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NEW UPPER BOUNDS ON THE PROBABILITY

OF EVENTS BASED ON GRAPH STRUCTURES
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Abstract. We present upper bounds for the probability of the union of events based on the
individual probabilities and joint probabilities of pairs. The bounds generalize Hunter’s upper
bound and can be interpreted as objective function values corresponding to feasible solutions of
the dual of the Boolean probability bounding LP.

1. Introduction

The problem to compute lower and upper bounds for the probability of the union
of events has been mentioned already in the works of Boole [2]-[4]. Important further
results to the topic was obtained by Bonferroni [1]. The topic has many applications in
probability theory, statistics, reliability theory, and stochastic programming. Therefore
intensive research efforts have been made in this field even recently [5]-[6], [8]-[21].

One of the important upper bounds is due to Hunter [10]. It is based on a special
graph structure called spanning tree. The aim of this paper is to find upper bounds using
different graphs.

Section 2 describes the linear programming problem to compute or approximate
the probability of events discovered by Boole. The new bounds are provided in Section
3.

2. The Boolean probability bounding LP

In this section we summarize some of the results that we make use in the present
paper. The Boolean probability bounding LP (see [9], [15], [16]) can be formulated in
the following way.

Let A1, ..., An be events. Let N = {1, ..., n} be the set of indices. For any subset
J ⊆ N its complement is denoted by J̄ . Let

∅ �= I ⊆ 2N

be an arbitrary set. Assume that the probabilities

pJ = P(∩i∈J Ai)
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are known for each element J of I . Let L ⊆ N be an arbitrary subset. Let xL be
the probability that exactly the events in L occur, i.e.

xL = P(∩i∈LAi ∩i∈L̄ Āi).

Then x∅ is the probability that none of the events A1, ..., An occurs. On the other hand

P(∪n
i=1Ai) =

∑
∅�=L⊆N

xL.

It is clear that the x values must satisfy the linear equations

∀ ∅ �= J ∈ I :
∑

∅�=J⊆L
xL = pJ (1)

and ∑
L⊆N

xL = 1. (2)

If I does not contain all of the subsets of N then the equations (1), and (2) do
not determine uniquely the values of x ’s. Thus only approximation can be given for
the value of P(∪n

i=1Ai) . Taking into account that the probabilities are nonnegative
quantities, P(∪n

i=1Ai) is a value in the interval of the optimal values of the following
two linear programming problems:

max
∑

∅�=L⊆N
xL

∀J ∈ I :
∑
J⊆L

xL = pJ

∀L ⊆ N : xL � 0,

(3)

and
min

∑
∅�=L⊆N

xL

∀J ∈ I :
∑
J⊆L

xL = pJ

∀L ⊆ N : xL � 0.

(4)

Regarding upper bounds the LP problem (3) is the important one. The optimal value of
problem (3) may be greater than 1 if ∅ �∈ I as the problem does not contain constraint
(2). In this case 1 is automatically taken as an upper bound.

In what follows it is assumed that I consists of all subsets of N having either 1
or 2 elements. For the sake of convenience the following notations are introduced. Let
1 � k, l � n, k �= l be two arbitrary indices. Then pi = P(Ai) and pkl denotes the
probability that both Ak , and Al occurs, i.e.

pkl = P(Ak ∩ Al).
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Then the appropriate form of (3) has

n +
(

n
2

)

linear constraints and 2n − 1 variables. The coefficient of a variable xL in a constraint
belonging to the probability pJ is 1 if J ⊆ L , otherwise it is 0. Let us denote the
variables of the dual of (3) by y = (y1, ..., yn, y12, ..., yn−1,n) . The vector y is feasible
in the dual problem if and only if

∀∅ �= L ⊆ N :
∑
i∈L

yi +
∑

1�i<j�n:{i,j}⊆L
yij � 1. (5)

Notice that the dual variables are not necessarily nonnegative. The objective function
of the dual is

min
n∑

i=1

piyi +
∑

1�i<j�n

pijyij (6)

The following notations are used throughout the paper:

S1 =
n∑

i=1

pi,

and
S2 =

∑
1�i<j�n

pij.

3. Upper bounds based on graph structures: general properties

It is well-known in the theory of linear programming that the objective function
value of any feasible solution of the dual problem (5)-(6) gives an upper bound to the
optimal value of problem (3). Thus the underlying logic to find an upper bound for the
probability of the union of events is to find a feasible solution of the dual problem is
and to calculate its objective function value. Any bound obtained in this way will be
called dual-type bound. In this section a large class of dual type bounds will be shown
to have the following properties: (i) for some problems the probability of the union of
events is equal to the upper bound, and (ii) the dual type bounds are always at least as
good as the aggregated bound of [13].

In this paper feasible solutions of (5)-(6) will be considered only in the form:

y = (1, 1, ..., 1,−w12, ...,−wn−1,n),

where the parameters w12, ..., wn−1,n may take positive, negative, and zero values To
each such feasible solution the objective function value (6) has the form

S1 −
∑

1�i<j�n

wijpij (7)

providing an upper bound to (3) and hence to P(∩i∈J Ai) .
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It is easy to see that the following statement holds:

LEMMA 1. A vector yT = (1, 1, ..., 1,−w12, ...,−wn−1,n) satisfies the inequalities
(5) if and only if for all L ⊆ N containing at least two elements the inequality

∑
i,j∈L, i<j

wij �| L | −1 (8)

is satisfied.

A graph G(N , E) can be defined by weights wij as E = {{i, j}|i < j, wij �= 0}.
Sometimes it will be advantageous to consider G as the union of two graphs, say
G1 = (N , E1) and G2 = (N , E2) when E1 = {{i, j} | i < j, wij > 0} , and E2 =
{{i, j} | i < j, wij < 0} .

The first bound which can be discussed in this framework is Hunter’s bound (see
Hunter [10]), which is the best bound of type (7) corresponding to spanning trees. Let
G1 = T(N , E1) be any tree, and G2 = (N , ∅) . Let

wij =
{

1 if {i, j} ∈ E1

0 otherwise.
(9)

As the cardinality of edges is always less than the cardinality of vertices in any forest
therefore the feasibility of the vector yT = (1, 1, ..., 1,−w12, ...,−wn−1,n) in (5) follows
immediately if the weights are chosen according to (9). Thus

P (∪n
i=1Ai) � S1 − max

T (N ,E):T is a tree

∑
{i,j}∈E1

pij. (10)

In Hunter’s bound all positive weights are equal to 1. We shall consider upper
bounds of type (7), in which similarly to Hunter’s bound, we have all positive weights
are equal to 1. The negative weights can be considered as compensation for the fact that
the number of positive edges is greater than n − 1 , i.e. the number of positive weights
in the Hunter bound.

3.1. Special cases when the bounds are equal to the exact value

THEOREM 1. Assume that the vector (1, ..., 1,−w12, ...,−wn−1,n)T ∈ R
n(n+1)

2 is
feasible in (5) . Assume further on that all positive weights are equal to 1. Then there
exists a problem instance such that the upper bound is equal to P(A1 ∪ ... ∪ An) .

Proof. The upper bound is

S1 −
n−1∑
i=1

n∑
j=i+1

wijpij.

Assume that each of the events A1, ..., An is the union of n mutually exclusive atomic
events, say Aj = ω1j ∪ ... ∪ ωnj for j = 1, ..., n . Assume that the probability of each
ωij is 1/n2 . Then the probability of Aj is 1/n . We choose the atomic events in such a
way that ωij �= ωkl if (i, j) �= (k, l), (l, k) . Hence it immediately follows that no three
events out of A1, ..., An can occur at the same time, i.e. the sieve formula of the exact
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probability of A1 ∪ ... ∪ An does not contain terms with higher degree than 2. Finally
let ωij = ωji if and only if wij = 1 . Now the following equation holds

P(A1 ∪ ... ∪ An) = 1 −
∑

i<j:wij=1 1

n2
= S1 −

n−1∑
i=1

n∑
j=i+1

wijpij,

i.e., the statement of the theorem is true. �

3.2. Average behavior

It is well-known that the formula

S1 −
2
n
S2 (11)

is an upper bound for the probability of the union of the events A1, ..., An , see e.g. [5],
[13], [21]. It is an aggregated bound as there is no individual probability in the formula.
In this subsection a general theorem is proved, which makes it easy to prove for a wide
class of dual type upper bounds, that they are at least as good as the corresponding
aggregated one, i.e. (11).

The underlying idea of the results of this subsection is as follows. The starting
point is a complete graph Kn . A subgraph G of Kn is fixed. More precisely, fixing here
concerns only the structure of G but the particular vertices and therefore the particular
edges of G can be changed. If the “goodness” of G for any particular vertex set is
measured by a real number, then the best vertex set must be at least as good as the
average behavior of G .

THEOREM 2. Let N 1 = {{i, j} | 1�i<j � n} , N 2 = {1, 2, ..., r} , where r =
(n

2

)
,

and assume that the function ρ : N 1 → N 2 defines a one-to-one correspondence
between the two sets. Let w1, ..., wr be any real numbers satisfying the equation

r∑
j=1

wj = n − 1.

Finally, let π be any permutation of the set {1, ..., n} . Then the following inequality
holds:

max
π:

n−1∑
i=1

n∑
j=i+1

wρ(i,j)p(π(i),π(j)) � 2
n
S2. (12)

Proof. The left-hand side of the inequality is the maximum of a few numbers. The
average of the same numbers is

1
n!

∑
π:

n−1∑
i=1

n∑
j=i+1

wρ(i,j)p(π(i),π(j)).
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The expression is symmetric implying that all p values must have the same coefficient
in the sum, that is ∑n−1

i=1

∑n
j=i+1 wρ(i,j)(n
2

) =
2
n
,

as there are n! permutations, the number of w ’s is
(n

2

)
, and their sum is n − 1 . Thus,

the above average is equal to the right-hand side of the inequality. Hence the statement
follows immediately. �

REMARK. The proof does not use any particular properties of the p ’s, hence the

statement holds for any vector p ∈ R
n(n−1)

2 , and S2 =
∑n−1

i=1

∑n
j=i+1 pij .

In the statement the w values represent a fixed structure and the permutation of the
p ’s ensures that the best sample is chosen that is isomorphic with the fixed structure.
For example, the statement that Hunter’s bound is at least as good as the aggregated
bound, follows from the theorem in two steps. First, the vector w is fixed in such a way
that it represents a certain tree structure. The best tree is selected that is isomorphic with
this structure. Then, we look at all the tree structures and then the best of bests gives
Hunter’s bound. Then, it follows from the theorem that the best of any tree structure is
at least as good as the aggregated bound.

Assume that the vector (1, 1, ..., 1,−w1, ...,−wT
r ) ∈ Rr+n represents a dual feasi-

ble solution to problem (3). Then the theorem is applicable and

S1 − max
π:

n−1∑
i=1

n∑
j=i+1

wρ(i,j)p(π(i),π(j)) � S1 −
2
n
S2.

It will be proven at the end of the next section that the left-hand side is an upper
bound for the probability in question.

4. Upper bounds based on graph structures: particular cases

In this section two rather general upper bounds are proven.
To understand the statement of theorem 3 a well-known notion of graph theory is

required.

DEFINITION 1. Let (V, E) be an undirected graph. The sequence G1, G2, ... , Gk

of subgraphs of G is an ear-decomposition of G if the following conditions hold:
(i) G1(V1, E1) is a circuit,
(ii) Gi(Vi, Ei) is obtained from Gi−1(Vi−1, Ei−1) by connecting two vertices of

Gi−1 , say ui and vi , by a path Pi = {{ui = w1, w2}, ..., {wli−1, wli = vi}} such that
w2, ..., wli−1 �∈ Vi−1 .

(iii) Gk = G .

It is well-known that a graph has an ear-decomposition if and only if it is 2-
connected [7].
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THEOREM 3. Let G(V, E) be a graph having an ear-decomposition G1, ..., Gk .
Let H = {{u1, v1}, ..., {uk, vk}} be a multi-set, where {u1, v1} is a chord of G1 and
{ui, vi} is the pair of vertices connected by Pi . Assume that H ∩ E = ∅ . Let

wuv =

⎧⎨
⎩

1 if {u, v} ∈ E

−# of appearances of {u, v} in H, if {u, v} ∈ H
0 otherwise.

Then the following inequality holds:

P(A1 ∪ ... ∪ An) � S1 −
∑

{u,v}:u<v

wuvpuv. (13)

THEOREM 4. Assume (a) that C1, ..., Ct is a set of circuits of graph G , (b) the
union of the edge sets of the circuits equals the set of edges of G , (c) each circuit
C1, ..., Ct has a length of at least 4 . Let H = {{u1, v1}, ..., {ut, vt}} be a multi-set of
chords of circuits such that {uj, vj} belongs to Cj (j = 1, ..., t) . Let

wuv =

⎧⎨
⎩

1 if {u, v} ∈ E

−# of appearances of {u, v} in H if {u, v} is a chord

0 otherwise.

Then we have the inequality:

P(A1 ∪ ... ∪ An) � S1 −
∑

{u,v}:u<v

wuvpuv. (14)

REMARKS: 1. It is clear that the right-hand sides of (13) , and (14) are equal to

S1 −
∑

{u,v}∈E,u<v

puv +
k∑

i=1

puivi

and

S1 −
∑

{u,v}∈E,u<v

puv +
t∑

i=1

puivi ,

respectively.
2. The theorems give the following two upper bounds:

P(A1 ∪ ... ∪ An) � S1 − max
G1,...,Gk is an

ear-decomposition

⎛
⎝ ∑

{p,q}∈E,p<q

ppq −
m∑

i=1

puivi

⎞
⎠ (15)

and

P(A1 ∪ ... ∪ An) � S1 − max
H is a multi-
set of chords

⎛
⎝ ∑

{p,q}∈E,p<q

ppq −
m∑

i=1

puivi

⎞
⎠ (16)
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Proof of theorems 3 and 4 . The proofs of the two theorems are based on the same
observations. First of all we remark that the n +

(n
2

)
-component vector

y = (1, 1, ..., 1,−w12, ...,−wn−1,n) (17)

is feasible in the dual problem, i.e. it satisfies (5), if and only if for all S ⊆ N containing
at least two elements the inequality

∑
i,j∈S, i<j

wij �| S | −1 (18)

holds. The following construction is a direct application of this fact. Let G1(N , E1)
and G2(N , E2) be two graphs on the vertex set N . Assume that to each {i, j} ,
i, j ∈ N , i �= j a real number wij is assigned and the following conditions are satisfied:

(i) E1 ∩ E2 = ∅ ,
(ii) if {i, j} ∈ E1 then wij = 1 ,
(iii) if {i, j} ∈ E2 then wij � 0 ,
(iv) if {i, j} �∈ E1 ∪ E2 then wij = 0 ,
(v) if S ⊆ N , | S |� 2 , then

∑
i,j∈S, i<j wij �| S | −1 .

Then

P(A1 ∪ ... ∪ An) � S1 −
∑

{i,j}∈E1

pij +
∑

{i,j}∈E2

(−wij)pij. (19)

The case of Theorem 3 . Assume that the graph G has the ear-decomposition
G1 , G2 ,...Gk as it is given in Definition 1. The weights of the edges are determined
iteratively. A new ear is added to the graph in each iteration. G1 is a circuit. Let all
of its edges have weight 1 and the weight of the chord (u1, v1) is -1. The weight of
all other edges is 0 at the end of the first iteration. Then condition (19) holds. Let us
assume that (19) is satisfied after iteration l . In iteration l + 1 a path called Pl+1 is
added to the graph. Pl+1 connects the two vertices of Gl , say ul+1 and vl+1 , and all
other vertices of Pl+1 are vertices not contained in Gl . In iteration l + 1 the weight of
the edges of Pl+1 are changed from 0 to 1, and the weight of (ul+1, vl+1) is decreased
by 1. Let the weight of the pair of vertices {i, j} be denoted at the end of iteration l by
wl

ij .

Let S be a set of vertices. Notice that only the following pairs of vertices {i, j}
may have a weight wl+1

ij different from zero in S :

− {ul+1, vl+1} if ul+1, vl+1 ∈ S ,
− the edges of Pl+1 having weight 1,
− any {i, j} ∈ S \ (Pl+1 \ {ul+1, vl+1}).
Let E(Pl+1) be the edge set of Pl+1 . Then the sum of weights of the pairs of S

can be determined after iteration l + 1 on the following way.
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First assume that ul+1, vl+1 ∈ S . Then∑
i,j∈S,i<j

wl+1
ij =

∑
i,j∈S\(Pl+1\{ul+1 ,vl+1}),

i<j

wl
ij − 1 +

∑
i,j∈S

(i,j)∈E(Pl+1),
i<j

1

� |S \ (Pl+1 \ {(ul+1, vl+1)})| − 1− 1+ |S ∩ (Pl+1 \ {(ul+1, vl+1)})|+ 1 = |S| − 1,

where after the first equation -1 stands for the decrease of the weight of the pair
(ul+1, vl+1) and the +1 after the inequality stands for the two possible edges of S∩Pl+1

connecting ul+1 and vl+1 , respectively, to the other part of Pl+1 . If at most one of
ul+1, vl+1 is in S , then∑

i,j∈S,i<j

wl+1
ij =

∑
i,j∈S\(Pl+1\{ul+1 ,vl+1}),

i<j

wl
ij +

∑
i,j∈S

(i,j)∈E(Pl+1),
i<j

1

� |S \ (Pl+1 \ {(ul+1, vl+1)})| − 1 + |S ∩ (Pl+1 \ {(ul+1, vl+1)})| = |S| − 1.

Hence (19) holds.
The case of Theorem 4 . Any subgraph of G1 induced by a set S ⊆ N contains

at most |S| − 1 + r edges, where r is the number of circuits, with vertices contained
completely in S . The necessary inequality given in the construction holds because
there are r edges of type {ui, vi} counted with multiplicity and having weight −1 . �

Theorem 4 is a generalization of the next two theorems as in the case of these the
length of the circuit G1 is 4 and the length of all Pi paths is 2 and all of them connect
two points in a fixed subset of vertices.

THEOREM 5. ([20]; lemma 6.2) Assume that n � 3 . Let k , and l be two indices
such that 1 � k < l � n . Let T ⊆ {1, ..., n} \ {k, l} be an arbitrary index set. Then

P(A1 ∪ ... ∪ An) � S1 −
∑
i∈T

(pik + pli) + (|T | − 1)pkl. (20)

This statement was later generalized ([22]; Proposition 2.1.7) in the followingway:

THEOREM 6. Let A , and B two disjoint subsets of N . Then

P(A1 ∪ ... ∪ An) � S1 −
∑
i∈A

∑
k∈B

pik + (|A| − 1)
∑

k,l∈B,k �=l

pkl. (21)

This theorem can be generalized further on by the following heuristic algorithm.
Let B be a subset of N such that |B| � 2 , and A = N \B �= ∅ . It is better to choose
set B such that

1(|B|
2

) ∑
i<j;i,j∈B

pij <
1(n
2

) ∑
1�i<j�n

pij.

In the initial step all weights are 0. Then for all triplets (i, j, k) such that i, j ∈ B
(i < j) , and k ∈ A if

pik + pjk > pij,
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then define
wij := wij − 1, wik = wjk = 1.

Finally denote
(i∗, j∗) = argmin {pij|i, j ∈ B; i < j },

and
wi∗ j∗ := wi∗j∗ + 1.

The next lemma is a tool to generate overall upper bounds from locally small ones.

LEMMA 2. Let G1(V1, E1) , and G2(V2, E2) be two undirected graphs having at
most one vertex in common. Assume that the vectors w1 , and w2 of type (17) satisfy
the appropriate condition (18) . Then the vector w = (w1, w2) satisfies (17) in the
graph G(V1 ∪ V2, E1 ∪ E2) , too.

Proof. Let us have S ⊆ V1 ∪ V2 , S1 = S ∩ V1 and S2 = S ∩ V2 . If |S1| � 1 or
|S2| � 1 then the inequality (18) for S coincides with one of the inequalities for S2 or
S1 , respectively. Otherwise the inequality for S can be obtained from the sum of the
inequalities of the two subsets. �

The Hunter bound can be improved by the following heuristic algorithm. The
algorithm works on the complete graph Kn(N , E) . Let pij be the weight of the edge
{i, j} of Kn .

Step 1 : Find a maximum weight spanning tree of Kn , denote it by T(N , ET) .
Step 2 : For any edge {i, j} ∈ E \ ET let Cij = {{uij

1, u
ij
2}, . . . , {u

ij
lij−1, u

ij
lij
},

{uij
lij
, uij

1}} be the unique simple circuit of the graph Tij(N , ET ∪{i, j}) , where lij is the
length of Cij . Then, let us denote

(i∗, j∗, s∗, t∗) = argmax {pij − pst : lij � 4, 1 � s < t � lij, t − s �≡ ±1 mod lij}. (22)

If pi∗j∗ − ps∗t∗ > 0 , then the resulting bound based on the graphs G = Ti∗j∗ and
G2(N , {s∗, t∗}) is an improvement on Hunter’s bound. The order of the algorithm is
O(n4) . In (22) the number of pairs {i, j} to be considered is O(n2) . The determination
of Cij is equivalent to finding the unique simple path leading from i to j in T , and this
can be done in O(n) steps as the sum of the degrees of the vertices in T is 2n − 2 .
Then, the selection of the best possible pair {s∗, t∗} takes O(n) operations.

A special case of this upper bound is obtained by restricting G1 to a Hamiltonian
circuit. Let H be the set of all Hamiltonian circuits. In this way the following upper
bound can be obtained:

P(A1 ∪ ... ∪ An) � S1 − max
H∈H

⎛
⎝ ∑

{i,j}∈H,i<j

pij − min
{s,t}�∈H

pst

⎞
⎠ . (23)

The second term of the right-hand side is equivalent to a traveling salesman problem
which is known to be NP-hard. But plenty of good and fast heuristics are available to
generate approximate solutions.
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COLLORARY 1. Assume that the vector (1, 1, ..., 1,−w1, ...,−wT
r ) ∈ Rr+n repre-

sents a dual feasible solution to problem (3) . Then

P(A1 ∪ ... ∪ An) � S1 − max
π:

n−1∑
i=1

n∑
j=i+1

wρ(i,j)p(π(i),π(j))

Proof. The vector (1, 1, ..., 1,−w1, ...,−wT
r ) is dual feasible if and only if (18) is

true for all subsets S ⊆ N . Any permutation π of the vertices defines a one-to-one
correspondence of the subsets of N such that any subset is mapped into a subset of the
same cardinality. Furthermore the edges of the subgraph induced by S are mapped into
the edges of the subgraph induced by π(S) . Hence (18) remains true.
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