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WEIGHTED INTEGRAL INEQUALITIES OF POINCARE TYPE

GEJUN BAO AND Y1 LING

(communicated by H. M. Srivastava)

Abstract. In this paper, we give some weighted integral inequalities which generalize the well-
known Poincaré inequality. Our results can be used to generate other integral inequalities.

1. Introduction

The multidimensional integral inequality in [1, 4]

Ao/uzdxg/wufdx, (1.1)
Q Q

where Q is a bounded region in R? or R*, u € C'(Q), u =0 on 9Q and A is the
smallest eigenvalue of the problem

{ Au+Au=0, inQ, (1.2)

u=0, on 0Q,

is known as the Poincaré’s inequality. Many generalized results have recently been
found, such as the following theorem in [5].

THEOREM 1.1.  For any fo € C4(Q) and any real numbers py > 2 satisfying:
S, L =1. Then

& pa
Pa
/QHlfadxéisza(%) /Q\Vfa\p“dx. (1.3)

It is the purpose of this paper to obtain some weighted inequalities of (1.1).
Throughout this paper we always assume that Q = [[_,[a;, b;] C R" is a field
rectangular region, m > 2 and n > 2 is any fixed integers and C}(Q) is the collection
of all real-valued continuously differentiable functions on Q which vanish on the
boundary 0Q of Q. The n — dimensional Lebesgue measure of a set E C R” is

denoted by |E|. We call w a weightif w € L}, (R") and w > Oa.e..

loc
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2. Main results

DEFINITION 2.1. We say that the weight w(x) > 0 satisfies the A* — condition in
Q,r>1and 0 < A < oo, orthat w is an Af — weight in Q, write w eAf(Q),if

L A(r=1)
(i) (s E)7w) < e

for any ball or any cube B C R”".
The following generalized Holder’s inequality will be used repeatedly.

LEMMA 2.1. Let 0 < o< oo, 0<fB <ooand s ' =a '+ B~ iff and g
are measurable functions on R", then

IF gllse < Ifllaallgllse (2.2)

forany Q C R".

We also need the following lemmas:

LEMMA 2.2. [6] If w € A}, r > 1, then there exist constants y > 1 and C
independent of w, such that

wllv.o < ClOI" =7 Il o (2.3)
for any ball or any cube Q C R".

LEMMA 2.3. [4] Let r; > 0 and s > 0, then

(Z r,-) < C(s,n) Z T, (2.4)

where

Tl ifs > 1,
C(S’”)_{l, if0<s<l.

LEMMA 2.4. [5] Let fo € C)(Q) and qo be any real positive numbers with
q:=>.qa =2, then
o

/Ql;[Vaq“ < % (%)qza:%a/gvfalq. (2.5)

LEMMA 2.5. [7] Let qo > 0 and cq > 0, then
1
H clo L = anc‘é, (2.6)
o q o

where q =) qg.
B
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THEOREM 2.6. Let fa €CYHRQ) a=1,...,m. There exists a constant y > 1,
such that if w € Al ﬂA;‘k for some r > 1 and k with 1~ L> k> 1L then

n’

(é/gl;[lfahl/dx) < C (o) =1 (M) (Q|/Vfa|m" )1,/"<2.7>

where C is a constant independent of fo and M = max{b; — a;,i =1,...,n}.

Proof. Since w € Al for some r > 1, by using lemma 2.2, there exist constants
Yy > 1 and C; > 0, such that

wllye < CiQI" 7 Wl g (2.8)

Let s > 1,and r = 5. Then 1 <s <t and { + =% = 1. By using lemma 2.1 and

lemma 2.4, we have
' =
L it
/Hva\wdxg (/Hya|xdx> (/ Wi dx>
Qy, Q’, Q
%
=y L
<G w|hia (/Hlfa|€dx>
Q o

N
3

[ s (2.9)
iy 1 /M\5 1 w o\
<G| T —| = — = dx
c9l'7 e ((2) > 195 )
1\ (M
= alel <mn> (2> |w|19<2/|Vfat )
Since ? < 1 we have C(f ) = 1. Note that ns — ¢t = s(nfy%l) > 0 and
K 1
T=at+n

o =L, by using Holder’s inequality and lemma 2.3, we have
m L ! s m L %
S [Vt ax) <c(Gm) S ( [ (9™ ax
o Q o Q
Z( v o)
s (2.10)
5 (i )

Z(/ |vfam"de) (/Q ($>— dx) ¥
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Since 1 < nk < n(y —1)/y = ns/t, by using theorem 2.4 in [8], we know that
1
we Al c Al ;- Therefore

(e (L)
(o) (@ ()7 e) e

Substituting (2.10) and (2.11) into (2.9) implies that

/QI;IV“W‘““(%)VTI(%) Q' (/lefa’””wdx)%. (2.12)

That is

(2.11)

(ﬁ/ﬁl;[vawdﬁ <com (5) (|sz/'vf°‘m"w“")l' 213

The proof of theorem 2.6 is completed. [
We now prove other weighted inequalities.

THEOREM 2.7. Let fo € CHQ) a=1,...,m. There exists a constant y > 1

such that if w € Al ﬂA,’; 1

(ﬁ / 1;[vafwdx>§ <com™ () (m / vm"wdx)'ii (214)

where M = max{b; — a;,i=1,...,n}.

forsome r>1 and y =% > 2, then

Proof. Since w € A} for some r > 1, by using lemma 2.2, there exist constant
y > 1 and C; > 0 such that

Iwllye < CiIQIT w0 (2.15)

Note that 2 =1 4+ 2=% and 0 < = < 1, then C (%=, m) = 1. By using lemma 2.2,

ns
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2.3 and 2.4, we have

()

o
(1 M\ 1 o\
<alal 7wl (; (7) P /Q Vol ¥ dx> (2.16)
o
S s=n (M m - ns
- ol 7 it o) % () (Z [ nvdx>
o

= 1/s s=n (M\" nsm
< a7 ullaom) = () z( [ (551 )
o

Since T > 2,then n—2s >0 and == = % + =2 By using Holder inequality, we
have

1 L mx (217)
< (/lejfa""’wdx)E (/Q (%) dx> .

n—2s

TN
= o~ <é|/gm> (é/g(i)_d’) =\ a8

<G|QF .
Substituting (2.17) and (2.18) into (2.16), we obtain

(/Ql;lval“deY < ClQP T (mn) ™ <%>mza: </Q|Vfam”wdx)%. (2.19)

That is

s
Note that w € A}, , then

1

(é/gl;[valswdxf <Clm)™ (1%4)," (|Q/|Vfa'””wdx) (2220)
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We complete the proof of theorem 2.7. [J

THEOREM 2.8. Let fo € CH(Q) o =1,....m. if 1 <s<}5 and w eAn o
then there exists a constant C, independent of f, such that

<|Q/Hlfa|‘ v/ndx> < Cmn)™ (g) (|Q/Vfa ’"”wdx) (2.21)

where M:max{b-fa,-,z =1,...,n}.

Proof. Since 1 =1 4 =% and 0 < =2 < |, then C (2, m) = 1. By using

lemma 2.1, 2.3 andSZ 4, we have

</ [Tsef” dx) :
(L) (/ngva o)
() (2" (< p(mme)”
= ([wae) o= (%) (/|v_ )7

Note that 1 < s < 5, we have n —2s > 0 and = = % + == ZY . By using Holder
inequality, we get

m’

n—s

st o) =

S|
ST

[e4

3

<
<
<

n—s n—s
ns

S ([ v an) ™ =S ([ (Wi a) T

[0 [0

v (223)

<2 </g |vfam”de)% (/Q (%> e dx)

Since w € An _» we have

(L) (6™
() (o)) o

< ClQs .

=
[
54
==
—
o
[\
=
N—
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By (2.22), (2.23) and (2.24), we obtain

1

(/Ql;[ ol W dx>% < ClQIF 7 (mn) ™ (%)mz (/Q Vfa'"”wdx)z. (2.25)

o

That is,

1
s=n M\
s..s/n dx <C s | — / My dx 2.26
<|Q/HV(X| > (mn) (2> (|Q ‘Vfoc‘ w ( )
We completed the proof of theorem 2.8. [

COROLLARY 2.9. Let f € C{(Q). There exists a constant y > 1 such that if
1
we Ai NA,, forsome r > 1 and k with u >k > %, then

<QI/V|dex) Cm Ty(%) (|Q/Vf|’””wdx> : (2.27)

where M = max{b; — a;,i =1,...,n}.
Proof. This follows from theorem 2.6, by setting f, =f forall . U

COROLLARY 2.10. Let f4 € C{(Q) o = 1,...,m. There exists a constant
1
v > 1, such that if w € Al N A’ for some r > 1 and k with YT_I >k > %, then

[ / ST Vel sl

B a#p

m—my—1 (lfy)(mfl) M m—1 1 l/n
<Cm™ ™ pn o (—) (—/ |Vf |m"wdx> ,
z) 2,

where M = max{b; — a;,i =1,...,n}.

Proof. By using Holder inequality, we have

/ Z H lfavaﬁ‘W mn

2B arp
-3 T (1l ) 19 s
a#B
<3 I;IB(/Q (ulw?)" ) ([ wralt )

(1 (L) (o)

B \a#B
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By using corollary 2.9 and Holder inequality, we get

(/ I7f gl wn dx)m < |Qm(t=7) (/ Vfﬁ|m"wdx>ﬁ, (2.28)
Q Q

1

([’ < (| o= (2 ([ ) )

Therefore, by using lemma 2.5 we have

|5 T el e

QB arp

and

) (m— m—1 —
< ZC\QI#“‘%)“’—” () ek
X H (/ Vfa’””wdx)
M m-1 m—1 (1=7)( mn
— C‘Q|l__ (?) mm™ n my (/ ‘Vf |man)C>
M\"
C‘Q|1—— (?) m s n my n (/ Ve |man)C>

m—1
M m—my—1 (l y)
=l (?) mo g (/ N |m"wdx>
That is

] / > TT el Vrphw™m=

B o#p

m—my—1 (lfy)(mfl) M m—1 l/n
<Cm™ ™ n—m (3) <Q|/Vfoc|m"wdx> :

The proof of corollary 2.10 is completed. [

1

REMARK 2.2 Further interesting integral inequalities of the weighted Poincaré-
type could be obtained from the results above, For instance, by letting m = 2 in the
corollary 2.10, we have

(|§12/(lf|v8+|g|Vf)W2n dx)

<c(%)enT (g [ 0wrP+1vep) war)
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and by taking f = g in the last expression, we get

1

(é/glfV]ﬂw% dx> gC(%) (2n)' 7 <%|/9Vf|2"wdx>n. (2.29)
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