Theorem 2.1].

(b) According to again [4, Theorem 2.1], the assertion in (b) will be proved when
we establish that, forevery ¢ € X, the mapping my(z) = (zt) *Ju(zt)¢ is holomorphic
from C into X.

Let ¢ € X and zp € C. We are going to see that mg is holomorphic in zo. We
can write, for each 7 € (0,00) and h € C\ {0},

my(z0+h)—mg(z0) 9 B h (we) 1T, (wr)
- = 32 ) 900) = (051 [ LD

dw,

where C represents a circle having as a parametric representation w(0) = zo + €,
0 €1[0,2m).



186 JORGE J. BETANCOR

Let m,n € N. By using [9, 7.12, (6)] and [19, (7), Chapter 5] we get

ew(%%ﬂ«p(r) L= - ZO)_“’Z(W? o dw)‘

eS| (2) ] f et
tdt w—z0—h —zo)
1d
<C mt t ([Hmzo|+1)z
e (l dt) ¢<>\e
1
cZy,J (0,00) and |h] < =

2’

for a certain / € N.
Hence, for 0 < |h| < %,

o (2D Dy, cea00)) < S (0
Then "

mn(m¢(zo+h2l (ZO) aaz((zt) HJM(Z[))‘Z ZU(P([)) — 0, as h — 0.

Thus we have proved that

lim mo (20 + h})l — mo(a0) = 8%((zt)_“Ju(zt))\z:zM(t),

h—0

in the sense of convergencein X. [

According to [3, (3.2)] we can write, for each ®,¥ € Q,

OHY = hy (hy (P)hy (V).

Since X is contained in Oy, [4, Theorem 2.1] allows us to see that ®#Y € Q, for
every ®,¥ € Q. Moreover the bilinear mapping (®,¥) — ®#Y is continuous from

QO x Q into Q.

By taking into account Proposition 3.1, (a), we define the Hankel convolution

THD of T € Q' and ® € Q as follows

(T#®)(2) = (T, @), z€ C.

According to Proposition 3.1, (b), T#® is an entire function, for every T € @ and
® € Q. Moreover, since the function z7*J, (z) is even, T#® is even, foreach T € Q'

and ® € Q.
PROPOSITION 3.2. Let T € Q' and ® € Q. Then T#D € OQ.
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Proof. By invoking Proposition 2.6 it is suffficient to see thatif m,n € N and y
is a complex Borel measure on the strip I, = {z € C: |Imz| < m} that the function F
defined by

F(o) = / (2.0) (w)w?'dy(w), z€ C,

1)71
isin Og.
Let kK € N. We are going to prove that there exists / € N for which

sup (1 +|2)*)7"|F(z)| < oo.
|Im z| <k

From [1, Lemma 8, (b), (6)] we infer

F(z) = 2T (u + 1)(*1)"/ hy (A (@) H T (@) b (@) (1)) (w)dy (w), z € C.

m

According to (2.6), it get

A ((2) T (@) (@) (1))
2n

=S a0 (15 ) (@ e @)0)

2n j . j—o
=S a3 (1) (35 ) @01 o) (e,

a=0

forevery r € (0,00) and z € C.
Hence [9, 7.12, (6)] leads to

[P (A ()T (2) e (P) (1)) ()]
2n

<C [l el 3 A
0

j=n

1Ld\ ¢
el e (D)(1
<tdt> (7 (®)(1))
2n j o
S CZZIZ\M/O ! (Tmw|+|Imz]) 2(j—n)

j=n a=0
(LY ooy
2n

SCU+ 12" Y Yermr1(ha(®)), |Imz| <k and |Imw| < m.
j=0

J

>

a=0

2P (2) )P

t2u+ldt

(L4) tuoro)

2n j

< CZZ o /Oo o ktm) 2(—n)
0

j=n a=0

t2u+1dt

Since hy,(®) € X we conclude that

IF(2)| < C(1+ |z)*|y|(In), [Imz| < k.
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Here |y| represents the total variation measure of y . Hence |y|(1,) < cc.
Thus we prove that F € Og and the proof is finished. [

For every n € N, we represent by P, the space constituted by all those even and
entire functions F such that, for every m € N,

er(F)= sup (1+[z*)™"|F(z)| < oo.

m
[Im z| <m

P, is endowed with the topology associated with the family {€’},,en of norms. Thus
P, is a Fréchet space. Q is continuously contained in P,. If n > m then P, is
continuously contained in P,. By P we denote the space U,enP, that is endowed
with the locally convex inductive limit topology, that is P = ind, P, .

Along the proof of Proposition 3.2 we established the following.

PROPOSITION 3.3. Let T € Q'. There exists n € N such that TH® € P,, for
every ® € Q.
We now prove an associative property for the distributional #-convolution.

PROPOSITION 3.4. Let T € Q' and ®,¥ € Q. Then TH® € Q' and
(THO WY = TH(OHY).

Proof. According to Proposition 3.2, T#® € Og . Hence T#® defines an element
of Q' by

dx
24T (u+ 1)’

By Proposition 2.6 there exists m € N and m + 1 complex Borel measures
Y0, Y15 --+s Y O the strip I, = {z € C : |Imz| < m} such that

(T,A) = Zm:/ szA(z)dyj(z), A€ Q.
j=0 7m

Then, we can write

(TH®D,A) = / OO(T#tb)(x)A(x)xz““ A€ Q.
0

dx

(TH®,A) = / Oo(T T,C(I)>A(x)x2#+lm

m

Z/ 2M+1/I Zhy ((xt) 7R T, (xt) hy, (@) (1)) (2)dy; (z)dx

m

= Z/I 21/ x)hy ((xt) N]u(xt)hu(q))(t))(z)xmﬂdxdyj(z)

m

_ Z /1 2 / ((2t) T (z) i (@) (1)) ()35 dxely (2)

_ Z/zzf (O#A) (2)dy (2)
j=0 /1m

= (T,DH#A), A€ Q.
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Hence, by virtue of Proposition 3.1,
((THD)#YP)(2) (TH#D, T,'P)
T, d#1,\Y)
Iy (I (@) (29))
T,2°T(p + Dhy((z) (2 ) () (w)))
T, 7,(®#Y))
T#H(D#Y))(z), z € C. O

(
(T,
(
(
(

In the following proposition we establish a distributional interchange formula.
PROPOSITION 3.5. Let T € Q' and ® € Q. Then
h;‘(T#d)) = h;‘(T)h“((I)). (3.2)
Proof. For every ¢ € X Proposition 3.4 leads to
(W,(THD), 9) = (THD,hy(9))

(T#®)#hy (¢))(0)
#(@#hy(9)))(0)
Dithy(9))

)

)

T,
T,

hy (hu (©)9))
u(Dhu(®), 9) . B

If T € @ and ® € Q itis not always true that T#¢ € Q. Indeed, we define the
functional T on Q by

(
(T
(
(
= (A,
(T, ®) = / O(x)x*dx, ®€ Q.
0
Thus T isin Q. Moreover, by [13, (2), Section 2] we obtain, for every @ € Q,

(TH®)(x) = /Ooo(fx<1>)(y)y2““dy

= /Oo (7)H ! /OO D(x,y, Z)ﬂdydz
0 0 24T (e +1)
= /00O D(z)# M dz, x € (0,00).
Then, since T#® is an entire function (Proposition 3.2), for every ® € Q,
(T#®)(x) = /0 T ()24 dz, xe C.

Hence, if ® € Q is such that [~ ®(z)7*'dz # 0 then TH® ¢ Q.
Our next objetive is to determine the elements T of Q' such that T#® € Q, for
each ® € Q.

PROPOSITION 3.6. Let T € Q'. Then TH® € Q, for every ® € Q, if, and only if,
hL(T) € Oy.
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Proof. Suppose that T#® € Q, for every @ € Q. Then, the interchange formula
(3.2) implies that, for every ® € Q, hy,(T)hu(P) € X. By invoking [4, Theorem 2.1]
we have that, for every ¢ € X, S¢ € X, where S = hL(T) cx.

Let n € N. We choose ¢, € X such that ¢,(x) =1, x € (0,n), and ¢,(x) =0,
x>n+1. Asin [1] (see also [18]) we denote by B, the subspace of H constituted by
all those ¢ € H such that ¢(x) =0, x > n. If ¢ € B, we have that

(50001 = [ (S0)0)000) 3 sds = (5.0,0) = (5.9).
Hence S = S¢, on B,. We define f, = S¢,, n € N. Forevery ¢ € B,, we get
2u+1 n x2u+1
(S, 0) / falx 2!41“(“ . ) = /0 fn+k(x)¢(x)mdx7 k € N.

Then, f,,(x) = fnix(x), 0 <x < nand k €N.
We denote by f the function defined on [0, c0) by

f(x)=fulx), 0<x<n and neN.

Thus f is a smooth function on (0, c0). Moreover if ¢ € B = U,enB, , we have

2HF1
(5.0 = [ 1000557y
We can also write, for every ¢ € X and ¢ € B,
T
(50.0) = (5.00) = [ 70000 g

Then S¢ = f¢ € X, for each ¢ € X. Hence, since B is a dense subspace of X,
S=fe€0y.
Assume now that /y, (T) € Oy . By using the interchange formula (3.2) we have

hy (T#®) = Ry, (T)hu(9), € X.
According to [4, Theorem 2.1], hy, (T#®) € X, ® € X. Hence TH® = hy(hy, (THD))
isin Q, forevery ® € 9. [

PROPOSITION 3.7. Let T € Q' such that hL(T) € Oy. Then, for every m,s € N
there exists a function G, that is continuous and even in the strip I, = {z € C :
|Imz| < s} and holomorphic in the interior of I and such that

sup (1+ ‘Z|2)m‘Gm,S(Z)‘ < 0,
|[Imz|<s

and T = Jy 4, Gm,s, for certain kys € N, that is,

I)kas > j 2u+1
(T.®) = lim Z TN ENERY / Gin,s (X)), (D(x)) % dx, @ € Q.
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Proof. Since hy(T) € Oy, forevery m € N there exist C > 0 and n € N such

that
(Y e

To simplify we write gi(x) = Z,(kx), x € (0,00) and k € N. From (2.4) and (2.5)
we deduce that for every m, k € N, there exists C > 0 for which

1d\" 1
x&x) %l

Let s,m € N. Assume that n € N is associated with m satisfying (3.3).
According to (3.4) we have

’(1 d>k hy, (T)(x)
x dx g2(n+s+1) (x)
We write F,,; = h] (T)/gz (nts+1) - Then T = hy ( m.s&€2(n+s+1)) » that is,

<T (I)> < nu782(n+s+l)hu(q))>, (ONS Q.

Note that g € Oy and g_k €Oy, keN.
By using now Proposition 2.3 and [4, Theorem 2.1], it follows

< Ce™, x€(0,00) and k=0,1,...,2m. (3.3)

< Ce ™2 x e (0,00). (3.4)

< Ce Yy € (0,00) and k=0,1,....2m.  (3.5)

B J 2(n+s+1)x)*
(T,®) = (Fu, lggokz 2"k'l“u+k+1)h“(q))(x)>

. / —D*Q2n+s+ 1))*
= lim Z<F,,,,s<x>, " (( St ot I o) )

J 2k
— i —Df@m+s+1))*
B ;liToZ Fins) 22kk'r(u+k+1) Au®)

k=0
— Qlats+DP*
= h ms), @), @ .
kZ:; 22kk'1“u+k+1) u(Fns), @) €Q

Hence

o0

(n+s+1))%*
T =
Z 22’<k'1“u+k+ 1)

where Gy, = h;‘( m,s) = hy(Fpy).
On the other hand, by interchanging the order of integration and by (3.5) we obtain
h(T)
<Gm,s7(p> = < . ,hH(CI))>
82(n+s+1)

[ h(T)(x) x2HHl 5
B /0 82(n+s+1) (X) hH (q)) (X) ZMF(“ + 1) .

- - hy, (T)(x) y2u+1
= /0 hy, <m> )@ (y) mdy, De Q.

Ak Gm,s = Jy,2(11+s+1)(Gm,s)a
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Therefore

Gns(2) :/ (zt)_“JM(zt)FmJ(t)t2“+1dt7 z € (0,00).
0

Moreover, since |z7#J,(z)| < Cel™?l, z € C ([9,7.12, (6)]), from (3.5) we infer
that G,, s can be extended to the strip /; as a continuous function that is holomorphic
in the interior of I;. According to [1, Lemma 8, (b), (6)] and by using (2.6) and (3.5)
we obtain

m

(14 122" |Gms(2)| = ") G (2)]
Z Z ;(])Z Z

m

=2 (’J") \ / A (Fi)02) (2
3y e

J=0
=0 i=j | <xdx)i(FmaS(x))

m
C § § / —(s+1)x+|Imz|x 2u+ldx

J=0 i=j
m

CZZ/ I =gy |Imz| < s
J=0 i=j

Thus the proof is finished.

m

N

|(xz) "M J (xz) [+ dx

N

N

Let k € N. We define the space A, as follows. An even and smooth function ®
on R isin A if, and only if, for every m € N,

8, (@) = up )(1 +2%) 7| T (@) (x)] < 00
xe€ (0,00

Ay is endowed with the topology generated by the family {5%},en of seminorms.
Thus Ay is continuously contained in Axy; . Moreover, according to Proposition 2.4,
Q is continuously contained in A;. We represent by 4; the closure of Q in A;. By
A we denote the inductive space A = UienAr and by A, as usual, we represent the
dual space of A.

PROPOSITION 3.8. Let T € A". Then hy(T) € Oy.
Proof. Let k € N. Since T € Aj there exists C > 0 and m € N such that

(T, ®)| < C max 5 (@), @€ A

im

In particular, since Q is contained in A, we have

(T,®)| < C max sup (1+x%)7¥|Ju(®)(x)], ®€ Q.

OIS xe(0,00)
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Since, forevery ® € Q and [ € N,
Jim (142) 7 7,(@)() = 0,

by employing a procedure similar to the one used in Proposition 2.6, we can prove that
(T0) = / (1+2)* Zus(@)()dp(x), @€ O,
1=0 70

for certain complex Borel measures ¥y, 1, ---, Y 0on [0,00).
Then, Proposition 2.3 implies that, for every ¢ € X,

(R(T)0) = (T,hu(0)
> [0 ) (0 o)
=0

= Z /000(1 +xz)_khu(Iu(lf)¢(t))(x)dn(x)
=0

= [ - ) *Fx)~ X x) | 24t
_ ;/0 Iu(lt)q>(t)</0 (14 32) () (xt) i ));H dr.
Hence, .
R, (T)(1) = 2T(u + 1)) T, (Ir) /0 (14+x7) 5 (xt) "y (xt)dyi(x), t € (0,00). (3.6)
=0

Let n € N. We write (3.6) for k = n+ 1. According to (2.4), (2.5) and [9, 7.12,
(6)] we obtain

](%%)"hm(r)

<3S P / )R ety E () ] (2)

=0 j=0

<c3 Y e [ 1+;z i)

=0 j=0
<Ce™, te(0,00).

Here |y;| represents the total variation measure of y;, [ =0,1,....,m.
Thus we conclude that &, (T) € Oy. O

PROPOSITION 3.9. Let T € Q'. Suppose that for every m € N there exists an even
and continuous function G on R and k € N for which

sup(1 + 2%)"|G(z)| < oo,
z€R

and T = Jux(G). Then T € A'.
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Proof. We are going to see that T € A/, , for every m € N.
Let m € N. We choose ! € N such that that m + [ > u + 1 and then we take an
even and continuous function G on R and k € N satisfying

sup(1 +22)""|G(z)] < oo,
z€R

and T = J,x(G).
Hence, for every @ € Q, we have

<T, (I)> = <ju,k(G)>q)>
= (G, Tux (D))

. (37)
= /0 G(x) Tk (P)(x)

x2y+1

R
2T(u+ 1)

Then
(T.®)| < C/ (14 27) 77" Ty (@) () b+ v
0

< C sup (1+X2)_m‘u7u,k(q))(x)‘> Qe Q.
x€(0,00)

Thus we have proved that T can be extended to 4,, by (3.7) as an element of
A, O

The properties established in above propositions allow us to obtain the following
theorem that presents the main result of this section.

THEOREM 3.10. Let T € Q'. The following assertions are equivalent.
(i) Te A.
(i) hy(T) € Oy.
(iii) For every m € N there exists an even and continuous function G on R and
k € N such that
sup(1 + x*)"|G(x)| < oo,
x€R
and T = Jux(G).
(iv) T#HD € Q, for every ® € Q.

Proof. Proposition 3.6 establishes that (ii) is equivalentto (iv). Property (i
(i) was proved in Proposition 3.8. From Proposition 3.7 we deduce that (ii) = (
Finally, Proposition 3.9 shows that (iii) = (i). O

g

ii) .

An interesting consequence of Theorem 3.10 is the following.

PROPOSITION 3.11. Suppose that T € P, where P’ denotes the dual space of P.
Then TH® € Q, for every ® € Q.

Proof. Note that, since Q is continuously contained in P,, for each n € N, P’
is containedin Q'. Hence T € Q'.

According to Theorem 3.10 to prove that T#® € 9, ® € Q, it is sufficient to see
that 7, (T) € Og .
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Let m € N. Since T € P, T isalsoin P,

", » the dual space of P,,. Hence, there
exist C > 0 and [ € N such that

(T,0)[ < C sup (1+[zP)"[@@)], © € Py

[Imz| <1

By taking into account that
1+ [z)™"®(z) = 0,
|z| — o0, \Imz\él( |Z‘ ) (Z)
for every @ € Q, the procedure developed in the proof of Propostion 2.6 allows us to
show that
(1.0) = [(14 ) o), oe o,

1

for a certain complex Borel measure y on I; = {z € C: [Imz| < I}.
Then, for every ¢ € X, we have

(M(T),9) = (T,hu(9))
_ / (L+ 22) " (0) (2l ()

I

[a+rr / " (x2) I (62 D (x  dndy (2)

I

/ gt [ R 60 )y G
0

I

Hence,

HAT)(x) = 2°T(u + 1) / (14 [2P) " (x2) M (x2)dy (2), x € (0, 00).

I

Moreover, from [19, (7), Chapter 5] and [9, 7.12, (6)] we infer that

(35) e
= 240+ 1) [ ()P 1) H () (2, ¥ € (0,00),
and l
(3) Hmw| <c [a+ et e yc < e re 0.0

provided that j € N, 0 <j < m.
The arbitrariness of m € N allows us to conclude that /1, (T) € Oy. 0O

According to Theorem 3.10 the Hankel convolution T#S of T € @' and S € A’
is the functional on Q given by

(THS, @) = (T,SHD), @ € Q.
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Note that, since 7,,(S) € Oy (Theorem 3.10), the mapping ® — S#® is continuous
from Q into itself. Hence T#S € Q’.

A distributional interchange formula for the Hankel transform that extends the one
proved in Proposition 3.5 is the following.

PROPOSITION 3.12. Let T € Q' and S € A’'. Then
1, (T#S) = K}, (T)I,(S).

Proof. For every ¢ € X we have
(hy(THS),¢) =

I

N~

0%}

3+

=
=
=
~

We now present some algebraic properties of the distributional #-convolution.

PROPOSITION 3.13. Let T € Q' and S,R € A'. Then

(i) S#R € A’ and S#R = R#S.

(if) (THS)#R=THSHR).

(iii) For every m € N, JumS € A" and Jym(T#S) = T#TymS.

(iv) The Dirac functional § defined, as usual, by {(8,®) = ®(0), ® € Q, isin
A and T#6 =T.

Proof. Tosee (i) and (i) itis sufficient to use the interchange formula established
in Proposition 3.12 and Theorem 3.10.
According to Proposition 2.3 we can write, for each m € N,

(M (TumS), 9) = (TumS, hu(9))
= (S Tumhu(9))
= (S, hu(Zu(mx)9(x)))
= (h($)Tu(mx),9), ¢ € X.
Hence 7y, (JumS) € Oy and then J S € A, m € N.
In a similar way we can see
hL(J,hm(T#S)) = Iﬂ(mx)hL(T)h;‘(S) = hL(T#J%mS).

Thus (iii) is shown.
To prove that § € A’ itis sufficient to note that %, (§) = 1 € Oy. By again using
Proposition 3.12 we can show that T#6 =T. O

REMARK. H. Hasumi [11] investigated the Fourier transform of distributions with
exponential growth. He characterized the Fourier transform of the space E as the
space F constituted by all those entire functions @ such that, for every k,m € N,
Nmi(P) < co. By using the ideas developed in this paper we can investigate the usual
convolutionin F’, the dual space of F, when F is endowed with the topology generated
by the family {14 }mren of norms.
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