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SMOOTHNESS CONDITIONS AND FOURIER SERIES

SERGEY TIKHONOV

(communicated by L. Leindler)

Abstract. We study the relationships between smoothness properties of a 2π -periodic function
and the asymptotic behavior of its Fourier coefficients. The smoothness conditions of a function
are expressed in terms of it being in the generalized Lipschitz classes.

1. Introduction

It is a well known fact that the local behavior of the sum of a Fourier series with
nonnegative coefficients determines the asymptotic behavior of the coefficients, and
vice versa. As a main reference, we would like to mention the remarkable book [5] by
R. P. Boas Jr., where one can find many results on the subject, which we will discuss
below.

As it was shown by R. P. Boas [5, p. 45] (see also [4]), the conditions on sine and
cosine coefficients for Lip α (0 < α < 1) from this point of view are the same:

If λn � 0 are the Fourier sine or cosine coefficients of ψ(x) , then

ψ ∈ Lipα if and only if
∞∑
k=n

λk = O
(
n−α)

or, equivalently,
n∑

k=1

kλk = O
(
n1−α) .

(1)

This result does not hold for α = 1 . Firstly,

ψ ∈ Z if and only if
∞∑
k=n

λk = O
(
n−1
)
, (2)

where Z is the Zygmund class, i.e.,
{
ψ ∈ C : ‖ψ(x + h) − 2ψ(x) + ψ(x − h)‖ =

O(h)
}

. On the other hand (see [5, p. 46-47]) the conditions of belonging to Lip 1 for
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sine series and for cosine series are different:

f ∈ Lip1 if and only if (1)
n∑

k=1

k2ak = O (n)

(2)
n∑

k=1

kak sin kx = O (1) uniformly in x.

(3)

g ∈ Lip1 if and only if
n∑

k=1

kbk = O (1) . (4)

Here and further, we assume that the series

∞∑
k=1

ak cos kx, ak � 0 (5)

and
∞∑
k=1

bk sin kx, bk � 0 (6)

converge uniformly to functions f (x) and g(x) , respectively and (5), (6) are Fourier
series of f (x) and g(x) .

The aim of this paper is to present Boas-type results for generalized Lipschitz
classes. The paper is organized in the followingway. Section 2 contains some definitions
and preliminaries. We start with the discussion of the well-known results and conclude
this section describing the problem, which we will consider. In section 3 we present our
main results. Section 4 contains lemmas that we will need and proofs of theorems. We
finish by Section 5 where we provide a few remarks.

2. Definitions, results, comments

2.1. Basic notations and definitions

Let ψ(x) be a continuous function and ‖ψ(·)‖ = max
x∈[0,2π]

|ψ(x)| . The key concept

in the paper will be the modulus of smoothness of fractional order introduced by Butzer,
Dyckhoff, Göerlich and Stens [6].

The modulus of smoothness of order β (β > 0) of function ψ ∈ C is given by

ωβ(ψ , t) = sup
|h|�t

∥∥∥�β
hψ(·)

∥∥∥ ,

where

�β
hψ(x) =

∞∑
ν=0

(−1)ν
(
β
ν

)
ψ(x + (β − ν)h),
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and
(β
ν
)

= β(β−1)···(β−ν+1)
ν! for ν � 1 , and

(β
ν
)

= 1 for ν = 0 . Let β > 0 and let
γ := {γn} be a positive sequence. By Lipβ γ we denote generalized Lipschitz classes,
i.e.,

Lipβ γ =
{

f ∈ C : ωβ

(
ψ ,

1
n

)
= O(γn)

}
.

By this definition, Lip α ≡ Lip1 γ with {γn = n−α} and Z ≡ Lip2 γ with
{
γn =

n−1
}
.
We will denote by En(ψ) the error of best trigonometric approximation of order

n of a function ψ .
Now we define several conditions on positive sequences and functions. A sequence

γ := {γn} of positive terms will be called almost increasing (almost decreasing), if
there exists a constant K := K(γ ) � 1 such that

Kγn � γm (γn � Kγm)

holds for any n � m . This concept was introduced by Bernstein1.
We will say that a sequence γ := {γn} of positive terms satisfies the condition

(SQ) , if there exists ε ∈ (0, 1) , such that {nεγn} is almost decreasing. And a sequence
γ := {γn} of positive terms satisfies the condition (SQβ) , if there exists ε ∈ (0, 1) ,
such that

{
nβ−εγn

}
is almost increasing.

Also, we will give the following definition by Chan [9]. Let Y[a, b] , a � b be the
collection of all positive functions γ (u) defined on [X,∞), X > 0 such that u−aγ (u)
is nondecreasing and u−bγ (u) is nonincreasing.

Finally, let Φσ(σ ∈ R) be the set of nonnegative, bounded functions γ (u) on
(0,∞) , such that
(a) γ (u) → 0 as u → 0 ,
(b) γ (u) is nondecreasing,
(c) γ (u) u−σ is nonincreasing.

2.2. Results and comments

After the Boas’s book [5] was published, there has been done a lot of work on
generalization of his results (1)-(4) to more general classes of functions than Lip α .
Different ways of generalization were considered by M. and S. Izumi ([10]), J. Nemeth
([13]), L.-Y. Chan ([9]), L. Leindler ([11]). It is natural to consider different conditions
on a majorant of modulus of continuity ω1(f , 1

n ) = O (γn) or modulus of smoothness
ω2(f , 1

n ) = O (γn) . Recently, we have obtained ([15]) the interrelation between several
well-known conditions (in particular, from [9]-[11] and [13]-[14])) on a majorant. Also,
we have proved theorem which generalizes all previous results for the case, when the
conditions on Fourier sine or cosine coefficients are the same (i.e., the analogue of
Boas’s results for Lip α (0 < α < 1) and Z).

THEOREM 2.1. ([15]) Let γ = {γn} be a positive sequence and β > 0 . Let
λn � 0 be the Fourier sine or cosine coefficients of ψ(x) .

1See reference to S.N. Bernstein in [2].
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(A) If γ ∈ SQ ∩ SQβ , then for any function ψ ∈ C conditions

∞∑
k=n

λk = O (γn) , (7)

n∑
k=1

kβλk = O
(
nβγn

)
, (8)

ωβ

(
ψ ,

1
n

)
= O(γn) (9)

are equivalent.
(B) Let γ be a non-increasing sequence. If for any function ψ ∈ C conditions

(7) , (8) and (9) are equivalent, then γ ∈ SQ ∩ SQβ .

Now we recall the following equivalence result on order of decay of the modulus
of smoothness.

THEOREM 2.2. ([16]) (A) If ψ(·) ∈ C and β > 0 , then there exists a function
γ (·) ∈ Φβ , such that

γ (t) � ωβ(ψ , t) � C(β)γ (t) (0 < t < ∞),

where C(β) is a positive constant depending only on β .
(B) If γ (·) ∈ Φβ , β > 0 , then there exist a function ψ(·) ∈ C and a constant

t1 > 0 , such that

C1(β)ωβ(ψ , t) � γ (t) � C2(β)ωβ (ψ , t) (0 < t < t1),

where C1(β), C2(β) are positive constants depending only on β .

It is clear, that the class
{
γ (·) ∈ Φβ

}
is wider then

{{γn = γ
(

1
n

)} ∈ SQ∩SQβ
}

.
We give as examples two following majorants

(i) γ =
{
γn = n−βξ(n)

}
/∈ SQβ and (ii) γ =

{
γn = (ξ(n))−1

}
/∈ SQ,

where ξ(·) is positive nondecreasing slowly varying function2.
So, Theorem 2.1 does not provide Boas-type criterion of belonging of function to

Lipβ γ for such cases as (i) and (ii) . These cases are of particular interest since the
conditions for cosine and sine series are different (see, for instance, (3), (4)).

In the case β = 1 , the Boas-type result for a majorant as in the case (i) was
obtained by Chan [9]. We recall his result.

2By definition, a positive measurable function ξ(·) on [A,∞) , A > 0 is slowly varying if for all

λ > 0 we have lim
t→∞

ξ (λ t)
ξ (t)

= 1 . Note (see [3, p. 54]), that, by our assumptions on function ξ(·) , it is

sufficient to have lim
t→∞

ξ (λ∗t)
ξ (t) = 1 only for a positive λ∗ 	= 1 . By Theorem 2.2, the natural restriction in

the case (ii) is lim
t→∞ ξ(t) = ∞ .
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THEOREM 2.3. (Cosine) Let γ (·) ∈ Y[c1, c2], 0 < c1 � c2 < ∞ . Then

ω1(f , δ) = O [γ (δ)] if and only if

(1)
n∑

k=1

k2ak = O

[
n2γ

(
1
n

)]

(2)
n∑

k=1

kak sin kx = O

[
nγ
(

1
n

)]
uniformly in x.

THEOREM 2.4. (Sine) Let γ (·) ∈ Y[c1, c2], 0 < c1 � c2 < ∞ . Then

ω1(g, δ) = O [γ (δ)] if and only if
n∑

k=1

kbk = O

[
nγ
(

1
n

)]
.

It is clear that γ (·) ∈ Y[c1, c2] implies
{
γ
(

1
n

)} ∈ SQ ∩ SQc2+ε ⊂ SQ for any
ε > 0 but the converse is not true.

The following result was obtained in [14].

THEOREM 2.5. (Cosine) Let γ = {γn} be the positive sequence and γ ∈ SQ1 .
Then

ω1

(
f ,

1
n

)
= O(γn) if and only if

∞∑
k=n

ak = O (γn) .

Naturally, for a majorant γ as in the case (ii) we have γ ∈ SQ1 .
Our main idea in this paper is to proveBoas-type criterion for generalized Lipschitz

classes Lipβ γ where a majorant γ satisfies either SQ or SQβ condition. So, if

γ ∈ SQ , then, as an example, we can consider the case (i) γ =
{
γn = n−βξ(n)

}
and

we will have the generalization of Theorems 2.3 and 2.4, and classical Boas’s results
(3), (4) for Lip 1 in particular. If γ ∈ SQβ , then, as an example, we can consider the

case (ii) γ =
{
γn = (ξ(n))−1

}
we will have Theorem 2.5 for β = 1.

Finally, if γ ∈ SQ ∩ SQβ then the results below coincide Theorem 2.1 and we
have Boas’s criterion (1) for Lip α (0 < α < 1 ) and (2) for Z in particular.

3. Main results

THEOREM 3.1. (Cosine) Let γ = {γn} be the positive sequence and β > 0 .
(A) If β 	= 2l−1 (l ∈ N) and γ ∈ SQ , then for any function f ∈ C with Fourier

series (5) conditions

ωβ

(
f ,

1
n

)
= O(γn) (10)

and
n∑

k=1

kβak = O
(
nβγn

)
(11)

are equivalent.
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(B) If β = 2l−1 (l ∈ N) and γ ∈ SQ , then for any function f ∈ C with Fourier
series (5) conditions

ωβ

(
f ,

1
n

)
= O(γn) (12)

and
n∑

k=1

kβ+1ak = O
(
nβ+1γn

)
, (13)

n∑
k=1

kβak sin kx = O
(
nβγn

)
uniformly in x (14)

are equivalent.
(C) If γ ∈ SQβ , then for any function f ∈ C with Fourier series (5) conditions

ωβ

(
f ,

1
n

)
= O(γn) (15)

and
∞∑
k=n

ak = O (γn) (16)

are equivalent.

Here every equivalence result (items (A) , (B) , (C) ) should be understood in the
following sense: if for any function f ∈ C with Fourier series (5) condition ωβ

(
f , 1

n

)
=

O(γn) holds, then suitable condition on coefficients {ak} are true. Conversely, if for
any {ak � 0}∞k=1 given condition holds, then the series (5) converges uniformly to the
continuous function f (x) and (5) is Fourier series of f (x) and ωβ

(
f , 1

n

)
= O(γn). We

will use the same assumptions in the Theorem 3.2 too.

THEOREM 3.2. (Sine) Let γ = {γn} be the positive sequence and β > 0 .
(A) If β 	= 2l (l ∈ N) and γ ∈ SQ , then for any function g ∈ C with Fourier

series (6) conditions

ωβ

(
g,

1
n

)
= O(γn) (17)

and
n∑

k=1

kβbk = O
(
nβγn

)
(18)

are equivalent.
(B) If β = 2l (l ∈ N) and γ ∈ SQ , then for any function g ∈ C with Fourier

series (6) conditions

ωβ

(
g,

1
n

)
= O(γn) (19)

and
n∑

k=1

kβ+1bk = O
(
nβ+1γn

)
, (20)
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n∑
k=1

kβbk sin kx = O
(
nβγn

)
uniformly in x (21)

are equivalent.
(C) If γ ∈ SQβ , then for any function g ∈ C with Fourier series (6) condition

∞∑
k=n

bk = O (γn) (22)

implies

ωβ

(
g,

1
n

)
= O(γn). (23)

4. Proofs

The following lemmas3 play the central role in the proofs of main theorems.

LEMMA 4.1. (Cosine) If f (x) ∈ C has a Fourier series (5), then

n−β
n∑

k=1

kβak � C(β)ωβ

(
f ,

1
n

)
, for β 	= 2l − 1, l = 1, 2, · · ·

Proof of Lemma 4.1 . First we prove that

n−β
∥∥∥V(β)

n (x)
∥∥∥ � C(β)ωβ

(
f ,

1
n

)
for all β > 0, (24)

where Vn(x) is the de la Vallée-Poussin sum, i.e., Vn(x) = 1
n

2n−1∑
ν=n

Sν(f ) and Sn(f ) =
n∑

ν=0
aν cos νx . Here, if Tn(x) is a trigonometrical polynomial Tn(x) =

n∑
ν=0

(
aν cosνx +

bν sin νx
)
≡

n∑
ν=0

tν(x), then T(β)
n (x) denotes the fractional derivative in the sense of

Weyl, i.e.,

T(β)
n (x) = cos

πβ
2

n∑
ν=1

νβ tν(x) − sin
πβ
2

n∑
ν=1

νβ t̃ν(x). (25)

To prove (24), one has from [6]

n−β
∥∥∥V(β)

n (x)
∥∥∥ � C(β)

∥∥∥�β
π/nVn(x)

∥∥∥ � C(β)ωβ

(
Vn,

1
n

)
. (26)

By the Jackson inequality and the following estimate ‖f (x) − Vn(x)‖ � CEn(f ), we
have

ωβ

(
Vn,

1
n

)
� C(β)

(
ωβ

(
f ,

1
n

)
+ ‖f (x) − Vn(x)‖

)
� C(β)ωβ

(
f ,

1
n

)
. (27)

3See more about results of this type in [13], [17] and references there.



236 SERGEY TIKHONOV

Hence (24) follows from (26) and (27).
Let β 	= 2l − 1, l ∈ N . Then, by (24) and (25), we have

ωβ

(
f ,

1
n

)
� C(β)n−β

∣∣∣V(β)
n (0)

∣∣∣
= C(β)n−β

∣∣∣∣cos
πβ
2

∣∣∣∣
(

n∑
k=1

kβak +
2n−1∑
k=n+1

(
2 − k

n

)
kβak

)

� C(β)n−β
n∑

k=1

kβak.

The proof of Lemma 4.1 is now complete.

LEMMA 4.2. (Sine) If g(x) ∈ C has a Fourier series (6) , then

n−β
n∑

k=1

kβbk � C(β)ωβ

(
g,

1
n

)
, for β 	= 2l, l = 1, 2, · · ·

The proof of Lemma 4.2 is analogous to the previous lemma (see (24) and (25)).
Also we will need two auxiliary results for sequences.
LEMMA 4.3. ([12]) Let γ = {γn} be a positive sequence such that the inequalities

α1 min(γ2k , γ2k+1) � γn � α2 max(γ2k , γ2k+1), 0 < α1 � α2 < ∞

hold for any 2k � n � 2k+1, k = 1, 2, · · · . Then the inequalities

n∑
k=1

γ2k � Cγ2n (n ∈ N, C � 1)

(
or

∞∑
k=n

γ2k � Cγ2n (n ∈ N, C � 1)

)

hold if and only if the sequence {nεγn} is almost increasing (decreasing) with a certain
negative (positive) number ε , respectively.

LEMMA 4.4. Let γ = {γn > 0} , μ = {μn � 0} and β > 0 .
(i) If γ ∈ SQβ , then

∞∑
k=n

μk = O (γn) (28)

implies
n∑

k=1

kβμk = O
(
γnnβ

)
. (29)

(ii) If γ ∈ SQ , then (29) implies (28) .
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Proof of Lemma 4.4 . (i) It is clear that condition (28) implies the condition
2n∑

k=n
kβμk = O

(
nβγn

)
. We choose s such that 2s−1 � n < 2s . By Lemma 4.3, we have

n∑
k=1

kβμk �
n∑

k=2s−1

kβμk +
s−1∑
k=0

2k+1−1∑
ξ=2k

ξβμξ

= O

(
2β(s−1)γ2s−1 +

s−1∑
k=0

2βkγ2k

)
= O

(
2β(s−1)γ2s−1

)
.

Since γ ∈ SQβ , {nβγn} is almost increasing and (29) is true. The proof of (ii) is
analogous.

Proof of Theorem 3.1 . We will use several times the following fact (see [6] or
Theorem 2.2)

ωβ (f , δ) � ωβ(f , sδ) � C(β)sβωβ(f , δ) (s � 1). (30)

(A) First, suppose that (10) holds. By Lemma 4.1, we have (10) implies (11). On

the other hand, by Lemma 4.4 (ii) , (11) gives the inequality
∞∑
k=n

ak = O (γn) . Thus,

series (5) converges uniformly to the function f (x) , f (x) =
∞∑
k=1

ak cos kx.

Note that

�β
h f
(
x − βh

2

)
∼

∞∑
k=1

an

(
2 sin

kh
2

)β

cos
(
kx +

πβ
2

)
. (31)

For given h one can choose n : 1
n+1 < h � 1

n . Then∣∣∣∣�β
h f
(
x − βh

2

)∣∣∣∣ �
∞∑
k=1

∣∣∣∣2 sin
kh
2

∣∣∣∣β ak

= O

(
hβ

n∑
k=1

kβak +
∞∑

k=n+1

ak

)
= O (γn) .

(32)

Therefore, we have
∣∣∣�β

h f
(
x − βh

2

)∣∣∣ = O (γn) with 0 < h � 1
n , and so ωβ(f , 1

n ) =
O(γn).

(B) Let β = 2l − 1 . We will follow the proving line of [9]. First, we note that
for |kβh| � 1 we have 1 − cos kβh = O

(
k2h2

)
and sin kh = kh + O

(
k3h3

)
.
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Also, sin (kx + kβh) = sin kx − (1 − cos kβh) sin kx + sin kβh cos kx. Let [α] =
max {α∗ ∈ Z : α∗ � α} . We define s :=

[
(βh)−1

]
. Therefore, from (31) we have4

�β
2hf (x) = (−1)l2β

(
s∑

k=1

+
∞∑

k=s+1

)
(sin kh)β ak sin (kx + kβh)

= (−1)l2β
s∑

k=1

ak (kh)β sin kx+O

(
s∑

k=1

ak (kh)β+1

)
+O

( ∞∑
k=s+1

ak

)
=: I1 + I2 + I3.

(33)

Let (12) be true. Using (30) and the following property of the modulus of smoothness
(see [6]) ωα+β(f , δ) � C(α)ωβ (f , δ) for α � 0 we can write

ωβ (f , 2h) = O(γs) and ωβ+1 (f , h) = O(γs). (34)

Since β+1 is even, then, fromLemma4.1, (34) implies I2 = O
(
ωβ+1 (f , h)

)
= O(γs) .

Then Lemma 4.4 implies I3 = O(γs) . Hence, one has (14) from (33).
Conversely, if (13) and (14) hold, then, by Lemma 4.4, I2 = O(γs) implies

I3 = O(γs) and f (x) =
∞∑
k=1

ak cos kx. Further, (13) and (14) give ωβ (f , 2h) = O(γs).

Finally, we have (12) from (30).

(C) Let (15) be satisfied. Then, using the inequality (see [1])
∞∑

k=2n
ak � 4En(f ) ,

and the Jackson inequality (see [6]) En(f ) � C(β)ωβ (f , π
n ) , and (30), we get

∞∑
k=n

ak � 4E[ n
2 ](f )

� C(β)ωβ

(
f ,

1
n

)
= O (γn) .

(35)

Let (16) be true. Then, by Lemma 4.4 (i) , we have
n∑

k=1
kβak = O

(
nβγn

)
and, using

(32), we have (15). This completes the proof of Theorem 3.1.

Proof of Theorem 3.2 . (A) Let (17) be true. By Lemma 4.2, (17) implies (18).

Conversely, if we have (18), then by Lemma 4.4 (ii) we can write
∞∑
k=n

bk = O (γn) .
Further, we will use

�β
h g
(
x − βh

2

)
∼

∞∑
k=1

bk

(
2 sin

kh
2

)β

sin

(
kx +

πβ
2

)
. (36)

4For s = 0 we put
s∑

k=1
:= 0
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Then, for 1
n+1 < h � 1

n we get∣∣∣∣�β
h g
(
x − βh

2

)∣∣∣∣ = O

(
hβ

n∑
k=1

kβbk +
∞∑

k=n+1

bk

)
= O (γn)

(37)

and ωβ
(
g, 1

n

)
= O (γn) holds.

(B) Let β = 2l (l ∈ N) , s :=
[
(βh)−1

]
. Similar to the proof of the part (B) of

Theorem 3.1, we will have

�β
2hg(x) = (−1)l2β

(
s∑

k=1

+
∞∑

k=s+1

)
(sin kh)β bk sin (kx + kβh)

= (−1)l2β
s∑

k=1

bk (kh)β sin kx + O

(
s∑

k=1

bk (kh)β+1

)
+ O

( ∞∑
k=s+1

bk

)
=: J1 + J2 + J3.

Using the properties of modulus of smoothness, Lemmas 4.2 and 4.4, we have that (19)
implies J2, J3 = O (γn) and therefore, (20) and (21) hold. On the other hand, (20) and
(21) imply (19).

(C) From (22), by Lemma 4.4 (i) , we have
n∑

k=1
kβbk = O

(
nβγn

)
and from (37)

we get (23). This completes the proof of Theorem 3.2.

5. Concluding remarks

1. We note (see also [8]) that Theorem 3.1 (A) for β = 2j and γn = n−β and
Theorem 3.2 (A) for β = 2j − 1 and γn = n−β answer to the following question
by Boas [5, p. 25, Question 4.25]: What conditions are necessary and sufficient for∑

n2jan or
∑

n2j−1bn to converge?
2. We mention that for β = 1 Theorem 2.5 coincides with Theorem 3.1 (C) and

[11, Theorem 3.5]) with Theorem 3.2 (A) . Also, we note, that for β = 1 and β = 2
some particular cases of Theorem 3.1 and Theorem 3.2 were considered in [13], [14].

3. If only γ ∈ SQβ , then we can not have the equivalence between (22) and (23)
in the part (C) of Theorem 3.2 for all g ∈ C . Indeed, for any β > 0 there exist a
majorant γ with γ ∈ SQβ and a function g such that (23) holds but (22) does not
hold.

As an example, we consider γn = ln−1−ε 2n and the following continuous function

g(x) =
∞∑
k=1

bk sin kx, where bk =
1
k

1

ln1+ε 2k
and ε > 0.

It is clear, that for any β > 0 we have γ ∈ SQβ and (22) is not true. To prove
(23) for β = 1 we can use the ideas of the proof of [18, Lemma 4]. Then, using
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ωα+1(g, δ)p � C(α)ω1(g, δ)p (α > 0) , we have (23) for β > 1 . For 0 < β < 1 the
Marshaud inequality (see [6]) implies

ωβ

(
g,

1
n

)
� Cn−β

n∑
ν=1

νβ−1ω1

(
g,

1
n

)
� Cn−β

n∑
ν=1

νβ−1 ln−1−ε 2ν

� C ln−1−ε 2n.

So, (23) holds for all β > 0 .
4. One can assume that the condition

n∑
k=1

kβbk = O
(
nβγn

)
(38)

is necessary and sufficient for condition (23) to hold in the case γ ∈ SQβ . The functions

g(x) =
∞∑
k=1

1
4k2

sin 34k2

x and γn = log−1
3 2n

give the negative answer to this conjecture for any β > 0 . In fact, we have γ ∈ SQβ ,
condition (38) holds, but condition (23) is not true. It follows from the Jackson
inequality and the estimate of En(g) for lacunary series

ωβ

(
g,

1
n

)
� CEn(g)

� C
∑

k: 34k2
>n

1
4k2

� C log
− 1

2
3 2n.

5. We note that if γ ∈ SQβ and, additionally, γ ∈ SQ , then (22) and (23) (and
(38)) are equivalent (see Theorem 2.1).

6. One can write different equivalent conditions for conditions γ ∈ SQ or γ ∈
SQβ . Several of them were written in [2], [15]. We mention two more conditions.

First, we recall the following definition by Matuszewska (see [3, p. 68]). Let
f (·) be positive defined on [X,∞), X > 0 . Its upper Matuszewska index α(f ) is the
infimum of those α for which there exists a constant C = C(α) such that for each
Λ > 1 ,

f (λx)
f (x)

� Cλα {1 + o(1)} (x → ∞) uniformly in λ ∈ [1,Λ];

its lower Matuszewska index β(f ) is the supremum of those β for which, for some
D = D(β) > 0 and for all Λ > 1 ,

f (λx)
f (x)

� Dλβ {1 + o(1)} (x → ∞) uniformly in λ ∈ [1,Λ].
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LEMMA 5.1. Let γ = {γn} be a positive sequence and β > 0 . If we define a
function γ (t), t ∈ [1,∞) as γ (n) := γn , n ∈ N and monotonic for n � t � n + 1 ,
then
(i) {γn} satisfies (SQβ) -condition if and only if β(γ ) > −β ,
(ii) {γn} satisfies (SQ) -condition if and only if α(γ ) < 0 .

The proof of Lemma 5.1 follows from [3, Theorem 2.2.2, p. 72].
Also, we write the following condition from [18, p. 152]. Let ϕ be a gauge

function, i.e., continuous and nondecreasing function on [0, 1] . Let ϕ0 be the infimum
of those α , for which

n∑
k=0

2kαϕ
(

1
2k

)
� Cα2nαϕ

(
1
2n

)
is true with a constant Cα . If γn = ϕ

(
1
n

)
, then γ ∈ SQβ iff β > ϕ0 .

7. The elementary corollary of the Jackson inequality is as follows:

Lipβ γ ⊂ Lipβ1
γ ⊂ E(γ ) := {f ∈ C : En(f ) = O(γn)} , β1 > β .

Note, if γ ∈ SQβ , then the inverse theorem of trigonometric approximation implies
that Lipβ γ is independent of β for all β1 > β , i.e.,

Lipβ γ = Lipβ1
γ = E(γ ), β1 > β .

Finally, we recall the equivalence between modulus of smoothness and fractional K-
functional (see [6], [7]):

C1(β)ωβ (f , t)p � K(f , tβ , Lp, W
β
p ) � C2(β)ωβ (f , t)p,

where K -functional is given by K(f , t, Lp, W
β
p ) := inf

g∈W
β
p

(
‖f − g‖p + t

∥∥Dβg
∥∥

p

)
.
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