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Abstract. We introduce three different proofs of Priceòs inequality and some new trigonometric
and hyperbolic inequalities.

1. Introduction

Although the main objective of Price [2] was not to produce new inequalities, it
took him a great deal of efforts to produce his inequality (1) (See below) . We were
interested in finding a simpler proof of (1) and we were surprised that we found three
different proofs, all of which are simpler and shorter than that of Price. The last proof
is strikingly simple. We will introduce all of the three proofs in the order they were
discovered. We believe the three proofs are interesting and they involve interesting
techniques that may be useful to authors in the future.

Let a �= b � 0 , θ be real numbers, and n � 1 an integer throughout this article.
Equation (1) gives Price’s inequality [2]:

a2n + b2n − 2anbn cos (nθ)
a2 + b2 − 2ab cosθ

�
(

an − bn

a − b

)2

. (1)

Since −1 � cos θ, cos nθ � 1 , it is easy to see that(
an − bn

a + b

)2

� a2n + b2n − 2anbn cos (nθ)
a2 + b2 − 2ab cosθ

�
(

an + bn

a − b

)2

.

So the inequality (1) is nontrivial. It is also interesting to note that if we replace cosine
by sine in (1), the inequality does not hold. For example, let a = 2 ,b = 1 ,n = 2 ,
θ = π/2 . Then we have

a2n + b2n − 2anbn sin (nθ)
a2 + b2 − 2ab sinθ

= 17 > 9 =
(

an − bn

a − b

)2

.

The first proof to (1) is by applying elementary inequalities. Some of these inequalities
are probably not new, but we will include some new proofs of these inequalities. The
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Key words and phrases: Priceòs inequality, trigonometric, hyperbolic, inequalities.

c© � � , Zagreb
Paper MIA-10-20

243



244 HIDEFUMI KATSUURA AND SAMIH OBAID

inequality (3) below was used to prove the Bieberbach conjecture when an is real
in 1931 (see Hille [1], page 355). The second proof is given by using a complex
hyperbolic functions. As a consequence we will introduce new inequalities involving
elementary trigonometric and hyperbolic functions. We are pleasantly surprised that
these inequalities are new.

2. The first proof of Price’s inequality

We start this section by establishing the inequality:

sin (nθ) · sin θ � 2n (1 − cos θ) . (2)

Note that (2) is trivially true if cosθ < 0 . We will use induction. Suppose n = 1 .
Then

RHS – LHS = 2(1−cosθ)− sin2 θ = 2(1−cosθ)− (1−cos2 θ) = (1−cosθ)2 � 0.

Hence, (2) holds when n = 1 . Suppose n is a positive integer such that (2) is
valid. Then

sin [(n + 1) θ] · sin θ = [sin (nθ) · sin θ] cosθ + cos (nθ) · sin2 θ
� 2n (1 − cos θ) cos θ + cos (nθ)

(
1 − cos2 θ

)
,

by the inductive hypothesis

= (1 − cos θ) [2n cosθ + cos (nθ) · (1 + cosθ)]
� (1 − cos θ) (2n + 2) , since cos θ � 1

= 2 (n + 1) (1 − cos θ) .

This establishes (2).
Next, we use (2) to prove the following:

1 − cos (nθ) � n2 (1 − cos θ) . (3)

We will use induction again. The inequality is trivial when n = 1 .
Suppose n is a positive integer such that (3) is valid. Then

1 − cos [(n + 1) θ] = 1 − cos (nθ) cosθ + sin (nθ) sin θ
� 1 − cos (nθ) cosθ + 2n (1 − cosθ) , by (2)
= (1 − cos (nθ)) cos θ + (1 − cos θ) + 2n (1 − cosθ)

� n2 (1 − cos θ) cosθ + (2n + 1) (1 − cos θ) ,

by the inductive hypothesis

= (1 − cosθ)
(
n2 cosθ + 2n + 1

)
� (n + 1)2 (1 − cosθ) , since cosθ � 1.

This completes the proof of (3).
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The next elementary inequality is an application of the arithmetic-geometric mean
inequality. Let x = a

b . Then

n∑
k=0

akbn−k = bn
n∑

k=0

xk � bn (n + 1)
(
x0x1 · · · xn

) 1
n+1

= (n + 1) bn
(
x

n(n+1)
2

) 1
n+1

= (n + 1) a
n
2 b

n
2 .

So we have
n∑

k=0

akbn−k � (n + 1) an/2bn/2. (4)

Now, we are ready to prove (1). If θ = 2kπ for some integer k , then (1) is trivial.
So we assume that θ �= 2kπ for any integer k . Let us denote 1−cos(nθ)

1−cos θ = f . By (3),
we have f � n2 . Also we notice that

(an − bn)2 (a2 + b2 − 2ab cosθ
)− (a − b)2 (a2n + b2n − 2anbn cos (nθ)

)
= (an − bn)2(a2 + b2 − 2ab cosθ)

− (an − bn)2(a2 + b2 − 2ab) − 2anbn(a − b)2(1 − cos(nθ))

= 2ab (1 − cosθ)
[
(an − bn)2 − f an−1bn−1 (a − b)2

]
� 2ab (1 − cosθ)

[
(an − bn)2 − n2an−1bn−1 (a − b)2

]
, by (3)

= 2ab (1 − cosθ) (a − b)2

⎡
⎣(n−1∑

k=0

akb(n−1)−k

)2

− n2an−1bn−1

⎤
⎦

� 2ab (1 − cosθ) (a − b)2
[(

na
n−1

2 b
n−1

2

)2
− n2an−1bn−1

]
, by (4)

= 0.

This proves the Price’s Inequality.

3. The second proof of Price’s inequality

Our approach to the second proof is to use complex numbers. This can be achieved
as a consequence of Theorem 1 below. This theorem enables us to prove (1) as well as
to give us other new inequalities. First, note that if |z| �= 1 is a complex number, then

∣∣∣∣ zn − 1
z − 1

∣∣∣∣ =
∣∣∣∣∣
n−1∑
k=0

zk

∣∣∣∣∣ �
n−1∑
k=0

|z|k =
|z|n − 1
|z| − 1

.

So ∣∣∣∣zn − 1
z − 1

∣∣∣∣ � |z|n − 1
|z| − 1

. (5)
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THEOREM 1. Let z = x + iy be a complex number with x �= 0 . If n is a positive
integer, then we have ∣∣∣∣ sinh (nz)

sinh z

∣∣∣∣ � sinh (nx)
sinh x

. (6)

Proof.

LHS =
∣∣∣∣enz − e−nz

ez − e−z

∣∣∣∣ =
∣∣∣∣∣e

−nz
(
e2nz − 1

)
e−z (e2z − 1)

∣∣∣∣∣ =
e−nx

e−x

∣∣∣∣e2nz − 1
e2z − 1

∣∣∣∣ .
Let Z = e2z . Then by (5), we have

LHS = e−(n−1)x
∣∣∣∣Zn − 1
Z − 1

∣∣∣∣ � e−(n−1)x |Z|n − 1
|Z| − 1

� e−(n−1)x
(

e2nx − 1
e2x − 1

)
=

sinh (nx)
sinh x

.

In order to simplify the second proof of Price’s Inequality and the subsequent
material, we list some properties of hyperbolic functions. Again, let z = x + iy . Then

|sinh z|2 = (sinh z) (sinh z)

=
1
4

[(
ez+z + e−(z+z)

)
−
(
ez−z + e−(z−z)

)]
=

1
4

[(
e2x + e−2x

)− (ei2y + e−i2y
)]

=
1
2

[cosh (2x) − cosh (2iy)]

=
1
2

[cosh (2x) − cos (2y)] .

(a )

Similarly, we have

|cosh z|2 =
1
2

[cosh (2x) + cos (2y)] . (b )

Now, we are ready to give a new proof to the Price Inequality. Let LHS be the left
hand side of the inequality (1) in the statement of the Price Inequality. Let c = a

b and
z = ln c+iθ

2 . Then by (a) , we have

|sinh nz|2 =
cosh (n ln c) − cos (nθ)

2

=
cn + c−n − 2 cos (nθ)

4

=
1
4

(ab)−n (a2n + b2n − 2anbn cos (nθ)
)
.

( c )

So we have

LHS = (ab)n−1
∣∣∣∣ sinh (nz)

sinh z

∣∣∣∣
2

.
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Using Theorem 1 and (c) and by noting that cos 0 = 1 , we have

LHS � (ab)n−1

[
sinh

(
n ln c

2

)
sinh

(
ln c
2

)
]2

= (ab)n−1 (ab)−n (a2n + b2n − 2anbn
)

(ab)−1 (a2 + b2 − 2ab)
=
(

an − bn

a − b

)2

.

Next we introduce a short proof of (1).

4. The third proof of Price’s inequality

It is not difficult to see that (1) in fact is a simple application of (5). If we square
both sides of (5) and replace z by (b/a) eiθ in the resulting inequality we obtain the
desired Price’s inequality (1). Notice that

|zn − 1|2 = |zn|2 + 1 − 2Re(zn)

= |(b/a)neinθ |2 + 1 − 2(b/a)n cos(nθ)

= (b2n/a2n) + 1 − 2(b/a)n cos(nθ),

which implies Price’s inequality.

5. Similar inequalities

As applications of Theorem 1, we point out the following two consequences:
Let z = x + iy be a complex number. Then∣∣∣∣sin (inz)

sin (iz)

∣∣∣∣ � sin (inx)
sin (ix)

if x �= 0, and

∣∣∣∣ sin (nz)
sin (z)

∣∣∣∣ � sin (ny)
sin (y)

if y �= 0. (7)

In order to see this, we note that sinh z = −i sin (iz) . Then we obtain the first
inequality from Theorem 1. The second is obtained from the first by replacing z by iz .

An alternate way to express Theorem 1 using (a) is the following:
Let x �= 0 and y be real numbers. Then

cosh (2nx) − cos (2ny)
cosh (2x) − cos (2y)

�
(

sinh (nx)
sinh x

)2

. (8)

The equality holds when y = kπ for any integer k.
As a result of discovering Theorem 1, we obtain several interesting inequalities not

only similar to Theorem 1 but also similar to Price’s Inequality.

THEOREM 2. Let z = x + iy be a complex number with x �= kπ for any integer k .
If n is a positive integer, then ∣∣∣∣ tanh (nz)

tanh z

∣∣∣∣ � |coth x| . (9)
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Proof. First, note that∣∣∣∣ cosh z
cosh (nz)

∣∣∣∣ =
∣∣∣∣ e−z

e−nz

∣∣∣∣
∣∣∣∣ e2z + 1
e2nz + 1

∣∣∣∣ � e−x

e−nx

(
e2x + 1
|e2nx − 1|

)
=

cosh x
|sinh (nx)| .

So by Theorem 1 and above,

LHS =
∣∣∣∣ sinh (nz)

sinh z

∣∣∣∣
∣∣∣∣ cosh z
cosh (nz)

∣∣∣∣ �
(

sinh (nx)
sinh x

)(
cosh x

|sinh (nx)|
)

= |coth x| .

Let z = x + iy be a complex number. Then, as in inequality (7), we have∣∣∣∣ tan (inz)
tan (iz)

∣∣∣∣ � |coth x| when x �= 0, and

∣∣∣∣ tan (nz)
tan z

∣∣∣∣ � |coth y| when y �= 0. (10)

In order to obtain an inequality similar to Price’s Inequality,we let θ and a �= b > 0
be real numbers. Let c = a

b and z = ln c+iθ
2 . Then as in (c) , we have

|cosh nz|2 =
cosh (n ln c) + cos (nθ)

2
by (b)

=
cn + c−n + 2 cos (nθ)

4

=
1
4

(ab)−n (a2n + b2n + 2anbn cos (nθ)
)
.

(d )

so by (c) and (d) , we have

|tanh (nz)|2 =
a2n + b2n − 2anbn cos (nθ)
a2n + b2n + 2anbn cos (nθ)

.

Note that coth2((ln c)/2) =
(

c+1
c−1

)2
=
(

a+b
a−b

)2
. Using inequality in Theorem 2, we

have
a2n + b2n − 2anbn cos (nθ)
a2n + b2n + 2anbn cos (nθ)

�
(

a + b
a − b

)2 [a2 + b2 − 2ab cosθ
a2 + b2 + 2ab cosθ

]
. (11)

If z=x+iy,it is known that |sinh x| � |cosh z| � cosh x and |sinh x| � |sinh z| �
cosh x . However, if z = x + iy with x �= 0 , then

tanh x � |coth z| � coth x. (12)

In order to see this, we note that

|coth z| =
∣∣∣∣ez + e−z

ez − e−z

∣∣∣∣ =
∣∣∣∣e2z + 1
e2z − 1

∣∣∣∣ �
∣∣e2z
∣∣− 1

|e2z| + 1
=

ex − e−x

ex + e−x
= tanh x,

and

|coth z| =
∣∣∣∣ez + e−z

ez − e−z

∣∣∣∣ =
∣∣∣∣e2z + 1
e2z − 1

∣∣∣∣ �
∣∣e2z
∣∣+ 1

|e2z| − 1
=

ex + e−x

ex − e−x
= coth x.

As an application of these inequalities, we have

tanh nx
coth x

�
∣∣∣∣coth nz

coth z

∣∣∣∣ � coth nx
tanh x

, (13)
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| sinh nx|
cosh x

� | cosh nz|
| cosh z| � cosh nx

| sinh x| , (14)

and
|sinh nx|
cosh x

�
∣∣∣∣cosh nz

cosh z

∣∣∣∣ � cosh nx
|sinh x| , (15)

and
|sinh nx|
cosh x

�
∣∣∣∣ sinh nz

sinh z

∣∣∣∣ � cosh nx
|sinh x| . (16)

As before, if we let c = a
b and z = ln c+iθ

2 , we have

|coth (nz)|2 =
a2n + b2n + 2anbn cos (nθ)
a2n + b2n − 2anbn cos (nθ)

,

[tanh((n ln c)/2)]2 = (
an − bn

an + bn
)2 [coth ((n ln c) /2)]2 =

(
an + bn

an − bn

)2

.

So (12) yields only the following trivial inequality:(
a − b
a + b

)2

� a2 + b2 + 2ab cosθ
a2 + b2 − 2ab cosθ

�
(

a + b
a − b

)2

.

However, if we combine
(

an+bn

an−bn

)2
�
(

a+b
a−b

)2
and (13), we have that

(
a − b
a + b

)4 a2 + b2 + 2ab cosθ
a2 + b2 − 2ab cosθ

� a2n + b2n + 2anbn cos (nθ)
a2n + b2n − 2anbn cos (nθ)

�
(

a + b
a − b

)4 a2 + b2 + 2ab cosθ
a2 + b2 − 2ab cosθ

So by applying (16), we have the following non-trivial inequality:(
a − b
a + b

)6

� a2n + b2n + 2anbn cos (nθ)
a2n + b2n − 2anbn cos (nθ)

�
(

a + b
a − b

)6

(17)

for any positive integer n .
Unfortunately, (14) and (15) yield uninteresting inequalities as follow:(

an − bn

a + b

)2

� a2n + b2n + 2anbn cos (nθ)
a2n + b2n + 2ab cos (nθ)

�
(

an + bn

a − b

)2

,

and (
an − bn

a + b

)2

� a2n + b2n − 2anbn cos (nθ)
a2n + b2n − 2ab cos (nθ)

�
(

an + bn

a − b

)2

,

respectively.
If we replace the trigonometric function cosine by sine in the Price’s Inequality

(1), the inequality does not hold as we mentioned at the beginning. But the following
corollary is a direct consequence of (1).
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COROLLARY 1. Let θ and a �= b > 0 be real numbers. If n is a positive integer
of the form n = 4m + 1 for some integer m , then we have

a2n + b2n − 2anbn sin (nθ)
a2 + b2 − 2ab sinθ

�
(

an − bn

a − b

)2

. (18)
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