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SOME NEW PROPERTIES FOR THE RESOLVENT OPERATOR
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(communicated by Th. M. Rassias)

Abstract. The general mixed quasi variational inequalities (GMVI) are considerably difficult
to solve directly, and hence, we often try to resolve this problem via solving some equivalent
forms of GMVI. It is well known that GMVI are equivalent to the fixed point problems and
resolvent equations. In this paper, we use these alternative equivalent formulations to suggest
some important properties for the resolvent operator.

1. Introduction

A useful and important generalization of variational inequalities is the general
mixed variational inequality containing a nonlinear term ϕ . But the applicability of
the projection method is limited due to the fact that it is not easy to find the projection
except in very special cases. Secondly, the projection method can not be applied to
suggest iterative algorithms for solving general mixed variational inequalities involving
the nonlinear term ϕ. This fact has motivated many authors to develop the auxiliary
principle technique for solving the mixed variational inequalities. Lions and Stampac-
chia [4], Glowinski et al. [2] used this technique to study the existence of solution for
the mixed variational inequalities.

In recent years some iterative methods have been suggested for special cases of the
general mixed quasi variational inequalities. For example, if the bifunction is proper,
convex and lower semicontinuous function with respect to the first argument, then one
can show that the general mixed quasi variational inequalities are equivalent to the
fixed-point problems and the implicit resolvent equations using the resolvent operator
technique see [1-13]. M. A. Noor, K. I. Noor and Th. M. Rassias [7] have used the
resolvent operator technique to establish the equivalence among generalized set-valued
variational inequalities, fixed point problems and the generalized set-valued resolvent
equations. In 2000, M. A. Noor and Th. M. Rassias [8] have used this equivalent
formulation to suggest and analyze some iterative methods, the convergence of these
methods requires that the operator is both strongly monotone and Lipschitz continuous.
Secondly, it is very difficult to evaluate the resolvent of the operator except for very
simple cases. To overcome this disadvantage, in [12] Noor M. A. and Noor K. I.
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have used these alternative equivalent formulations to suggest and analyze modified
resolvent iterative method for general mixed quasi variational inequalities, where the
skew-symmetry of the nonlinear bifunction plays a crucial part in the convergence
analysis of this method. In this paper, we give some important properties of the
resolvent operator.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈 ·, ·〉
respectively. Let K be a closed convex set in H and T : H → H be a nonlinear
operator. Let ϕ(., .) : H ×H −→ R∪ {+∞} be a continuous bifunction. We consider
the problem of finding u∗ ∈ H such that

〈Tu∗, g(v) − g(u∗)〉 + ϕ(g(v), g(u∗)) − ϕ(g(u∗), g(u∗)) � 0, ∀v ∈ H. (2.1)

Problem (2.1) is called the general mixed quasi variational inequality .
For ϕ(v, u∗) = ϕ(v), ∀u∗ ∈ H, problem (2.1) reduces to finding u∗ ∈ H such

that

〈Tu∗, g(v) − g(u∗)〉 + ϕ(g(v)) − ϕ(g(u∗)) � 0, ∀v ∈ H, (2.2)

which is known as the general mixed variational inequality, see Noor [9].
If ϕ(., .) = ϕ(.) is an indicator function of a closed convex set K in H, then the

problem (2.1) is equivalent to finding u∗ ∈ H such that g(u∗) ∈ K and

〈T(u∗), g(v) − g(u∗)〉 � 0, ∀g(v) ∈ K. (2.3)

Problem (2.3) is called the general variational inequality, which first introduced and
studied by Noor [5] in 1988. For the applications, formulation and numerical methods
of general variational inequalities (2.3), we refer the reader to the survey [11].

If g ≡ I, then the problem (2.3) is equivalent to finding u∗ ∈ K such that

〈Tu∗, v − u∗〉 � 0, ∀v ∈ K, (2.4)

which is known as the classical variational inequality introduced and studied by Stam-
pacchia [13] in 1964.

We also need the following well known results and concepts.

DEFINITION 2.1. The bifunction ϕ(., .) is said to be skew-symmetric, if,

ϕ(u, u) − ϕ(u, v) − ϕ(v, u) + ϕ(v, v) � 0, ∀u, v ∈ H. (2.5)

DEFINITION 2.2 [1]. Let A be a maximal monotone operator, then the resolvent
operator associated with A is defined as

JA(u) = (I + ρA)−1(u), ∀u ∈ H,

where ρ > 0 is a constant and I is the identity operator.
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REMARK 2.1. It is well known that the subdifferential ∂ϕ(., .) of a convex , proper
and lower-semicontinuous function ϕ(., .) : H × H −→ R ∪ {+∞} is a maximal
monotone with respect to the first argument, we can define its resolvent by

Jϕ(u) = (I + ρ∂ϕ(., u))−1) ≡ (I + ρ∂ϕ(u))−1, (2.6)

where ∂ϕ(u) ≡ ∂ϕ(., u).
The resolvent operator Jϕ(u) defined by (2.6) has the following characterization,

LEMMA 2.1. ([10]) For a given u ∈ H, z ∈ H satisfies the inequality

〈 u − z, v − u〉 + ρϕ(v, u) − ρϕ(u, u) � 0, ∀v ∈ H, (2.7)

if and only if
u = Jϕ(u)[z],

where Jϕ(u) is resolvent operator defined by (2.6) .

It follows from Lemma 2.1 that

〈 Jϕ(u)[z]−z, v−Jϕ(u)[z]〉+ρϕ(v, Jϕ(u)[z])−ρϕ(Jϕ(u)[z], Jϕ(u)[z]) � 0, ∀u, v, z ∈ H
(2.8)

The following result can be proved by using Lemma 2.1.

LEMMA 2.2. u∗ is solution of problem (2.1) if and only if u∗ ∈ H satisfies the
relation:

g(u∗) = Jϕ(u∗)[g(u∗) − ρT(u∗)], (2.9)

where ρ > 0.

From Lemma 2.2, it is clear that u is solution of (2.1) if and only if u is a zero
point of the function

r(u, ρ) := g(u) − Jϕ(u)[g(u) − ρT(u)].

3. The main Theorem

The following lemma shows that ‖r(u, ρ)‖ is a non-decreasing function, while
‖r(u, ρ)‖

ρ
is a non-increasing one with respect to ρ .

LEMMA 3.1. Suppose the bifunction ϕ(., .) is skew-symmetric. Then for all u ∈ H
and ρ′ � ρ > 0 , it holds that

‖r(u, ρ′)‖ � ‖r(u, ρ)‖ (3.1)

and
‖r(u, ρ′)‖

ρ′ � ‖r(u, ρ)‖
ρ

. (3.2)
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Proof. Let t :=
‖r(x, ρ′)‖
‖r(x, ρ)‖ , we only need to prove that 1 � t � ρ′

ρ
. Note that its

equivalent expression is

(t − 1)(t − ρ′

ρ
) � 0. (3.3)

Using inequality (2.8) we have

〈 g(u)−ρT(u)−Jϕ(u)[g(u)−ρT(u)], Jϕ(u)[g(u)−ρT(u)]−Jϕ(u)′ [g(u)−ρ′T(u)]〉
+ ρϕ(Jϕ(u)′ [g(u) − ρ′T(u)], Jϕ(u)[g(u) − ρT(u)])

− ρϕ(Jϕ(u)[g(u) − ρT(u)], Jϕ(u)[g(u) − ρT(u)]) � 0,

(3.4)

and

〈 g(u)−ρ′T(u)−Jϕ(u)′ [g(u)−ρ′T(u)], Jϕ(u)′ [g(u)−ρ′T(u)]−Jϕ(u)[g(u)−ρT(u)]〉
+ ρ′ϕ(Jϕ(u)[g(u) − ρT(u)], Jϕ(u)′ [g(u) − ρ′T(u)])

− ρ′ϕ(Jϕ(u)′ [g(u) − ρ′T(u)], Jϕ(u)′ [g(u) − ρ′T(u)]) � 0,

(3.5)

where Jϕ(u)′ = (I + ρ′∂ϕ(u))−1, from (3.4) and using

Jϕ(u)[g(u) − ρT(u)] − Jϕ(u)′ [g(u) − ρ′T(u)] = r(u, ρ′) − r(u, ρ),

we obtain

〈 r(u, ρ), r(u, ρ′)−r(u, ρ)〉 � ρ〈T(u), r(u, ρ′) − r(u, ρ)〉
− ρϕ(Jϕ(u)′ [g(u) − ρ′T(u)], Jϕ(u)[g(u) − ρT(u)])

+ ρϕ(Jϕ(u)[g(u) − ρT(u)], Jϕ(u)[g(u) − ρT(u)]).

(3.6)

Similarly, we have

〈 r(u, ρ′), r(u, ρ)−r(u, ρ′)〉 � ρ′〈T(u), r(u, ρ) − r(u, ρ′)〉
−ρ′ϕ(Jϕ(u)[g(u)−ρT(u)], Jϕ(u)′ [g(u)−ρ′T(u)])

+ρ′ϕ(Jϕ(u)′ [g(u)−ρ′T(u)], Jϕ(u)′ [g(u)−ρ′T(u)]).
(3.7)

Multiplying (3.6) and (3.7) by ρ′ and ρ respectively, and then adding them, using
(2.5) we get

〈 ρ′r(u, ρ) − ρr(u, ρ′), r(u, ρ′) − r(u, ρ)〉 � 0 (3.8)

and consequently

ρ′‖r(u, ρ)‖2 + ρ‖r(u, ρ′)‖2 � (ρ + ρ′)〈 r(u, ρ), r(u, ρ′)〉 . (3.9)

From Cauchy-Schwarz inequality, we have

〈 r(u, ρ), r(u, ρ′)〉 � ‖r(u, ρ)‖ · ‖r(u, ρ′)‖.
Then

ρ′‖r(u, ρ)‖2 + ρ‖r(u, ρ′)‖2 � (ρ + ρ′)‖r(u, ρ)‖ · ‖r(u, ρ′)‖. (3.10)
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Dividing (3.10) by ‖r(u, ρ)‖2 we obtain

ρ′ + ρt2 � (ρ + ρ′)t

and thus (3.3) holds and the lemma is proved. �
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