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HANKEL CONVOLUTION ON THE DUAL

OF A SPACE OF ENTIRE FUNCTIONS

JORGE J. BETANCOR

(communicated by A. Laforgia)

Abstract. In this paper we study the Hankel convolution on a certain space Q of entire functions
rapidly increasing on each horizontal strip in the complex plane. We also describe the # -
convolution operators on the dual space Q′ of Q .

1. Introduction and preliminaries

The Hankel transformation is defined by ([12])

hμ(φ)(y) =
∫ ∞

0
(xy)−μJμ(xy)φ(x)x2μ+1dx, y ∈ (0,∞),

where φ is a Lebesgue measurable function on (0,∞) such that
∫ ∞

0 |φ(x)|x2μ+1dx <
∞ . Here Jμ represents, as usual, the Bessel function of the first kind and order
μ > − 1

2 .
The study of Hankel transforms on distribution spaces was started by A. H. Zema-

nian ([17] and [18]) who defined hμ transforms on distributions of slow growth and of
rapid growth. More recently, J. J. Betancor and L. Rodrı́guez-Mesa ([4] and [6]) have
defined Hankel transforms on distributions of exponential growth.

The convolution operation for hμ -transforms was investigated by I. I. Hirschman
[13], D. T. Haimo [10] and F. M. Cholewinski [7].

Suppose that φi is a Lebesgue measurable function on (0,∞) such that∫ ∞
0 |φi(x)|x2μ+1dx < ∞ , for i = 1, 2 . The Hankel convolution of μ , φ1#μφ2 of
φ1 and φ2 , is given by

(φ1#μφ2)(x) =
∫ ∞

0
φ2(y)(μτxφ1)(y)

y2μ+1

2μΓ(μ + 1)
dy, x ∈ (0,∞),

where

(μτxφ1)(y) =
∫ ∞

0
Dμ(x, y, z)φ1(z)

z2μ+1

2μΓ(μ + 1)
dz, y ∈ (0,∞), and μτ0φ1 = φ1.
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Here Dμ denotes the Delsarte kernel given by

Dμ(x, y, z) = (2μΓ(μ + 1))2
∫ ∞

0
(xt)−μJμ(xt)(yt)−μJμ(yt)(zt)−μJμ(zt)t2μ+1dt,

x, y, z ∈ (0,∞).

The Hankel transform hμ is closely connected with #μ -convolution and μτx -
translations, x ∈ (0,∞) , as the following formulas ([13]) show

hμ(φ1#μφ2) = hμ(φ1)hμ(φ2),

and
hμ(μτxφ1)(y) = 2μΓ(μ + 1)(xy)−μJμ(xy)hμ(φ1)(y), x, y ∈ (0,∞).

In the sequel, I will write # , τx , x ∈ [0,∞) , and D , instead #μ , μτx , x ∈ [0,∞) ,
and Dμ , respectively, to simplify notations. I do not think that this lead to any problem.

The study of Hankel convolutions in distribution spaces was begun by J. Sousa-
Pinto [15] who considered distributions having compact support on (0,∞) and the
order μ = 0 . J. J. Betancor and I. Marrero ([3] and [14]) completed the investigations
of J. de Sousa-Pinto. The Hankel convolution was studied on Zemanian’s distribution
spaces of slow growth in [14] and of rapid growth in [3].

In [4] Hankel transform and Hankel convolution were investigated on distribution
spaces of exponential growth.

We now collect some definitions and results stated in [4] which will be very useful
in the sequel.

By X we represent the space constituted by all those C∞ -functions φ on (0,∞)
such that, for every m, n ∈ N ,

γm,n(φ) = sup
x∈(0,∞)

emx

∣∣∣∣
(

1
x

d
dx

)n

φ(x)
∣∣∣∣ < ∞.

The space X is Fréchet when on X we consider the topology generated by the family
{γm,n}m,n∈N of seminorms.

For every x ∈ [0,∞) , the Hankel translation operator τx is continuous from X
into itself ([4, Proposition 3.1]). If T ∈ X′ , the dual space of X , and φ ∈ X , the
Hankel convolution T#φ of T and φ is defined by

(T#φ)(x) = 〈T, τxφ〉 , x ∈ [0,∞).

In [4] the space of Hankel convolution operators on X was investigated.
The space Q consists of all those even and entire functions Φ such that, for every

m, k ∈ N ,
ηm,k(Φ) = sup

|Im z|�m
(1 + |z|2)k|Φ(z)| < ∞.

Q is endowed with the topology associated with the system {ηm,k}m,k∈N of norms.
Thus Q is a Fréchet space. The Hankel transformation hμ is an isomorphism from
X onto Q ([4, Theorem 2.1]). hμ is defined on the corresponding dual spaces by
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transposition, that is, if T ∈ X′ (respectively, Q′ , the dual space of Q ) the Hankel
transform hμ(T) is the element of Q′ (respectively, X′ ) given by

〈 h′μ(T),Φ〉 = 〈T, hμ(Φ)〉 , Φ ∈ Q (respectively, X ).

Our objective in this paper is to study the Hankel convolution on the spaces Q and
Q′ . We need previously to establish in Section 2 new properties of the spaces X and
Q .

Throughout this paper C always represents a suitable positive constant that can be
changed from line to line.

2. Function spaces X and Q

In this section we establish new properties for the function spaces X and Q that
were introduced in [4].

As it was mentioned in Section 1 the space X is constituted by all those C∞ -
functions φ on (0,∞) such that, for every m, n ∈ N ,

γm,n(φ) = sup
x∈(0,∞)

emx

∣∣∣∣
(

1
x

d
dx

)n

φ(x)
∣∣∣∣ < ∞.

The space X is equipped with the topology generated by the family {γm,n}m,n∈N of
seminorms. Thus X is a Fréchet space.

G. Altenburg [1] introduced the space H that consists of all those C∞ -functions
φ on (0,∞) such that, for every m, n ∈ N ,

αm,n(φ) = sup
x∈(0,∞)

(1 + x2)m

∣∣∣∣
(

1
x

d
dx

)n

φ(x)
∣∣∣∣ < ∞.

H is endowedwith the topology associated with the system {αm,n}m,n∈N of seminorms.
By virtue of [8, p. 86], H coincides with the space Se of the even functions in the
Schwartz class S . The space X is continuously contained in H .

H. Hasumi [11] considered the space E constituted by the C∞ -functions φ on R
such that, for each m, n ∈ N ,

βm,n(φ) = sup
x∈R

em|x|
∣∣∣∣ dn

dxn
φ(x)

∣∣∣∣ < ∞.

We denote by Ee the space that consists of the even functions in E .

PROPOSITION 2.1. Ee = X where the equality is algebraic and topological.

Proof. Let φ ∈ X . Since X is contained in Se , φ can be extended to R as an
even function. Moreover, for every n ∈ N , we can write

dn

dxn
=

n∑
j=0

aj,nx
αj,n

(
1
x

d
dx

)j

,
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where aj,n ∈ R and αj,n ∈ N , j = 0, ..., n . Hence, for every m, n ∈ N ,

βm,n(φ) � C
n∑

j=0

γm+1,j(φ). (2.1)

Thus we proved that φ ∈ Ee .
Suppose now φ ∈ Ee . For every n ∈ N , we have that(

1
x

d
dx

)n

=
n∑

j=0

bj,nx
−2n+j dj

dxj
,

where bj,n ∈ R , j = 0, ..., n . Then, for each m, n ∈ N ,

sup
x�1

emx

∣∣∣∣
(

1
x

d
dx

)n

φ(x)
∣∣∣∣ � C

n∑
j=0

βm,j(φ). (2.2)

On the other hand, since Ee is contained in Se , we get, for every m, n ∈ N ,

sup
x∈(0,1)

emx

∣∣∣∣
(

1
x

d
dx

)n

φ(x)
∣∣∣∣ � C sup

x∈(0,1)

∣∣∣∣
(

1
x

d
dx

)n

φ(x)
∣∣∣∣

� C max
0�j�l

sup
x∈R

(1 + |x|2)l

∣∣∣∣ dj

dxj
φ(x)

∣∣∣∣
� C max

0�j�l
sup
x∈R

e|x|
∣∣∣∣ dj

dxj
φ(x)

∣∣∣∣,

(2.3)

where l ∈ N is depending on n .
By combining (2.2) and (2.3) we conclude that φ ∈ X .
Moreover, (2.1), (2.2) and (2.3) imply that the families {βm,n}m,n∈N and {γm,n}m,n∈N

are equivalent on X . �
Now, using [2, (2.2) and (2.3)] we can see that for every μ > − 1

2 , the system
{γ μm,n}m,n∈N of seminorms, where, for each m, n ∈ N ,

γ μm,n(φ) = sup
x∈(0,∞)

emx|Δn
μφ(x)|, φ ∈ X,

generates the topology of X . Here Δμ denotes the Bessel operator x−2μ−1Dx2μ+1D .
We now introduce new families of seminorms defining the topology of X which

will be useful in the sequel.
We denote by

Iμ(x) =
∞∑
j=0

x2j

22jj!Γ(j + μ + 1)
, x ∈ R.

Note that Iμ is closely connected with the modified Bessel function Iμ of the first
kind and order μ ([16, p. 77]). According to [19, (5) and (6), Chapter 6] we have that,
for a certain C > 0 ,

1
C

x−μ−1/2ex � Iμ(x) � Cex, x ∈ (0,∞). (2.4)
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Moreover, for every k ∈ N ,

(
1
x

d
dx

)k

Iμ(x) = 2−kIμ+k(x), x ∈ (0,∞). (2.5)

PROPOSITION 2.2. We define for every m, n ∈ N and φ ∈ X ,

γ μ,(1)
m,n (φ) = sup

x∈(0,∞)
Iμ(mx)

∣∣∣∣
(

1
x

d
dx

)n

φ(x)
∣∣∣∣,

γ μ,(2)
m,n (φ) = sup

x∈(0,∞)

∣∣∣∣
(

1
x

d
dx

)n

(Iμ(mx)φ(x))
∣∣∣∣,

γ μ,(3)
m,n (φ) = sup

x∈(0,∞)
Iμ(mx)|Δn

μφ(x)|,

γ μ,(4)
m,n (φ) = sup

x∈(0,∞)
|Δn

μ(Iμ(mx)φ(x))|.

Then, {γ μ,(j)
m,n }m,n∈N is a family of seminorms equivalent to {γm,n}m,n∈N on X , for

every j = 1, 2, 3, 4 .

Proof. Wedenote by Tj the topology on X associatedwith the system {γ μ,(j)
m,n }m,n∈N

of seminorms, for j = 1, 2, 3, 4 . We represent by T the topology generated by
{γm,n}m,n∈N on X .

Note firstly that by virtue of (2.4) T1 coincides with T .
1. T2 is finer than T1 . Indeed, let m, n ∈ N and φ ∈ X . Leibniz formula leads

to
(

1
x

d
dx

)n

φ(x) =
n∑

j=0

(
n
j

)(
1
x

d
dx

)j

(Iμ(2(m+1)x)φ(x))
(

1
x

d
dx

)n−j( 1
Iμ(2(m + 1)x)

)
,

x ∈ (0,∞).

Then, from (2.4) and (2.5) we deduce that

γ μ,(1)
m,n (φ) = sup

x∈(0,∞)
Iμ(mx)

∣∣∣∣
(

1
x

d
dx

)n

φ(x)
∣∣∣∣

� C
n∑

j=0

sup
x∈(0,∞)

emx

∣∣∣∣
(

1
x

d
dx

)n−j( 1
Iμ(2(m + 1)x)

)∣∣∣∣×

× sup
x∈(0,∞)

∣∣∣∣
(

1
x

d
dx

)j

(Iμ(2(m + 1)x)φ(x))
∣∣∣∣

� C
n∑

j=0

γ μ,(2)
2(m+1),j(φ).

Hence T2 is stronger than T1 .
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2. T1 is finer than T2 . To see this we use again (2.4) and (2.5). Indeed, let
m, n ∈ N and φ ∈ X . We can write

γ μ,(2)
m,n (φ) � C

n∑
j=0

sup
x∈(0,∞)

∣∣∣∣
(

1
x

d
dx

)n−j

Iμ(mx)
∣∣∣∣
∣∣∣∣
(

1
x

d
dx

)j

φ(x)
∣∣∣∣

� C
n∑

j=0

sup
x∈(0,∞)

Iμ+n−j(mx)
∣∣∣∣
(

1
x

d
dx

)j

φ(x)
∣∣∣∣

� C
n∑

j=0

sup
x∈(0,∞)

emx

∣∣∣∣
(

1
x

d
dx

)j

φ(x)
∣∣∣∣

� C
n∑

j=0

γ μ,(1)
m,j (φ).

3. T1 is finer than T3 . To prove this we note that, for every n ∈ N , we can find
ck,j ∈ R , j = n, ..., 2n , such that

Δn
μ =

2n∑
j=n

cn,jx
2(j−n)

(
1
x

d
dx

)j

. (2.6)

Hence, according to (2.4), for every m, n ∈ N , we have

γ μ,(3)
m,n (φ) � C

2n∑
j=n

γ μ,(1)
m+1,j(φ), φ ∈ X.

4. T1 is finer than T4 . Let m, n ∈ N and φ ∈ X . From (2.5) and (2.6) we infer
that

Δn
μ(Iμ(mx)φ(x)) =

2n∑
j=n

cn,jx
2(j−n)

j∑
i=0

(
j
i

)
m2i2−iIμ+i(mx)

(
1
x

d
dx

)j−i

φ(x), x ∈ (0,∞).

Then, (2.4) implies that

γ μ,(4)
m,n (φ) � C

2n∑
j=0

γ μ,(1)
m+1,j(φ).

5. T3 is finer than T . By using [2, (2.2) and (2.3)] we can conclude that, for
every m, n ∈ N , there exist l ∈ N and C > 0 such that

γm,n(φ) � C
l∑

j=0

γ μl,j(φ), φ ∈ X. (2.7)

According to (2.4), (2.7) allows us to see that T3 is stronger than T .
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6. T4 is finer than T . By [2, (2.2)] we have that, for every φ ∈ H and n ∈ N ,
(

1
x

d
dx

)n

φ(x) = x−2(μ+n)
∫ x

0
xn

∫ xn

0
xn−1...

∫ x2

0
x2μ+1
1 Δn

μφ(x1)dx1...dxn, x ∈ (0,∞).

(2.8)
On the other hand, from (2.4) and (2.5) we deduce that, for every m, n ∈ N ,

∣∣∣∣
(

1
x

d
dx

)n

Iμ(mx)
∣∣∣∣ � Cemx, x ∈ (0,∞).

Hence, for every m ∈ N and φ ∈ X , Iμ(mx)φ ∈ X . Then, by using (2.8), we can
write, for every m, n ∈ N and φ ∈ X ,∣∣∣∣

(
1
x

d
dx

)n

(Iμ(mx)φ(x))
∣∣∣∣

� x−2(μ+n)
∫ x

0
xn

∫ xn

0
xn−1...

∫ x2

0
x2μ+1
1 |Δn

μ(Iμ(mx1)φ(x1))|dx1...dxn

� γ μ,(4)
m,n (φ)x−2(μ+n)

∫ x

0
xn

∫ xn

0
xn−1...

∫ x2

0
x2μ+1
1 dx1...dxn

� Cγ μ,(4)
m,n (φ), x ∈ (0,∞).

Therefore,

γ μ,(2)
m,n (φ) � Cγ μ,(4)

m,n (φ), m, n ∈ N and φ ∈ X.

Thus the proof of the proposition is finished. �
The space of pointwise multipliers of X can be characterized as follows ([4]). A

smooth function f on (0,∞) is a pointwise multiplier of X if, and only if, f can
be extended to R as an even and smooth function and, for every n ∈ N , there exists
m ∈ N for which

e−mx

(
1
x

d
dx

)n

f (x)

is bounded on (0,∞) . We denote by OX the space of pointwise multipliers of X .
As it was mentioned in the proof of Proposition 2.2, according to (2.4) and (2.5),
Iμ(mx) ∈ OX , for every m ∈ N .

On OX we consider the topology defined by the family {γm,n,φ}m,n∈N,φ∈X of
seminorms, where

γm,n,φ(f ) = γm,n(f φ), f ∈ OX,

for every m, n ∈ N and φ ∈ X .

PROPOSITION 2.3. Let m ∈ N . Then

lim
k→∞

k∑
j=0

(mx)2j

22jj!Γ(μ + j + 1)
= Iμ(mx),

in the sense of convergence in OX .
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Proof. We are going to see that, for every φ ∈ X ,

lim
k→∞

φ(x)
k∑

j=0

(mx)2j

22jj!Γ(μ + j + 1)
= φ(x)Iμ(mx),

in the sense of convergence in X .
Let φ ∈ X , ε > 0 and l, n ∈ N . According to (2.4), we can write

elx

∣∣∣∣
(

1
x

d
dx

)n(
φ(x)

∞∑
j=k+1

(mx)2j

22jj!Γ(μ + j + 1)

)∣∣∣∣

� C
n∑

α=0

elx

∣∣∣∣
(

1
x

d
dx

)α

φ(x)
∣∣∣∣
∣∣∣∣
(

1
x

d
dx

)n−α( ∞∑
j=k+1

(mx)2j

22jj!Γ(μ + j + 1)

)∣∣∣∣

� C
n∑

α=0

γl+m+1,α(φ)e−(m+1)x
∞∑

j=k+1

(mx)2(j−n+α)

22(j−n+α)(j − n + α)!Γ(μ + j + 1)

� C
n∑

α=0

γl+m+1,α(φ)e−(m+1)xIμ+n−α(mx)

� Ce−x
n∑

α=0

γl+m+1,α(φ), x ∈ (0,∞) and k ∈ N.

Then, there exists x0 ∈ (0,∞) such that, for every x ∈ (x0,∞) and k ∈ N ,

elx

∣∣∣∣
(

1
x

d
dx

)n(
φ(x)

∞∑
j=k+1

(mx)2j

22jj!Γ(μ + j + 1)

)∣∣∣∣ < ε. (2.9)

Moreover, we have

elx

(
1
x

d
dx

)n(
φ(x)

∞∑
j=k+1

(mx)2j

22jj!Γ(μ + j + 1)

)

�
n∑

α=0

(
n
α

)
elx

(
1
x

d
dx

)α

(φ(x))
(

1
x

d
dx

)n−α( ∞∑
j=k+1

(mx)2j

22jj!Γ(μ+j+1)

)
→ 0,

(2.10)

as k → ∞ , uniformly in x ∈ [0, x0] .
By combining (2.9) and (2.10) we conclude that

γl,n
(
φ(x)

∞∑
j=k+1

(mx)2j

22jj!Γ(μ + j + 1)

)
→ 0, as k → ∞.

Thus we have proved that

lim
k→∞

φ(x)
k∑

j=0

(mx)2j

22jj!Γ(μ + j + 1)
= φ(x)Iμ(mx),

in the sense of convergence in X . �
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The dual space of X is denoted by X′ . If f is a Lebesgue measurable function on
(0,∞) such that, for some k ∈ N , e−kxf (x)x2μ+1 is absolutely integrable on (0,∞) ,
then f defines an element of X′ , that we continue denoting by f , through

〈 f , φ〉 =
∫ ∞

0
f (x)φ(x)

x2μ+1

2μΓ(μ + 1)
dx, φ ∈ X.

Thus X and OX can be seen as subspaces of X′ .
The space Q was introduced in [4] as follows. An even and entire function Φ is

in Q if, and only if, for every m, k ∈ N ,

ηm,k(Φ) = sup
|Im z|�m

(1 + |z|2)k|Φ(z)| < ∞.

Q is a Fréchet space when Q is endowed with the topology associated with the family
{ηm,k}m,k∈N of seminorms.

The Hankel transformation hμ is an isomorphism from X onto Q ([4, Theorem
2.1]).

We now give a new family of seminorms on Q that generates the same topology
as {ηm,k}m,k∈N on Q .

If m ∈ N and Φ is an smooth function on (0,∞) we define

Jμ,m(Φ)(x) =
∞∑
k=0

(−1)km2kΔk
μΦ(x)

22kk!Γ(μ + k + 1)
, x ∈ (0,∞),

provided that the series converges for every x ∈ (0,∞) . Note that Jμ,m is closely
related to the Bessel function Jμ .

For every m, k ∈ N and Φ ∈ Q we define ημm,k(Φ) as follows

ημm,k(Φ) = sup
x∈(0,∞)

(1 + x2)k|Jμ,m(Φ)(x)|.

Note that in the definition of ημm,k(Φ) we consider only the restriction of Φ to
(0,∞) in contrast to the definition of ηm,k(Φ) where Φ is considered on the whole
complex plane.

PROPOSITION 2.4. The family {ημm,k}m,k∈N of seminorms generates the topology
of Q , that is, the topology associated with {ηm,k}m,k∈N .

Proof. Let m, k ∈ N . According to Proposition 2.3, [4, Theorem 2.1] and [1, (6)]
we can write

hμ(Δk
μ(Iμ(mx)hμ(Φ)))(z) = (−1)kz2khμ

(
lim

n→∞

n∑
j=0

(mx)2j

22jj!Γ(μ + j + 1)
hμ(Φ)

)
(z)

= (−1)kz2k lim
n→∞

n∑
j=0

(−1)jm2jΔj
μΦ(z)

22jj!Γ(μ + j + 1)

= (−1)kz2kJμ,m(Φ)(z), z ∈ C, (2.11)

for every Φ ∈ Q .
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Equality (2.11) and again [4, Theorem 2.1] and Proposition 2.3 allow us to find
l ∈ N for which

ημm,k(Φ) � C
k∑

j=0

sup
x∈(0,∞)

|hμ(Δj
μ(Iμ(mt)hμ(Φ)(t)))(x)|

� sup
|Im x|�1

|hμ(Δk
μ(Iμ(mt)hμ(Φ)(t)))(x)|

� Cηl,l(Φ), Φ ∈ Q.

We have also taken into account that Iμ(mx) ∈ OX and that Δμ defines a continuous
linear mapping from X into itself.

On the other hand we have, since z−μJμ(z) is bounded on (0,∞) ,

ηm,k(Φ) = ηm,k(hμ(hμ(Φ)))

� C max
0�i,j�l

γ μ,(4)
i,j (hμ(Φ))

� C max
0�i,j�l

sup
x∈(0,∞)

|hμ(z2iJμ,j(Φ)(z))(x)|

� C max
0�i,j�l

sup
x∈(0,∞)

∫ ∞

0
|(xz)−μJμ(xz)|z2μ+1 |z2iJμ,j(Φ)(z)|dz

� C max
0�j�s

sup
z∈(0,∞)

|(1 + z2)sJμ,j(Φ)(z)|

� C max
0�j�s

ημs,j(Φ), Φ ∈ Q,

for certain l, s ∈ N .
Thus we conclude that {ημm,n}m,n∈N and {ηm,n}m,n∈N are equivalent on Q . �
According to Proposition 2.4, for every m ∈ N , the operator Jμ,m defines a

continuous mapping from Q into itself. The operator Jμ,m , m ∈ N , is defined on Q′

by transposition.
By OQ we denote the space of pointwise multipliers of Q . We now obtain a new

characterization of the elements of OQ .

PROPOSITION 2.5. A function F is in OQ if, and only if, F is even and entire and,
for every m ∈ N , there exists k ∈ N such that

sup
|Im z|�m

(1 + |z|2)−k|F(z)| < ∞.

Proof. Suppose that F is in OQ . We consider the function Φ(z) = e−z2
, z ∈ C .

Thus Φ is even and entire and it is in Q . Indeed, if m, k ∈ N we can write

(1 + |z|2)k|Φ(z)| � (1 + |Re z|2 + m2)ke−(Re z)2+m2

� C(1 + |Re z|2)ke−(Re z)2

, |Im z| � m.

Hence, ηm,k(Φ) < ∞ , for every m, k ∈ N .
Since F ∈ OQ , FΦ = Ψ ∈ Q . Then F = Ψ/Φ is an even and entire function.
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Assume that there exists m ∈ N such that sup|Im z|�m(1 + |z|2)−k|F(z)| = ∞ , for
every k ∈ N .

Hence, for every k ∈ N there exists zk such that |Im zk| � m and

(1 + |zk|2)−k|F(zk)| � k.

Moreover we can suppose that |Re zk| > k + 1 , k ∈ N .
We define, for every k ∈ N , the function Φk by

Φk(z) = (Φ(z − zk) + Φ(z + zk))(1 + |zk|2)−k, z ∈ C.

The sequence {Φk}k∈N converges to zero in Q . Indeed, let l, n ∈ N . We can write,
for every k ∈ N and z ∈ C ,

(1+|z|2)n|Φk(z)| � C(1+|zk|2)n−k((1+|z−zk |2)n|Φ(z−zk)|+(1+|z+zk |2)n|Φ(z+zk)|).
Hence, there exists C > 0 such that

ηl,n(Φk) � C(1 + |zk|2)n−kηl+m,n(Φ), k ∈ N.

Then Φk → 0 , as k → ∞ , in Q .
As a consequence of the closed graph theorem, since F is a pointwise multiplier

of Q , the mapping Φ −→ FΦ is continuous from Q into itself. Hence FΦk → 0 , as
k → ∞ , in Q .

However, we have, since Φ(2zk) → 0 , as k → ∞ ,

|F(zk)Φk(zk)| = |F(zk)(1 + |zk|2)−k(Φ(0) + Φ(2zk))|
� |F(zk)|(1 + |zk|2)−k(1 − |Φ(2zk)|)
� k(1 − |Φ(2zk)|)
� k

2
,

provided that k is large enough.
Hence ηm,0(FΦk) � k

2 , when k is large enough. Thus, we conclude that
{FΦk}k∈N does not converge to zero in Q in contradiction to the fact that F is a
multiplier of Q . Therefore, if F is a multiplier of Q , for every m ∈ N , there exist
k ∈ N and C > 0 for which

sup
|Im z|�m

(1 + |z|2)−k|F(z)| � C.

Suppose now that F is an even and entire function and that, for every m ∈ N , we
can find k ∈ N such that (1 + |z|2)−kF is a bounded function on the strip {z ∈ C :
|Im z| � m} . Let Φ ∈ Q and m, n ∈ N . We can write

ηm,n(ΦF) = sup
|Im z|�m

(1 + |z|2)n|Φ(z)F(z)|

� Cηm,n+k(Φ),

for a certain k ∈ N . Thus we have proved that ΦF ∈ Q .
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On OQ we consider the topology associated with the family {ηm,n,Φ}m,n∈N,Φ∈Q
of seminorms, where, for every m, n ∈ N and Φ ∈ Q ,

ηm,n,Φ(F) = ηm,n(ΦF), F ∈ OQ.

By Q′ we represent the dual space of Q . We now obtain a representation of the
elements of Q′ that will be very useful in the sequel. �

PROPOSITION 2.6. Let T ∈ Q′ . There exist m ∈ N and m + 1 complex Borel
measures γ0, γ1, ..., γm on the strip Im = {z ∈ C : |Im z| � m} such that

〈T,Φ〉 =
m∑

j=0

∫
Im

Φ(w)w2jdγj(w), Φ ∈ Q.

Proof. Since T ∈ Q′ there exist C > 0 and m ∈ N such that

|〈T,Φ〉 | � C sup
|Im z|�m

(1 + |z|2)m|Φ(z)|

� C max
0�j�m

sup
|Im z|�m

|z2jΦ(z)|, Φ ∈ Q.

We now define the mappings J and H as follows

J : Q −→ Q× .m+1. ×Q
Φ −→ (Φ, z2Φ, ..., z2mΦ)

and
H : J(Q) −→ C

(Φ, z2Φ, ..., z2mΦ) −→ 〈T,Φ〉 .

Thus H is a continuous mapping from J(Q) into C when on J(Q) we consider the
topology induced by the product topology L∞

m × .m+1. × L∞
m , where L∞

m denotes the
space of essentially (with respect to the Lebesgue measure on the strip Im = {z ∈
C : |Im z| � m} ) bounded functions on Im . Note also that J(Q) is contained in
C0

m × .m+1. × C0
m , where C0

m represents the subspace L∞
m constituted by all those

functions Ψ ∈ L∞
m such that lim|z|→∞,z∈Im Ψ(z) = 0 .

By invoking now the Hahn-Banach theorem and the Riesz representation theorem
we can conclude that there exist m + 1 complex Borel measures γ0, γ1, ..., γm on Im
such that

〈T,Φ〉 =
m∑

j=0

∫
Im

Φ(w)w2jdγj(w), φ ∈ Q. �

If f is a Lebesgue measurable function on (0,∞) such that, for some k ∈ N ,
(1 + x2)−kf (x)x2μ+1 is absolutely integrable on (0,∞) , then f defines an element on
Q′ , that we denote again by f , through

〈 f ,Φ〉 =
∫ ∞

0
f (x)Φ(x)

x2μ+1

2μΓ(μ + 1)
dx, Φ ∈ Q.

Thus Q and OQ can be identified with subspaces of Q′ .
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3. Hankel convolution on Q and Q′

In this section we study Hankel translation and Hankel convolutions on the space
Q and Q′ .

The space X is contained in H . Hence, according to [1, Satz 5], Q is also a
subspace of H . Then, by using [3, (3.2)], we have that

(τxΦ)(y) = 2μΓ(μ + 1)hμ((xt)−μJμ(xt)hμ(Φ)(t))(y), x, y ∈ (0,∞), (3.1)

for every Φ ∈ Q .
By invoking [19, (7), Chapter 5], we can write

(
1
t

d
dt

)k

((xt)−μJμ(xt)) = (−1)kx2k(xt)−μ−kJμ+k(xt), x, t ∈ C and k ∈ N.

From [9, 7.12, (6)] we deduce

∣∣∣∣
(

1
t

d
dt

)k

((xt)−μJμ(xt))
∣∣∣∣ � C|x|2ket|Im x|, x ∈ C, t ∈ (0,∞) and k ∈ N.

Hence (xt)−μJμ(xt) ∈ OX , for every x ∈ C . Then, for each x ∈ C , [4, Theorem 1]
implies that hμ((xt)−μJμ(xt)hμ(Φ)(t)) ∈ Q , provided that Φ ∈ Q . In the sequel we
will adopt as definition of the Hankel translated (τxΦ)(y) , x, y ∈ C , and Φ ∈ Q , the
right hand side of (3.1), that is,

(τxΦ)(y) = 2μΓ(μ + 1)hμ((xt)−μJμ(xt)hμ(Φ)(t))(y), x, y ∈ C and Φ ∈ Q.

PROPOSITION 3.1.
(a) Let x ∈ C . The Hankel translated τx defines a continuous linear mapping

from Q into itself.
(b) Let Φ ∈ Q . The mapping MΦ defined by

MΦ(z) = τzΦ, Φ ∈ Q,

is holomorphic from C into Q .

Proof. (a) It is a consequence of [4, Theorem 2.1].
(b) According to again [4, Theorem 2.1], the assertion in (b) will be proved when

we establish that, for every φ ∈ X , the mapping mφ(z) = (zt)−μJμ(zt)φ is holomorphic
from C into X .

Let φ ∈ X and z0 ∈ C . We are going to see that mφ is holomorphic in z0 . We
can write, for each t ∈ (0,∞) and h ∈ C \ {0} ,

mφ(z0+h)−mφ(z0)
h

− ∂

∂z
((zt)−μJμ(zt))|z=z0φ(t) = φ(t)

h
2πi

∫
C

(wt)−μJμ(wt)
(w−z0−h)(w−z0)2

dw,

where C represents a circle having as a parametric representation w(θ) = z0 + eiθ ,
θ ∈ [0, 2π) .
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Let m, n ∈ N . By using [9, 7.12, (6)] and [19, (7), Chapter 5] we get

∣∣∣∣emt

(
1
t

d
dt

)n(
φ(t)

∫
C

(wt)−μJμ(wt)
(w − z0 − h)(w − z0)2

dw

)∣∣∣∣
� Cemt

n∑
j=0

∣∣∣∣
(

1
t

d
dt

)n−j

φ(t)
∣∣∣∣
∣∣∣∣
∫
C

w2j(wt)−μ−jJμ+j(wt)
(w − z0 − h)(w − z0)2

dw

∣∣∣∣

� Cemt
n∑

j=0

∣∣∣∣
(

1
t

d
dt

)n−j

φ(t)
∣∣∣∣e(|Im z0|+1)t

� C
n∑

j=0

γl,j(φ), t ∈ (0,∞) and |h| <
1
2
,

for a certain l ∈ N .
Hence, for 0 < |h| < 1

2 ,

γm,n

(
mφ(z0 + h) − mφ(z0)

h
− ∂

∂z
((zt)−μJμ(zt))|z=z0φ(t)

)
� C|h|

n∑
j=0

γl,j(φ).

Then

γm,n

(
mφ(z0 + h) − mφ(z0)

h
− ∂

∂z
((zt)−μJμ(zt))|z=z0φ(t)

)
→ 0, as h → 0.

Thus we have proved that

lim
h→0

mφ(z0 + h) − mφ(z0)
h

=
∂

∂z
((zt)−μJμ(zt))|z=z0φ(t),

in the sense of convergence in X . �

According to [3, (3.2)] we can write, for each Φ,Ψ ∈ Q ,

Φ#Ψ = hμ(hμ(Φ)hμ(Ψ)).

Since X is contained in OX , [4, Theorem 2.1] allows us to see that Φ#Ψ ∈ Q , for
every Φ,Ψ ∈ Q . Moreover the bilinear mapping (Φ,Ψ) −→ Φ#Ψ is continuous from
Q×Q into Q .

By taking into account Proposition 3.1, (a) , we define the Hankel convolution
T#Φ of T ∈ Q′ and Φ ∈ Q as follows

(T#Φ)(z) = 〈T, τzΦ〉 , z ∈ C.

According to Proposition 3.1, (b) , T#Φ is an entire function, for every T ∈ Q′ and
Φ ∈ Q . Moreover, since the function z−μJμ(z) is even, T#Φ is even, for each T ∈ Q′

and Φ ∈ Q .

PROPOSITION 3.2. Let T ∈ Q′ and Φ ∈ Q . Then T#Φ ∈ OQ .
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Proof. By invoking Proposition 2.6 it is suffficient to see that if m, n ∈ N and γ
is a complex Borel measure on the strip Im = {z ∈ C : |Im z| � m} that the function F
defined by

F(z) =
∫

Im

(τzΦ)(w)w2ndγ (w), z ∈ C,

is in OQ .
Let k ∈ N . We are going to prove that there exists l ∈ N for which

sup
|Im z|�k

(1 + |z|2)−l|F(z)| < ∞.

From [1, Lemma 8, (b), (6)] we infer

F(z) = 2μΓ(μ + 1)(−1)n
∫

Im

hμ(Δn
μ,t((zt)

−μJμ(zt)hμ(Φ)(t)))(w)dγ (w), z ∈ C.

According to (2.6), it get

Δn
μ,t((zt)

−μJμ(zt)hμ(Φ)(t))

=
2n∑
j=n

cn,jt
2(j−n)

(
1
t

d
dt

)j

((zt)−μJμ(zt)hμ(Φ)(t))

=
2n∑
j=n

cn,jt
2(j−n)

j∑
α=0

(
j
α

)(
1
t

d
dt

)j−α

(hμ(Φ)(t))(−1)α z2α(zt)−μ−αJμ+α(zt),

for every t ∈ (0,∞) and z ∈ C .
Hence [9, 7.12, (6)] leads to

|hμ(Δn
μ,t((zt)

−μJμ(zt)hμ(Φ)(t)))(w)|

� C
∫ ∞

0
|(wt)−μJμ(wt)|

2n∑
j=n

t2(j−n)×

×
j∑

α=0

∣∣∣∣
(

1
t

d
dt

)j−α

(hμ(Φ)(t))
∣∣∣∣|z|2α |(zt)−μ−αJμ+α(zt)|t2μ+1dt

� C
2n∑
j=n

j∑
α=0

|z|2α
∫ ∞

0
et(|Im w|+|Im z|)t2(j−n)

∣∣∣∣
(

1
t

d
dt

)j−α

(hμ(Φ)(t))
∣∣∣∣t2μ+1dt

� C
2n∑
j=n

j∑
α=0

|z|2α
∫ ∞

0
et(k+m)t2(j−n)

∣∣∣∣
(

1
t

d
dt

)j−α

(hμ(Φ)(t))
∣∣∣∣t2μ+1dt

� C(1 + |z|2)2n
2n∑
j=0

γk+m+1,j(hμ(Φ)), |Im z| � k and |Im w| � m.

Since hμ(Φ) ∈ X we conclude that

|F(z)| � C(1 + |z|2)2n|γ |(Im), |Im z| � k.
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Here |γ | represents the total variation measure of γ . Hence |γ |(Im) < ∞ .
Thus we prove that F ∈ OQ and the proof is finished. �
For every n ∈ N , we represent by Pn the space constituted by all those even and

entire functions F such that, for every m ∈ N ,

εn
m(F) = sup

|Im z|�m
(1 + |z|2)−n|F(z)| < ∞.

Pn is endowed with the topology associated with the family {εn
m}m∈N of norms. Thus

Pn is a Fréchet space. Q is continuously contained in Pn . If n � m then Pm is
continuously contained in Pn . By P we denote the space ∪n∈NPn that is endowed
with the locally convex inductive limit topology, that is P = indnPn .

Along the proof of Proposition 3.2 we established the following.

PROPOSITION 3.3. Let T ∈ Q′ . There exists n ∈ N such that T#Φ ∈ Pn , for
every Φ ∈ Q .

We now prove an associative property for the distributional # -convolution.

PROPOSITION 3.4. Let T ∈ Q′ and Φ,Ψ ∈ Q . Then T#Φ ∈ Q′ and

(T#Φ)#Ψ = T#(Φ#Ψ).

Proof. According to Proposition 3.2, T#Φ ∈ OQ . Hence T#Φ defines an element
of Q′ by

〈T#Φ,Λ〉 =
∫ ∞

0
(T#Φ)(x)Λ(x)x2μ+1 dx

2μΓ(μ + 1)
, Λ ∈ Q.

By Proposition 2.6 there exists m ∈ N and m + 1 complex Borel measures
γ0, γ1, ..., γm on the strip Im = {z ∈ C : |Im z| � m} such that

〈T,Λ〉 =
m∑

j=0

∫
Im

z2jΛ(z)dγj(z), Λ ∈ Q.

Then, we can write

〈T#Φ,Λ〉 =
∫ ∞

0
〈T, τxΦ〉Λ(x)x2μ+1 dx

2μΓ(μ + 1)

=
m∑

j=0

∫ ∞

0
Λ(x)x2μ+1

∫
Im

z2jhμ((xt)−μJμ(xt)hμ(Φ)(t))(z)dγj(z)dx

=
m∑

j=0

∫
Im

z2j
∫ ∞

0
Λ(x)hμ((xt)−μJμ(xt)hμ(Φ)(t))(z)x2μ+1dxdγj(z)

=
m∑

j=0

∫
Im

z2j
∫ ∞

0
Λ(x)hμ((zt)−μJμ(zt)hμ(Φ)(t))(x)x2μ+1dxdγj(z)

=
m∑

j=0

∫
Im

z2j(Φ#Λ)(z)dγj(z)

= 〈T,Φ#Λ〉 , Λ ∈ Q.
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Hence, by virtue of Proposition 3.1,

((T#Φ)#Ψ)(z) = 〈T#Φ, τzΨ〉
= 〈T,Φ#τzΨ〉
= 〈T, hμ(hμ(Φ)hμ(τzΨ))〉
= 〈T, 2μΓ(μ + 1)hμ((z.)−μJμ(z.)hμ(Φ)hμ(ψ))〉
= 〈T, τz(Φ#Ψ)〉
= (T#(Φ#Ψ))(z), z ∈ C. �

In the following proposition we establish a distributional interchange formula.

PROPOSITION 3.5. Let T ∈ Q′ and Φ ∈ Q . Then

h′μ(T#Φ) = h′μ(T)hμ(Φ). (3.2)

Proof. For every φ ∈ X Proposition 3.4 leads to

〈 h′μ(T#Φ), φ〉 = 〈T#Φ, hμ(φ)〉
= ((T#Φ)#hμ(φ))(0)
= (T#(Φ#hμ(φ)))(0)
= 〈T,Φ#hμ(φ)〉
= 〈T, hμ(hμ(Φ)φ)〉
= 〈 h′μ(T)hμ(Φ), φ〉 . �

If T ∈ Q′ and Φ ∈ Q it is not always true that T#φ ∈ Q . Indeed, we define the
functional T on Q by

〈T,Φ〉 =
∫ ∞

0
Φ(x)x2μ+1dx, Φ ∈ Q.

Thus T is in Q′ . Moreover, by [13, (2), Section 2] we obtain, for every Φ ∈ Q ,

(T#Φ)(x) =
∫ ∞

0
(τxΦ)(y)y2μ+1dy

=
∫ ∞

0
Φ(z)z2μ+1

∫ ∞

0
D(x, y, z)

y2μ+1

2μΓ(μ + 1)
dydz

=
∫ ∞

0
Φ(z)z2μ+1dz, x ∈ (0,∞).

Then, since T#Φ is an entire function (Proposition 3.2), for every Φ ∈ Q ,

(T#Φ)(x) =
∫ ∞

0
Φ(z)z2μ+1dz, x ∈ C.

Hence, if Φ ∈ Q is such that
∫ ∞

0 Φ(z)z2μ+1dz �= 0 then T#Φ /∈ Q .
Our next objetive is to determine the elements T of Q′ such that T#Φ ∈ Q , for

each Φ ∈ Q .

PROPOSITION 3.6. Let T ∈ Q′ . Then T#Φ ∈ Q , for every Φ ∈ Q , if, and only if,
h′μ(T) ∈ OX .
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Proof. Suppose that T#Φ ∈ Q , for every Φ ∈ Q . Then, the interchange formula
(3.2) implies that, for every Φ ∈ Q , h′μ(T)hμ(Φ) ∈ X . By invoking [4, Theorem 2.1]
we have that, for every φ ∈ X , Sφ ∈ X , where S = h′μ(T) ∈ X′ .

Let n ∈ N . We choose φn ∈ X such that φn(x) = 1 , x ∈ (0, n) , and φn(x) = 0 ,
x > n + 1 . As in [1] (see also [18]) we denote by Bn the subspace of H constituted by
all those φ ∈ H such that φ(x) = 0 , x � n . If ϕ ∈ Bn we have that

〈 Sφn,ϕ〉 =
∫ n

0
(Sφn)(x)ϕ(x)

x2μ+1

2μΓ(μ + 1)
dx = 〈 S, φnϕ〉 = 〈 S,ϕ〉 .

Hence S = Sφn on Bn . We define f n = Sφn , n ∈ N . For every ϕ ∈ Bn , we get

〈 S,ϕ〉 =
∫ n

0
f n(x)ϕ(x)

x2μ+1

2μΓ(μ + 1)
dx =

∫ n

0
f n+k(x)ϕ(x)

x2μ+1

2μΓ(μ + 1)
dx, k ∈ N.

Then, f n(x) = f n+k(x) , 0 � x � n and k ∈ N .
We denote by f the function defined on [0,∞) by

f (x) = f n(x), 0 � x � n and n ∈ N.

Thus f is a smooth function on (0,∞) . Moreover if ϕ ∈ B = ∪n∈NBn , we have

〈 S,ϕ〉 =
∫ ∞

0
f (x)ϕ(x)

x2μ+1

2μΓ(μ + 1)
dx.

We can also write, for every φ ∈ X and ϕ ∈ B ,

〈 Sφ,ϕ〉 = 〈 S, φϕ〉 =
∫ ∞

0
f (x)φ(x)ϕ(x)

x2μ+1

2μΓ(μ + 1)
dx.

Then Sφ = f φ ∈ X , for each φ ∈ X . Hence, since B is a dense subspace of X ,
S = f ∈ OX .

Assume now that h′μ(T) ∈ OX . By using the interchange formula (3.2) we have

h′μ(T#Φ) = h′μ(T)hμ(φ), ∈ X.

According to [4, Theorem 2.1], h′μ(T#Φ) ∈ X , Φ ∈ X . Hence T#Φ = hμ(h′μ(T#Φ))
is in Q , for every Φ ∈ Q . �

PROPOSITION 3.7. Let T ∈ Q′ such that h′μ(T) ∈ OX . Then, for every m, s ∈ N
there exists a function Gm,s that is continuous and even in the strip Is = {z ∈ C :
|Im z| � s} and holomorphic in the interior of Is and such that

sup
|Im z|�s

(1 + |z|2)m|Gm,s(z)| < ∞,

and T = Jμ,km,sGm,s , for certain km,s ∈ N , that is,

〈T,Φ〉 = lim
n→∞

n∑
j=0

(−1)jk2j
m,s

2jj!Γ(μ + j + 1)

∫ ∞

0
Gm,s(x)Δj

μ(Φ(x))x2μ+1dx, Φ ∈ Q.
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Proof. Since h′μ(T) ∈ OX , for every m ∈ N there exist C > 0 and n ∈ N such
that ∣∣∣∣

(
1
x

d
dx

)k

h′μ(T)(x)
∣∣∣∣ � Cenx, x ∈ (0,∞) and k = 0, 1, ..., 2m. (3.3)

To simplify we write gk(x) = Iμ(kx) , x ∈ (0,∞) and k ∈ N . From (2.4) and (2.5)
we deduce that for every m, k ∈ N , there exists C > 0 for which∣∣∣∣

(
1
x

d
dx

)m 1
gk(x)

∣∣∣∣ � Ce−kx/2, x ∈ (0,∞). (3.4)

Let s, m ∈ N . Assume that n ∈ N is associated with m satisfying (3.3).
According to (3.4) we have∣∣∣∣

(
1
x

d
dx

)k h′μ(T)(x)
g2(n+s+1)(x)

∣∣∣∣ � Ce−(s+1)x, x ∈ (0,∞) and k = 0, 1, ..., 2m. (3.5)

We write Fm,s = h′μ(T)/g2(n+s+1) . Then T = h′μ(Fm,sg2(n+s+1)) , that is,

〈T,Φ〉 = 〈Fm,s, g2(n+s+1)hμ(Φ)〉 , Φ ∈ Q.

Note that gk ∈ OX and 1
gk

∈ OX , k ∈ N .
By using now Proposition 2.3 and [4, Theorem 2.1], it follows

〈T,Φ〉 = 〈Fm,s(x), lim
j→∞

j∑
k=0

(2(n + s + 1)x)2k

22kk!Γ(μ + k + 1)
hμ(Φ)(x)〉

= lim
j→∞

j∑
k=0

〈Fm,s(x), hμ

(
(−1)k(2(n + s + 1))2k

22kk!Γ(μ + k + 1)
Δk
μΦ

)
(x)〉

= lim
j→∞

j∑
k=0

〈 h′μ(Fm,s),
(−1)k(2(n + s + 1))2k

22kk!Γ(μ + k + 1)
Δk
μΦ〉

= 〈
∞∑
k=0

(−1)k(2(n + s + 1))2k

22kk!Γ(μ + k + 1)
Δk
μh′μ(Fm,s),Φ〉 , Φ ∈ Q.

Hence

T =
∞∑
k=0

(−1)k(2(n + s + 1))2k

22kk!Γ(μ + k + 1)
Δk
μGm,s = Jμ,2(n+s+1)(Gm,s),

where Gm,s = h′μ(Fm,s) = hμ(Fm,s) .
On the other hand, by interchanging the order of integration and by (3.5) we obtain

〈Gm,s,Φ〉 = 〈 h′μ(T)
g2(n+s+1)

, hμ(Φ)〉

=
∫ ∞

0

h′μ(T)(x)
g2(n+s+1)(x)

hμ(Φ)(x)
x2μ+1

2μΓ(μ + 1)
dx

=
∫ ∞

0
hμ

(
h′μ(T)(x)

g2(n+s+1)(x)

)
(y)Φ(y)

y2μ+1

2μΓ(μ + 1)
dy, Φ ∈ Q.
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Therefore

Gm,s(z) =
∫ ∞

0
(zt)−μJμ(zt)Fm,s(t)t2μ+1dt, z ∈ (0,∞).

Moreover, since |z−μJμ(z)| � Ce|Im z| , z ∈ C ([9, 7.12, (6)]), from (3.5) we infer
that Gm,s can be extended to the strip Is as a continuous function that is holomorphic
in the interior of Is . According to [1, Lemma 8, (b), (6)] and by using (2.6) and (3.5)
we obtain

(1 + |z|2)m|Gm,s(z)| =
m∑

j=0

(
m
j

)
|z2jGm,s(z)|

=
m∑

j=0

(
m
j

)∣∣∣∣
∫ ∞

0
Δj
μ(Fm,s(x))(xz)−μJμ(xz)x2μ+1dx

∣∣∣∣

� C
m∑

j=0

2j∑
i=j

∫ ∞

0

∣∣∣∣x2(i−j)
(

1
x

d
dx

)i

(Fm,s(x))
∣∣∣∣|(xz)−μJμ(xz)|x2μ+1dx

� C
m∑

j=0

2j∑
i=j

∫ ∞

0
x2(i−j)e−(s+1)x+|Im z|xx2μ+1dx

� C
m∑

j=0

2j∑
i=j

∫ ∞

0
x2(i−j)+2μ+1e−xdx, |Im z| � s.

Thus the proof is finished. �
Let k ∈ N . We define the space Ak as follows. An even and smooth function Φ

on R is in Ak if, and only if, for every m ∈ N ,

δ k
m(Φ) = sup

x∈(0,∞)
(1 + x2)−k|Jμ,m(Φ)(x)| < ∞.

Ak is endowed with the topology generated by the family {δ k
m}m∈N of seminorms.

Thus Ak is continuously contained in Ak+1 . Moreover, according to Proposition 2.4,
Q is continuously contained in Ak . We represent by Ak the closure of Q in Ak . By
A we denote the inductive space A = ∪k∈NAk and by A′ , as usual, we represent the
dual space of A .

PROPOSITION 3.8. Let T ∈ A′ . Then h′μ(T) ∈ OX .

Proof. Let k ∈ N . Since T ∈ A′
k there exists C > 0 and m ∈ N such that

|〈T,Φ〉 | � C max
0�l�m

δ k
l (Φ), Φ ∈ Ak.

In particular, since Q is contained in Ak , we have

|〈T,Φ〉 | � C max
0�l�m

sup
x∈(0,∞)

(1 + x2)−k|Jμ,l(Φ)(x)|, Φ ∈ Q.
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Since, for every Φ ∈ Q and l ∈ N ,

lim
k→∞

(1 + x2)−kJμ,l(Φ)(x) = 0,

by employing a procedure similar to the one used in Proposition 2.6, we can prove that

〈T,Φ〉 =
m∑

l=0

∫ ∞

0
(1 + x2)−kJμ,l(Φ)(x)dγl(x), Φ ∈ Q,

for certain complex Borel measures γ0, γ1, ..., γm on [0,∞) .
Then, Proposition 2.3 implies that, for every φ ∈ X ,

〈 h′μ(T), φ〉 = 〈T, hμ(φ)〉

=
m∑

l=0

∫ ∞

0
(1 + x2)−kJμ,l(hμ(φ))(x)dγl(x)

=
m∑

l=0

∫ ∞

0
(1 + x2)−khμ(Iμ(lt)φ(t))(x)dγl(x)

=
m∑

l=0

∫ ∞

0
Iμ(lt)φ(t)

( ∫ ∞

0
(1 + x2)−k(xt)−μJμ(xt)dγl(x)

)
t2μ+1dt.

Hence,

h′μ(T)(t) = 2μΓ(μ + 1)
m∑

l=0

Iμ(lt)
∫ ∞

0
(1+x2)−k(xt)−μJμ(xt)dγl(x), t ∈ (0,∞). (3.6)

Let n ∈ N . We write (3.6) for k = n + 1 . According to (2.4), (2.5) and [9, 7.12,
(6)] we obtain∣∣∣∣

(
1
t

d
dt

)n

h′μ(T)(t)
∣∣∣∣

� C
m∑

l=0

n∑
j=0

l2jIμ+j(lt)
∫ ∞

0
(1 + x2)−n−1x2(n−j)|(xt)−μ−n+jJμ+n−j(xt)|d|γl|(x)

� C
m∑

l=0

n∑
j=0

elt
∫ ∞

0

x2(n−j)

(1 + x2)n+1
d|γl|(x)

� Cemt, t ∈ (0,∞).

Here |γl| represents the total variation measure of γl , l = 0, 1, ..., m .
Thus we conclude that h′μ(T) ∈ OX . �

PROPOSITION 3.9. Let T ∈ Q′ . Suppose that for every m ∈ N there exists an even
and continuous function G on R and k ∈ N for which

sup
z∈R

(1 + z2)m|G(z)| < ∞,

and T = Jμ,k(G) . Then T ∈ A′ .
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Proof. We are going to see that T ∈ A′
m , for every m ∈ N .

Let m ∈ N . We choose l ∈ N such that that m + l > μ + 1 and then we take an
even and continuous function G on R and k ∈ N satisfying

sup
z∈R

(1 + z2)m+l|G(z)| < ∞,

and T = Jμ,k(G) .
Hence, for every Φ ∈ Q , we have

〈T,Φ〉 = 〈Jμ,k(G),Φ〉
= 〈G,Jμ,k(Φ)〉

=
∫ ∞

0
G(x)Jμ,k(Φ)(x)

x2μ+1

2μΓ(μ + 1)
dx,

(3.7)

Then

|〈T,Φ〉 | � C
∫ ∞

0
(1 + x2)−l−m|Jμ,k(Φ)(x)|x2μ+1dx

� C sup
x∈(0,∞)

(1 + x2)−m|Jμ,k(Φ)(x)|, Φ ∈ Q.

Thus we have proved that T can be extended to Am by (3.7) as an element of
A′

m . �
The properties established in above propositions allow us to obtain the following

theorem that presents the main result of this section.

THEOREM 3.10. Let T ∈ Q′ . The following assertions are equivalent.
(i) T ∈ A′ .
(ii) h′μ(T) ∈ OX .
(iii) For every m ∈ N there exists an even and continuous function G on R and

k ∈ N such that
sup
x∈R

(1 + x2)m|G(x)| < ∞,

and T = Jμ,k(G) .
(iv) T#Φ ∈ Q , for every Φ ∈ Q .

Proof. Proposition 3.6 establishes that (ii) is equivalent to (iv) . Property (i) ⇒
(ii) was proved in Proposition 3.8. From Proposition 3.7 we deduce that (ii) ⇒ (iii) .
Finally, Proposition 3.9 shows that (iii) ⇒ (i) . �

An interesting consequence of Theorem 3.10 is the following.

PROPOSITION 3.11. Suppose that T ∈ P′ , where P′ denotes the dual space of P .
Then T#Φ ∈ Q , for every Φ ∈ Q .

Proof. Note that, since Q is continuously contained in Pn , for each n ∈ N , P′

is contained in Q′ . Hence T ∈ Q′ .
According to Theorem 3.10 to prove that T#Φ ∈ Q , Φ ∈ Q , it is sufficient to see

that h′μ(T) ∈ OQ .
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Let m ∈ N . Since T ∈ P′ , T is also in P′
m , the dual space of Pm . Hence, there

exist C > 0 and l ∈ N such that

|〈T,Φ〉 | � C sup
|Im z|�l

(1 + |z|2)−m|Φ(z)|, Φ ∈ Pm.

By taking into account that

lim
|z|→∞, |Im z|�l

(1 + |z|2)−mΦ(z) = 0,

for every Φ ∈ Q , the procedure developed in the proof of Propostion 2.6 allows us to
show that

〈T,Φ〉 =
∫

Il

(1 + |z|2)−mΦ(z)dγ (z), Φ ∈ Q,

for a certain complex Borel measure γ on Il = {z ∈ C : |Im z| � l} .
Then, for every φ ∈ X , we have

〈 h′μ(T), φ〉 = 〈T, hμ(φ)〉
=

∫
Il

(1 + |z|2)−mhμ(φ)(z)dγ (z)

=
∫

Il

(1 + |z|2)−m
∫ ∞

0
(xz)−μJμ(xz)φ(x)x2μ+1dxdγ (z)

=
∫ ∞

0
φ(x)x2μ+1

∫
Il

(1 + |z|2)−m(xz)−μJμ(xz)dγ (z)dx.

Hence,

h′μ(T)(x) = 2μΓ(μ + 1)
∫

Il

(1 + |z|2)−m(xz)−μJμ(xz)dγ (z), x ∈ (0,∞).

Moreover, from [19, (7), Chapter 5] and [9, 7.12, (6)] we infer that

(
1
x

d
dx

)j

h′μ(T)(x)

= 2μΓ(μ + 1)
∫

Il

(1+|z|2)−mz2j(−1)j(xz)−μ−jJμ+j(xz)dγ (z), x ∈ (0,∞),

and ∣∣∣∣
(

1
x

d
dx

)j

h′μ(T)(x)
∣∣∣∣ � C

∫
Il

(1 + |z|2)−mz2jex|Im z|d|γ |(z) � Celx, x ∈ (0,∞),

provided that j ∈ N , 0 � j � m .
The arbitrariness of m ∈ N allows us to conclude that h′μ(T) ∈ OX . �

According to Theorem 3.10 the Hankel convolution T#S of T ∈ Q′ and S ∈ A′

is the functional on Q given by

〈T#S,Φ〉 = 〈T, S#Φ〉 , Φ ∈ Q.
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Note that, since h′μ(S) ∈ OX (Theorem 3.10), the mapping Φ −→ S#Φ is continuous
from Q into itself. Hence T#S ∈ Q′ .

A distributional interchange formula for the Hankel transform that extends the one
proved in Proposition 3.5 is the following.

PROPOSITION 3.12. Let T ∈ Q′ and S ∈ A′ . Then

h′μ(T#S) = h′μ(T)h′μ(S).

Proof. For every φ ∈ X we have

〈 h′μ(T#S), φ〉 = 〈T#S, hμ(φ)〉
= 〈T, S#hμ(φ)〉
= 〈T, hμ(h′μ(S)φ)〉
= 〈 h′μ(T)h′μ(S), φ〉 . �

We now present some algebraic properties of the distributional # -convolution.

PROPOSITION 3.13. Let T ∈ Q′ and S, R ∈ A′ . Then
(i) S#R ∈ A′ and S#R = R#S .
(ii) (T#S)#R=T#(S#R).
(iii) For every m ∈ N , Jμ,mS ∈ A′ and Jμ,m(T#S) = T#Jμ,mS .
(iv) The Dirac functional δ defined, as usual, by 〈 δ,Φ〉 = Φ(0) , Φ ∈ Q , is in

A′ and T#δ = T .

Proof. To see (i) and (ii) it is sufficient to use the interchange formula established
in Proposition 3.12 and Theorem 3.10.

According to Proposition 2.3 we can write, for each m ∈ N ,

〈 h′μ(Jμ,mS), φ〉 = 〈Jμ,mS, hμ(φ)〉
= 〈 S,Jμ,mhμ(φ)〉
= 〈 S, hμ(Iμ(mx)φ(x))〉
= 〈 h′μ(S)Iμ(mx), φ〉 , φ ∈ X.

Hence h′μ(Jμ,mS) ∈ OX and then Jμ,mS ∈ A′ , m ∈ N .
In a similar way we can see

h′μ(Jμ,m(T#S)) = Iμ(mx)h′μ(T)h′μ(S) = h′μ(T#Jμ,mS).

Thus (iii) is shown.
To prove that δ ∈ A′ it is sufficient to note that h′μ(δ) = 1 ∈ OX . By again using

Proposition 3.12 we can show that T#δ = T . �

REMARK. H. Hasumi [11] investigated the Fourier transform of distributions with
exponential growth. He characterized the Fourier transform of the space E as the
space F constituted by all those entire functions Φ such that, for every k, m ∈ N ,
ηm,k(Φ) < ∞ . By using the ideas developed in this paper we can investigate the usual
convolution in F′ , the dual space of F , when F is endowedwith the topology generated
by the family {ηm,k}m,k∈N of norms.
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