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Abstract. Some nontrivial increasing functions will be interpolated in the Hadamard’s inequality
for r -convex function in Carnot groups. The methods are more natural and allow us to extend
the condition Γ2(G) ∩ Cw

H,r(G) to the condition C(G) ∩ Cw
H,r(G) .

1. Introduction

The classical Hadamard’s inequality for convex functions states that if f : [a, b] →
R is convex, then

1
b − a

∫ b

a
f (x)dx � f (a) + f (b)

2
.

The generalizations of the Hadamard’s inequality to the integral power mean of
a positive convex function on an interval [a, b] , and to that of a positive r -convex
function on an interval [a, b] are obtained by Pearce and Pečarić and other (see [3,
6, 7, 9, 12]). The definition of r -convexity naturally complements the concept of
r -concavity, in which the inequality is reversed (see [11]) and which plays an important
role in statistics.

Recently, Danielli et al. [1] and Lu et al. [4] have investigated some interesting
properties and notions of convex function in Carnot group. Quite recently, Mingbao
Sun and Xiaoping Yang [10] have introduced the concept of r -convex in Carnot groups,
and derive from their results in the Abelian case G = R more extensive results than the
main results in [3, 6, 7, 9].

In what follows, the definition of Carnot groups is introduced, for more details
the reader is referred to the paper [2, 5]. A Carnot groups G is a stratified, nilpotent
Lie group of step r , with Lie algebra G = V1 ⊕ V2 ⊕ · · · ⊕ Vr . This means that
[V1, Vj] = Vj+1 for j = 1, 2, . . . , r − 1 , whereas [V1, Vj] = {0} . For points g , g0 in
G , we denote by Lg0(g) = g0g the left-translations on G by an element g0 ∈ G . Let
m = dimV1 , and X1, X2, . . . , Xm be a fixed orthornormal basis of the first layer V1 .
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We continue to denote by X1, X2, . . . , Xm the corresponding system of left-invariant
vector fields on G . The exponential map exp : G → G is an analytic diffeomorphism,
which allows us to define analytic maps ξi : G → Vi for i = 1, 2, . . . , r , by letting
g= exp(ξ1(g) + · · · + ξr(g)) for g ∈ G . The mapping ξ : G → G is defined
by ξ(g) = ξ1(g) + · · · + ξr(g) is the inverse of the exponential mapping. The
stratification of the Lie algebra allows us to define a natural family of nonisotropic
dilations Δλ : G → G as follows:

Δλξ(g) = λξ1(g) + λ 2ξ2(g) + · · · + λ rξr(g).

Therefore the exponential map induces a group of dilations on G via the formula

δλ (g) = exp ◦Δλ ◦ exp−1(g), g ∈ G.

For a given function f : G → R , the action of Xj on f is specified by the equation

Xjf (g) = lim
t→0

f (g exp(tXj)) − f (g)
t

=
d
dt

f (g exp(tXj))
∣∣∣
t=0

.

For a given open set Ω ∈ G , the classes Γ1(Ω) (respectively, Γ2(Ω) ) represent
the collection of all functions u : Ω → R such that the derivatives Xαu (respectively,
XαXα′u ), α ,α′ = 1, . . . , m exist and are continuous functions in Ω . We denote by dg
the bi-invariantHaar measure on G obtained by pushing forward Lebesgue on G via the
exponential map. Given a point, the horizontal plane through g0 as the m-dimensional
embedded submanifold of G is given by

Hg0 = Lg0(exp(V1 × {0})),
where 0 denotes the (N −m) -dimensional zero vector in G , with N = dimV1 + · · ·+
dimVr . For a function u : G → R with u ∈ Γ2(G) , the symmetrized horizontal
Hessian of u at g ∈ G is the m × m matrix

(X2u)∗(g) =
(
(X2u)∗i,j(g)

)m

i,j=1

defined by

(X2u)∗(g)
def
=

1
2
{(XiXju(g) + XiXju(g)}.

In what follows, the definition of r -convexity in Carnot group G and some
extended means will be given. Given two point g ,g′ ∈ G , for λ ∈ [0, 1] , denote

gλ = gδλ (g−1g′).

A function u : G → (−∞,∞] is called weakly H -convex (see [1]) if it is proper,
which means that {g ∈ G : u(g) = ∞} �= G , and if for any g ∈ G one has for every
λ ∈ [0, 1] ,

u(gλ ) � λu(g′) + (1 − λ )u(g)

for every g′ ∈ Hg .
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Recall the power mean Mr(x, y; λ ) of order r of positive numbers x, y is defined
by

Mr(x, y; λ ) =

{
(λxr + (1 − λ )yr)

1
r , if r �= 0,

xλ y1−λ , if r = 0.

A natural idea of weakly H - r -convexity may be introduced via power means.
A function u : G → (0, +∞] is said to be weakly H - r - convex if it is proper, and

if for any g ∈ G , one has for any λ ∈ [0, 1] , u(gλ ) � Mr(u(g′), u(g); λ ) for every
g′ ∈ Hg . The class of all weakly H - r -convex functions on G is denoted by Cw

H,r(G) .
A function u : G → (0, +∞] is called strongly H - r - convex if it is proper, and if

for any g, g′ ∈ G , one has u(gλ ) � Mr(u(g′), u(g); λ ) for every λ ∈ [0, 1] . The class
of all strongly H - r -convex functions on G is denoted by Cs

H,r(G) .
The above definition of weakly (strongly) H - r -convexity naturally complements

the concept of weakly (strongly) H - r -concavity in which the inequality is reversed.
The definition of weakly (strongly) H - r -convexity can be expanded as

u(gλ ) �

⎧⎨
⎩

(
λur(g′) + (1 − λ )ur(g)

) 1
r
, if r �= 0,

uλ (g′)u(1−λ )(g), if r = 0.
(1.1)

In particular,when r =1, Cw
H,1(G)(Cs

H,1(G)) is just the class of allweakly (strongly)
H -convex functions on G where the requirement that an r -convex function must be
positive can clearly be relaxed, and is denoted simply by Cw

H(G)(Cs
H(G)) (see [1]).

When r = 0 , we have that 0-convex function is called weakly (strongly) H -log-convex
function.

It is well known that the extended means E(r, s; x, y) (see [8]) are given by
E(r, s; x, x) = x if x = y > 0 and for x �= y by

E(r, s; x, y) =
[ s
r
yr − xr

ys − xs

] 1
(r−s)

, rs(r − s) �= 0,

E(r, 0; x, y) = E(0, r; x, y) =
[1
r

yr − xr

ln y − ln x

] 1
r
, r �= 0,

E(r, r; x, y) = e
−1
r

[xxr

yyr

] 1
(xr−yr )

, r �= 0,

E(0, 0; x, y) =
√

xy.

Clearly, E(p+1, 1; x, y) is the extended logarithmic mean Lp(x, y) of two positive
numbers x, y , while E(r + 1, r; x, y) is also the alternative extended logarithmic mean
Fr(x, y) of two positive numbers x , y .

Let u be a positive function on G , and u(gλ ) be an integrable function on [0, 1]
with respect to λ for every g, g′ ∈ G . Define the two-parameter mean of the function
u(gλ ) on [0, 1] with respect to λ by

Mp,q(u; g, g′) =

⎧⎪⎪⎨
⎪⎪⎩

[∫ 1

0
up(gλ )dλ∫ 1

0
uq(gλ )dλ

] 1
(p−q)

, if p �= q,

exp

∫ 1

0
uq(gλ ) ln u(gλ )dλ∫ 1

0
uq(gλ )dλ

, if p = q.
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In particular, when q = 0 , denote Mp,0(u; g, g′) = Mp(u; g, g′) , which is the
integral power mean. In [10], Mingbzo Sun and Xiaoping Yang established the fol-
lowing Theorems. These results establish a generalization of the classical Hadamard’s
inequality for weakly H - r -convex functions in a Carnot group G , which subsumes
the relationship between extended mean values and weakly H - r -convex functions on
G as special cases. It is easy to see that the following results continue to be valid if in
their statements we replace Cw

H,r(G) with Cs
H,r(G) .

THEOREM A. Let G be a Carnot groups, given u : G → (0, +∞] , with u ∈
C(G)∩Cw

H,r(G) , and F : (0, +∞) → R . For any fixed g ∈ G, and for every g′ ∈ Hg ,
if F is increasing on u[g, g′] = {u(gλ ) : 0 � λ � 1} , then

∫ 1

0
F(u(gλ ))dλ �

r
∫ u(g′)

u(g) xr−1F(x)dx

ur(g′) − ur(g)
, (1.2)

for u(g) = u(g′) , the right-hand side of (1.2) is defined by F(u(g)) , while if F is
decreasing, the inequality (1.2) is reversed.

THEOREM B. Let G be a Carnot groups, given u : G → (0, +∞) , with u ∈
Γ2(G) ∩ Cw

H,r(G) , and F1, F2 : (0, +∞) → R . For any fixed g ∈ G, and for every
g′ ∈ Hg , suppose that u[g, g′] = {u(gλ ) : 0 � λ � 1} , F2 a positive integrable
function on u[g, g′] and the ratio F1/F2 is increasing on u[g, g′] , then

∫ 1
0 F1(u(gλ ))dλ∫ 1
0 F2(u(gλ ))dλ

�
∫ u(g′)

u(g) xr−1F1(x)dx∫ u(g′)
u(g) xr−1F2(x)dx

, (1.3)

for u(g) = u(g′) , the right-hand side of (1.3) is defined by F1(u(g))/F2(u(g′)) , while
if F1/F2 is decreasing, the inequality (1.3) is reversed.

Sun and Yang have also proved that Theorem B is valid when the condition
u ∈ Γ2(G) ∩ Cw

H,r(G) replaces by u ∈ C(G) ∩ Cw
H,r(G) in the case of r = 1 or

0 . Applying the Theorem A and Theorem B, they also obtain the some interesting
inequalities that subsume the relationship between extended mean values and weakly
H - r -convex functions on Carnot groups.

We note that, Sun and Yang can obtain the inequality (1.2) by taking F2 ≡ 1
in Theorem B, but they prove that only in the case of u ∈ Γ2(G) ∩ Cw

H,r(G) . Also,
the proof of Theorem B is very complicated. The main purpose of this paper is to
establish a connection to inequality (1.1) for weakly (strongly) H - r -convexity, and
then some nontrivial increasing functions shall be interpolated in the inequalities (1.2),
(1.3) and some interesting inequalities on Carnot groups established by Sun and Yang,
respectively. The methods are more natural and allow us to extend the condition
Γ2(G) ∩ Cw

H,r(G) to the condition C(G) ∩ Cw
H,r(G) in Theorem B. In the Section 3, the

Abelian case G = R , the interpolations, extensions and generalizations of the results
given by the authors in [3, 6, 7, 9, 10, 12] will be pointed out.
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2. Main results

The following Theorem plays an improtant role in the proof of the next two results.

THEOREM 2.1. Let G be a Carnot groups and u : G → (0,∞) with u ∈ C(G) ∩
Cw

H,r(G) . For 0 � λ � 1 , for any fixed g0 ∈ G and for every g1 ∈ Hg0 and if
hλ : [0, 1] → (0,∞) is defined by

hλ (t) =

⎧⎨
⎩

[
λur(gt+(1−t)λ ) + (1 − λ )ur(g(1−t)λ )

] 1
r
, if r �= 0,

uλ (gt+(1−t)λ )u(1−λ )(g(1−t)λ ), if r = 0,
(2.1)

where g(1−t)λ ∈ G and gt+(1−t)λ ∈ Hg(1−t)λ , then

(i) hλ (t) is increasing on [0, 1] ;

(ii) hλ (0) = u(gλ ) and hλ (1) =

{
(λur(g1) + (1 − λ )ur(g0))

1
r , if r �= 0,

uλ (g1) · u1−λ (g0), if r = 0.

Proof. For any t ∈ [0, 1] , using r -convexity of u , we obtain that for g(1−t)λ ∈ G ,
gt+(1−t)λ ∈ Hg(1−t)λ , and for every α ∈ [0, 1] ,

u(gtα+(1−t)λ ) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
(tα + (1 − t)λ )ur(gt+(1−t)λ )

+ (1 − tα − (1 − t)λ )ur(g(1−t)λ )
] 1

r
, if r �= 0,

u(tα+(1−t)λ )(gt+(1−t)λ ) · u(1−tα−(1−t)λ )(g(1−t)λ ), if r = 0,

where gtα+(1−t)λ = g(1−t)λδtα+(1−t)λg−1
(1−t)λgt+(1−t)λ .

Let 0 � x < y � 1 . Taking t = y and α = x+(y−x)λ
y in the above inequality, we

have

u(gx+(1−x)λ ) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
(x + (1 − x)λ )ur(gy+(1−y)λ )

+ (1 − x − (1 − x)λ )ur(g(1−y)λ)
] 1

r
, if r �= 0,

u(x+(1−x)λ )(gy+(1−y)λ ) · u(1−x−(1−x)λ )(g(1−y)λ ), if r = 0,

Similarly, if t = y and α = (y−x)λ
y , we have

u(g(1−x)λ) �

⎧⎨
⎩

[
((1 − x)λ )ur(gy+(1−y)λ ) + (1 − (1 − x)λ )ur(g(1−y)λ)

] 1
r
, if r �= 0,

u((1−x)λ )(gy+(1−y)λ ) · u(1−(1−x)λ )(g(1−y)λ ), if r = 0,
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Thus, for r �= 0 , we have

hλ (x) = [λur(gx+(1−x)λ ) + (1 − λ )ur(g(1−x)λ )]
1
r

� {λ [(x + (1 − x)λ )ur(gy+(1−y)λ ) + (1 − x − (1 − x)λ )ur(g(1−y)λ )]

+ (1 − λ )[(1 − x)λur(gy+(1−y)λ ) + (1 − (1 − x)λ )ur(g(1−y)λ )]} 1
r

= [λur(gy+(1−y)λ ) + (1 − λ )ur(g(1−y)λ)]
1
r

= hλ (y),

and for r = 0 , we have

hλ (x) = uλ (gx+(1−x)λ ) · u(1−λ )(g(1−x)λ )

�
[
u(x+(1−x)λ )(gy+(1−y)λ ) · u(1−x−(1−x)λ )(g(1−y)λ )

]λ
×

×
[
u(1−x)λ(gy+(1−y)λ ) · u(1−(1−x)λ )(g(1−y)λ)

](1−λ )

= uλ (gy+(1−y)λ ) · u(1−λ )(g(1−y)λ )

= hλ (y).

This completes the proof of (i) . The proofs of (ii) are obvious, we omit it. Thus,
the proofs of Theorem 2.1 are complete.

REMARK 2.2. It is valid that Cw
H,r(G) replaces by Cs

H,r(G) in Theorem 2.1, and
if u is weakly (strongly) H - r -concavity then hλ (t) is decreasing decreasing on [0,1].
Also, we note that the hλ (t) in (2.1) is a mapping in connection to inequality (1.1) for
weakly (strongly) H - r -convexity.

Applying Theorm 2.1, we obtain the following two Theorems easily.

THEOREM 2.3. Let G be a Carnot groups, given u : G → (0, +∞) with u ∈
C(G)∩Hw

H,r(G) , and F : (0, +∞) → R . For 0 � λ � 1 , for any fixed g0 ∈ G and for

every g1 ∈ Hg0 , and suppose that Q : [0, 1] → R is defined by Q(t) =
∫ 1

0 F(hλ (t))dλ ,
where hλ (t) is defined as in (2.1) . If F is increasing on [hλ (0), hλ (1)] , then
(i) Q(t) is increasing on [0, 1] ;

(ii) Q(0) =
∫ 1

0
F(u(gλ ))dλ , and

Q(1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r
∫ u(g1)

u(g0) xr−1F(x)dx

ur(g1) − ur(g0)
if r �= 0,

∫ u(g1)

u(g0)

F(x)
x(ln u(g1) − ln u(g0))

dx, if r = 0,

for u(g0) = u(g1) , Q(1) is defined by F(u(g0)) , while if F is decreasing,
the Q(t) is decreasing on [0, 1] .
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Proof. By Theorem 2.1, we have hλ (t) is increasing on [0,1], and using F is
increasing on [hλ (0), hλ (1)] , we obtain the Q(t) is increasing on [0,1]. This completes
the proof of (i) . Proof of (ii) . The first term of (ii) is obvious. To prove the second
term of (ii) first we suppose that u(g0) = u(g1) , by definition on Q(1) , we have
Q(1) = F(u(g0)) , so that we may assume u(g0) �= u(g1) . By (ii) in Theorem 2.1, we
obtain

Q(1) =
∫ 1

0
F(hλ (1))dλ =

⎧⎪⎨
⎪⎩

∫ 1
0 F

(
(λur(g1) + (1 − λ )ur(g0))

1
r

)
dλ , if r �= 0,∫ 1

0 F
(
uλ (g1) · u1−λ (g0)

)
dλ , if r = 0.

By changing the variable, we have the second term of (ii) . This completes the proof of
(ii) . Thus the proofs of Theorem 2.3 are complete.

For the convenience, we define the following sets.
The following functions are all the real-valued function defined on [0,∞) . Let

I1={(f , g) | f is nonnegative and nondecreasing and g is positive and nonincreasing} ,

I2={(f , g) | f is nonnegative and nonincreasing and g is negative and nonincreasing} ,

I3={(f , g) | f is nonpositive and nondecreasing and g is positive and nondecreasing} ,

I4={(f , g) | f is nonpositive and nonincreasing and g is negative and nondecreasing} ,

J1={(f , g) | f is nonnegative and nonincreasing and g is positive and nondecreasing} ,

J2={(f , g) | f is nonnegative and nondecreasing and g is negative and nondecreasing} ,

J3={(f , g) | f is nonpositive and nonincreasing and g is positive and nonincreasing} ,

J4={(f , g) | f is nonpositive and nondecreasing and g is negative and nonincreasing} ,

D1 = I1 ∪ I2 ∪ I3 ∪ I4 and D2 = J1 ∪ J2 ∪ J3 ∪ J4 .

THEOREM 2.4. Let G be a Carnot groups, given u : G → (0, +∞) with u ∈
C(G) ∩ Hw

H,r(G) , and F1, F2 : (0, +∞) → R . For 0 � λ � 1 , for any fixed
g0 ∈ G and for every g1 ∈ Hg0 , and suppose that Q : [0, 1] → R is defined by

Q(t) =
∫ 1

0 F1(hλ (t))dλ/
∫ 1

0 F2(hλ (t))dλ , where hλ (t) as defined in (2, 1) , and F1

and F2 integrable on [hλ (0), hλ (1)] .If (F1, F2) ∈ D1 , then

(i) Q(t) is increasing on [0, 1], and

(ii) Q(0) =

∫ 1
0 F1(u(gλ ))dλ∫ 1
0 F2(u(gλ ))dλ

,

Q(1) =

∫ u(g1)
u(g0)

xr−1F1(x)dx∫ u(g1)
u(g0)

xr−1F2(x)dx
,

for u(g0) = u(g1) , the Q(1) is defined by F1(u(g0))/F2(u(g0)) , while if (F1, F2) ∈
D2 , then Q(t) is decreasing on [0, 1] .
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Proof. Let 0 � s < t � 1 and 0 � λ � 1 , we have

Q(t) − Q(s) =

∫ 1
0 F1(hλ (t))dλ∫ 1
0 F2(hλ (t))dλ

−
∫ 1

0 F1(hλ (t))dλ∫ 1
0 F2(hλ (s))dλ

+

∫ 1
0 F1(hλ (t))dλ∫ 1
0 F2(hλ (s))dλ

−
∫ 1

0 F1(hλ (s))dλ∫ 1
0 F2(hλ (s))dλ

=

∫ 1
0 F1(hλ (t))dλ · ∫ 1

0

(
F2(hλ (s))dλ − F2(hλ (t))

)
dλ∫ 1

0 F2(hλ (t))dλ · ∫ 1
0 F2(hλ (s))dλ

+
1∫ 1

0 F2(hλ (s))dλ

( ∫ 1

0
(F1(hλ (t)) − F1(hλ (s)))dλ

)
.

By Theorem 2.1, we have hλ (s) � hλ (t) and using (F1, F2) ∈ D1 , we obtain
Q(t) − Q(s) � 0 . This completes the proof of (i) .

To prove (ii) first we observe that

Q(0) =

∫ 1
0 F1(u(gλ ))dλ∫ 1
0 F2(u(gλ ))dλ

.

To prove the second term of (ii) we suppose that u(g0) = u(g1) , then it is obvious
Q(1) = F1(u(g0))/F2(u(g1)) , so that we may assume u(g0) �= u(g1) . By changing
the variable, we have

Q(1) =

∫ 1
0 F1

(
(λur(g1) + (1 − λ )ur(g0))

1
r

)
dλ∫ 1

0 F2

(
(λur(g1) + (1 − λ )ur(g0))

1
r

)
dλ

=

∫ u(g1)
u(g0)

xr−1F1(x)dx∫ u(g1)
u(g0)

xr−1F2(x)dx
.

This completes the proof of (ii) .

REMARK 2.5. It is obvious that Theorem 2.3 and Theorem 2.4 comtinue to be
valid if in their statements we replace Cw

H,r(G) with Cs
H,r(G) . Similarly, under the

assumption of Theorem 2.3 and Theorem 2.4, respectively, if u is weakly (strongly)
H - r -concave, we can derive that Q(t) is decreasing on [0, 1] in the case of F be
increasing and (F1, F2) ∈ D1 , respectively, while Q(t) is increasing on [0, 1] is valid
in the case of F be decreasing and (F1, F2) ∈ D2 , respectively.

REMARK 2.6. In Theorem 2.3, the nontrivial incresing function Q(t) is interpo-
lated in the inequality (1.2) . In Theorem 2.4, the condition u ∈ Γ2(G) ∩ Hw

H,r(G) in
Theorem B is extended to u ∈ C(G) ∩ Hw

H,r(G) , and the nontrivial increasing function
Q(t) is interpolated in the inequality (1.3) . Obviously, we can obtain the Theorem 2.3
by taking F2 ≡ 1 in Theorem 2.4, but we only give the proof in the case of F1 ∈ I1∪ I3 .

REMARK 2.7. Using the Theorem 2.3 and Theorem 2.4, we have the following
interpolations of the interesting inequalities given by Sum and Yan in [10] that subsume
the relationship between extended mean value and weakly H - r -convex functions on
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Carnot groups. Also, we note that the inequality (2.4) and (2.5) in [10] only hold in
the case of p − q > 0 and p > 0 , respectively.

If take F1(x) = xp , F2(x) = xq for 0 < x < ∞ and for any real numbers p, q
with p > 0 > q in Theorem 2.4, u as in Theorem 2.4, we have (F1, F2) ∈ D1 and
then we can derive the following inequality:

Mp,q(u; g0, g1) = Q(0) � Q(t) � Q(1) = E(p + r, q + r, u(g1), u(g0)) (2.2)

where Q(t) =
∫ 1

0 hp
λ (t)dλ/

∫ 1
0 hq

λ (t)dλ , hλ (t) is defined as in (2.1) and Q(t) is
increasing on [0, 1] . This proves that the Q(t) in (2.2) is interpolated in inequality
(2.4) in [10] . Also, we note that the condition u in (2.2) is weaker than u in (2.4)
in [10] . Similarly, taking F(x) = xp for 0 < x < ∞ in Theorem 2.3 and for any
real number p > 0 , we have F is increasing and then we can derive the following
inequality:

Mp(u; g0, g1) = Q(0) � Q(t) � Q(1) = E(p + r, r, u(g1), u(g0)) (2.3)

where Q(t) =
∫ 1

0 hp
λ (t)dλ , hλ (t) is defined as in (2.1) , and the Q(t) is increasing on

[0, 1] . This prove that Q(t) in (2.3) is interpolated in inequality (2.5) in [10] .
Further, taking r = 1 and p = 1 in (2.3) , respectively, we have

Mp(u; g0, g1) = Q(0) � Q(t) � Q(1) = Lp(u(g1), u(g0)) (2.4)

where Q(t) =
∫ 1

0 [λu(gt+(1−t)λ ) + (1 − λ )u(g(1−t)λ )]pdλ , and

∫ 1

0
u(gλ )dλ = Q(0) � Q(t) � Q(1) = Fr(u(g1), u(g0)) (2.5)

where Q(t) =
∫ 1

0 hλ (t)dt , hλ (t) is defined as in (2.1) , respectively, The Q(t) in (2.4)
and the Q(t) in (2.5) are interpolated in the inequality Mp(u; g0, g1) � Lp(u(g1), u(g0))
and

∫ 1
0 u(gλ )dλ � Fr(u(g1), u(g0)) given in [10] , respectively.
It is easy to see that the above results continuous to be valid if in their statements

we replace Cw
H,r(G) with Cs

H,r(G) .

3. Applications

In the Abelian case, when G = (R, +) and u = f is a positive function on
(−∞, +∞) in Theorem 2.3 and Theorem 2.4, respectively, we have the following two
Corollaries.

COROLLARY 3.1. Let f be a positive function on (−∞, +∞) , F be a real-valued
function on (0, +∞) , and Q : [0, 1] → R be defined by

Q(t) =
∫ 1

0
F(kλ (t))dλ (3.1)
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where

kλ (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[λ f r((t + λ − tλ )b + (1 − t − λ + tλ )a)

+ (1 − λ )f r((λ − tλ )b + (1 − λ + tλ )a)]
1
r , if r �= 0,

f λ ((t + λ − tλ )b + (1 − t − λ + tλ )a)×
× f 1−λ ((λ − tλ )b + (1 − λ + tλ )a), if r = 0.

(3.2)

When F is increasing on [kλ (0), kλ (1)] , if f is r -convex, then
(i) Q(t) is increasing on [0, 1] ;

(ii) Q(0) =
1

b − a

∫ b

a
F(f (x))dx,

Q(1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r
∫ f (b)

f (a) xr−1F(x)dx

f r(b) − f r(a)
, if r �= 0,

∫ f (b)

f (a)

F(x)
x(ln f (b) − ln(a))

dx, if r = 0,

for f (a) = f (b) , the Q(1) is defined by F(f (a)) , while if f is r -concave,
Q(t) is decreasing. When F is decreasing, if f is r -convex, Q(t) is decreasing,
while if f is r -concave, Q(t) is increasing.

COROLLARY 3.2. Let f be a positive function on (−∞, +∞) , F1 , F2 real-valued
functions on (0, +∞) , and Q : [0, 1] → R be defined by

Q(t) =

∫ 1
0 F1(kλ (t))dλ∫ 1
0 F2(kλ (t))dλ

(3.3)

where kλ (t) defined as in (3.2) , and F1 , F2 be integrable function on [kλ (0), kλ (1)] .
When (F1, F2) ∈ D1 , D1 as defined in Section 2 , if f is r -convex, than

(i) Q(t) is increasing on [0, 1] , and

(ii) Q(0) =

∫ b
a F1(f (x))dx∫ b
a F2(f (x))dx

,

Q(1) =

∫ f (b)
f (a) xr−1F1(x)dx∫ f (b)
f (a) xr−1F2(x)dx

,

for f (a) = f (b) , the Q(1) is defined by F1(f (a))/F2(f (a)) , while if f is r -
concave, the Q(t) is decreasing on [0, 1] . When (F1, F2) ∈ D2 , if f is r -convex,
the Q(t) is decreasing on [0, 1] , while if f is r -concave, Q(t) is increasing on
[0, 1] .

REMARK 3.3. The increasing function Q(t) in Corollary 3.1 and Q(t) in Corollary
3.2 are interpolated in the inequality (5.3) and (5.1) in [10], respectively. Also, we note
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that the restrictive conditions of the function f in Corollary 3.2 are weaker than the
ones in Corollary 5.1 in [10].

REMARK 3.4. We note that the inequality (5.4) and (5.5) in [10] only holds in the
case of p−q > 0 and p > 0 , respectively. If we suitably choose the F in Corollary 3.1
and F1 , F2 in Corollary 3.2, respectively, we can obtain the interpolations, extentions
and generalizations of the results given in [3, 6, 7, 9]. We leave the details for the reader.
Specially, if we take F(x) = xp in Corollary 3.1 and change the variable to (3.1), then
Corollary 3.1 reduce to the Theorem given by Yang and the author in [12].

Acknowledgement. The author thanks the referee for his comments and sugges-
tions which improved the presentation of this manuscript.
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