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OPTIMAL BOUNDS FOR LINEAR

FUNCTIONALS ON MONOTONE FUNCTIONS

TOMASZ RYCHLIK

(communicated by I. Olkin)

Abstract. We determine optimal bounds on linear functionals over the space of square integrable
functions on a finite interval, restricted to the nondecreasing elements of the subspace orthogonal
to constants. We discuss conditions of bounds attainability and present exemplary applications.

1. Introduction and motivation

It is well known (see, e.g., Dunford and Schwarz [2, Theorem 1, p. 286]) that every
continuous linear functional on the space L2(a, b) of square integrable functions over
a (finite) interval [a, b] has the form

Th(g) = (g, h) =
∫ b

a
g(x)h(x)dx, g ∈ L2(a, b), (1.1)

where h is an arbitrarily fixed element of L2(a, b) . The norm of the functional amounts
to

||Th|| = sup
0�=g∈L2(a,b)

Th(g)
||g|| = sup

||g||=1
Th(g)

= ||h|| =

(∫ b

a
h2(x)dx

)1/2

. (1.2)

In the paper, we improve evaluation (1.2) under the restriction that functions g belong
to the family

C = {g ∈ L2(a, b) : g ↗, g ⊥ 1, ||g|| = 1} (1.3)

of nondecreasing, orthogonal to constants elements of L2(a, b) with the unit norm.
Precisely, we try to establish

|||Th||| = sup
g∈C

Th(g) = sup
g∈C

∫ b

a
g(x)h(x)dx (1.4)

with arbitrary h ∈ L2(a, b) . To avoid trivialities, we assume that h �= 0 .
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Evaluations (1.4) have probabilistic interpretations. Consider, e.g., a sequence
of independent identically distributed random variables X1, X2, . . . with a distribution
function F , finite mean

μ = EX1 =
∫ 1

0
F−1(x)dx = (F−1, 1) (1.5)

and variance

σ2 = VarX1 =
∫ 1

0
(F−1(x) − μ)2dx = ||F−1 − μ||2. (1.6)

Let Mn = max{X1, . . . , Xn} and mn = min{X1, . . . , Xn} . It can be shown that

E
Mn − μ

σ
=
∫ 1

0

F−1(x) − μ
||F−1 − μ|| f n:n(x)dx, (1.7)

E
mn − μ

σ
=
∫ 1

0

F−1(x) − μ
||F−1 − μ|| f 1:n(x)dx, (1.8)

where

f n:n(x) = nxn−1, (1.9)

f 1:n(x) = n(1 − x)n−1, (1.10)

are the density functions of the maximum and minimum, respectively, of independent
random variables uniformly distributed on (0, 1) (see, e.g., David and Nagaraja [1,
p. 34]). Note that (1.7) and (1.8) are linear functionals on L2(0, 1) , represented
by functions (1.9) and (1.10), respectively, whose arguments belong to (1.3) with
(a, b) = (0, 1) . Accordingly, evaluations (1.4) amount to the sharp bounds on the
expectations of deviations of the sample extremes Mn and mn from the population
mean (1.5) in the standard deviation units σ (cf. (1.6)).

Many other similar functionals are studied in statistics. In particular, it is interesting
to evaluate linear combinations

∑n
i=1 ciXi:n of order statistics Xi:n with fixed coefficients

ci , 1 � i � n , where Xi:n denotes the i th smallest value among X1, . . . , Xn . In this
case we have

E

n∑
i=1

ci
Xi:n − μ

σ
=
∫ 1

0

F−1(x) − μ
||F−1 − μ||

n∑
i=1

cif i:n(x)dx,

where

f i:n(x) =
n!

(i − 1)!(n − i)!
xi−1(1 − x)n−i, 1 � i � n, (1.11)

are the densities of i th order statistics in the standard uniform sequence. Analogous
evaluations are valid for records. An upper record in a numerical sequence is an
element which is greater than all the preceding ones. If the sequence consists of
independent identically continuously distributed random variables X1, . . . , Xn, . . . , then
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the respective sequence of records R0 = X1 (by convention), R1, . . . , Rn, . . . is infinite,
and the respective standardized expectations have the forms

E
Rn − μ

σ
=
∫ 1

0

F−1(x) − μ
||F−1 − μ|| f n(x)dx,

with

f n(x) = − [− ln(1 − x)]n

n!
, n � 0, (1.12)

(see David and Nagaraja [1, p. 32]). Further examples of stochastic notions that can be
likewise evaluated are presented in Kamps [4] and Rychlik [9].

First observe that for some functions h functional (1.1) restricted to set (1.3) may
take on values of a fixed sign. Consequently, in contrast to (1.2), bounds (1.4) for
specific h can be negative as well. The methods of determining positive and negative
bounds are absolutely different. They are presented in Sections 2 and 3, respectively.
Their discrete counterparts for sequences, are described in Rychlik [8], and Goroncy
and Rychlik [3] respectively.

We finally note that the sharp lower evaluations of (1.1) over (1.3) can be imme-
diately deduced from the upper ones due to the obvious relation

inf
g∈C

Th(g) = − sup
g∈C

T−h(g).

Besides of some exceptional cases

inf
g∈C

Th(g) �= − sup
g∈C

Th(g)

i.e., lower and upper evaluations over (1.3) are not symmetric about zero, unlike to the
general ones.

2. Positive bounds

Since g ∈ C integrate to zero, we have

Th(g) =
∫ b

a
g(x)[h(x) − c]dx � ||h − c||

for arbitrary real c , and
inf
c∈R

||h − c|| = ||h0||,
with

h0(x) = h(x) − 1
b − a

∫ b

a
h(t)dt (2.1)

being the projection of h onto the linear subspace of functions orthogonal to constants.
The equality in

Th(g) � ||h0||, g ∈ C, (2.2)
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holds if

g(x) =
h0(x)
||h0|| ∈ C,

i.e., if h itself is nondecreasing. Otherwise inequality (2.2) can be improved by the
results of the following two Theorems. A more general version of the first one can be
found in Moriguti [7].

THEOREM 1. Let h0 denote the (right-continuous version, say, of) derivative of
the greatest convex minorant H0 of the antiderivative H0 of (2.1) . Then for arbitrary
nondecreasing g for which the integrals below exists, we have∫ b

a
g(x)h0(x)dx �

∫ b

a
g(x)h0(x)dx. (2.3)

The equality in (2.3) holds iff g is constant on every interval contained in the set

H = {a < x < b : H0(x) < H0(x)}. (2.4)

Proof. The continuous function

H0(x) =
∫ x

a
h0(t)dt (2.5)

has the null values at the interval end-points a and b . The greatest convex minorant
H0 of H0 , defined as the supremum of all convex functions not greater H0 , is a convex
function vanishing at a and b as well. It is continuous and differentiable except for at
countably many points at most, where the left and right derivatives exist. Function h0
is therefore well defined. Set (2.4) is open and so consists of countably many disjoint
open intervals, (ai, bi) , say, at most. On each interval, H0 is linear, and has a particular
form

H0(x) = H0(ai) +
H0(bi) − H0(ai)

bi − ai
(x − ai), ai < x < bi.

The derivative h0 has the constant value H0(bi)−H0(ai)
bi−ai

there. On the completion of (2.4),
we have H0(x) = H0(x) and, consequently, h0(x) = h0(x) . Since H0(x) � H0(x) ,
a � x � b , with the equality at the end-points, we have∫ b

a
g(x)h(x)dx =

∫ b

a
g(x)H0(dx)

�
∫ b

a
g(x)H0(dx) =

∫ b

a
g(x)h0(x)dx

(cf., e.g., Marshall and Olkin [5, Proposition A. 2(ii) , p. 444]). For establishing the
equality conditions, we consider∫ b

a
g(x)[h0(x) − h(x)]dx =

∫
H

g(x)[h0(x) − h0(x)]dx

=
∑

i

[∫ bi

ai

g(x)H0(dx) −
∫ bi

ai

g(x)H0(dx)

]
.
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By definition, H0(x) < H0(x) , ai < x < bi , and the functions are equal at ai and bi .
Therefore ∫ bi

ai

g(x)H0(dx) �
∫ bi

ai

g(x)H0(dx)

for each i , and the equality holds iff g is constant on (ai, bi) . This completes the
proof. �

It can be shown that h0 defined in Theorem 1 is the projection of h0 onto the
convex cone of nondecreasing functions in L2(a, b) (see, e.g., Rychlik [9, pp. 14–16]).
It is also the projection of h onto the cone of nondecreasing functions orthogonal to
constant functions. Clearly, h0 = h0 if h0 (and the original h ) is nondecreasing. We
also easily check that the operators of projections onto the linear subspace orthogonal
to constants and the convex cone of nondecreasing functions are interchangeable, and
we have

h0(x) = h(x) − 1
b − a

∫ b

a
h(t)dt.

THEOREM 2. For every g ∈ C defined in (1.3) , yields

∫ b

a
g(x)h(x)dx �

(∫ b

a
h2

0(x)dx

)1/2

= ||h0||. (2.6)

Moreover, if the antiderivative (2.5) of (2.1) is negative for some a < x < b , than
the right-hand side of (2.6) is positive and the equality is attained there by the unique
function

g0(x) =
h0(x)
||h0||

. (2.7)

Proof. Since g ∈ C , we obtain∫ b

a
g(x)h(x)dx =

∫ b

a
g(x)h0(x)dx

�
∫ b

a
g(x)h0(x)dx � ||g|| ||h0||,

(2.8)

by Theorem 1 and the Schwarz inequality. By the latter assumption, h0 is a nonzero
function and (2.7) is well defined. We easily check that this belongs to (1.3). Moreover,
this is the only function with the unit norm which provides the equality in the Schwarz
inequality of (2.8). Obviously, g0 and h0 are constant on the same intervals (if any),
and so are on all the intervals where H0 and H0 differ, in particular. Theorem 1 implies
that (2.7) attains the equality in the former inequality of (2.8) as well, which ends the
proof. �

In particular, (1.9), (1.10), (1.11) and (1.12) are density functions on [0, 1] , and
respective modifications (2.1) arise by subtracting one from them. They are nonde-
creasing in cases (1.9) and (1.12), and so coincide with their projections onto the cone
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of nondecreasing functions. By Theorem 2, we immediately get the following sharp
evaluations of expected maxima and records

E
Mn − μ

σ
� ||f n:n − 1|| =

n − 1
(2n − 1)1/2

,

E
Rn − μ

σ
� ||f n − 1|| =

[(
2n
n

)
− 1

]1/2

.

Functions f i:n − 1 , 2 � i � n − 1 , defined in (1.11) are first increasing, and then de-
creasing. Respective antiderivatives are first convex decreasing, then convex increasing,
and eventually concave increasing. Respective convex minorants first coincide with the
original antiderivatives, and are ultimately linear. We can easily conclude that

E
Xi:n − μ

σ
� ||f

i:n
− 1||,

where
f

i:n
(x) = f i:n(min{x,α})

for a unique 0 < α < 1 satisfying

f i:n(x) =
1 − Fi:n(x)

1 − x
,

where

Fi:n(x) =
n∑

k=i

(
n
k

)
xk(1 − x)n−k

is the distribution function of (1.11). In the minimum case, the antiderivative F1:n(x)−
x = 1 − x − (1 − x)n of f 1:n(x) − 1 = n(1 − x)n−1 − 1 is strictly concave on (0, 1) ,
and the respective convex minorant and its derivative are zero functions. Therefore
Theorem 2 provides a trivial bound

Emn − μ = E(min{X1, . . . , Xn} − X1) � 0.

In the next section we try to improve the inequality analyzing the case of functionals
h whose projections h0 onto the family of nondecreasing functions orthogonal to
constants amount to zero.

3. Nonpositive bounds

Now we focus on evaluations (1.4) on functionals determined by elements h for
which bounds (2.6) of Theorem 2 are zero. Accordingly, we assume that the continuous
function

H0(x) =
∫ x

a
h(t)dt − x − a

b − a

∫ b

a
h(t)dt (3.1)

has no negative values in [a, b] . The problem is easily solved by means of methods
described in the previous section if (3.1) has a zero value at an interior point of the
interval.
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THEOREM 3. If H0(x) � 0 for all a � x � b and H0(θ) = 0 for some a < θ < b ,
then for all g ∈ C , we have ∫ b

a
g(x)h(x)dx � 0, (3.2)

and the equality holds for the function satisfying

gθ(x) =

⎧⎪⎨
⎪⎩

−
[

b−θ
(θ−a)(b−a)

]1/2
, a < x < θ,[

θ−a
(b−θ)(b−a)

]1/2
, θ < x < b.

(3.3)

Proof. By assumption, h0(x) = 0 , a � x � b , and (3.2) immediately follows
from (2.3). By Theorem 1 again, the equality holds if g is constant on (a, θ) and
(θ, b) , and a positive jump is admitted at θ . The only such a function that is orthogonal
to constants and has the unit norm is presented in (3.3). �

If (3.1) has a single zero in (a, b) , then (3.3) is the unique element of (1.3) attains
the zero bound in (3.2). Clearly, we can freely choose its values at a , b , and θ . If
(3.1) has several zeros, then there exist various stepwise functions in (1.3) with jumps
at the zeros of H0 . If it happens that H0(x) = 0 on an interval, then bound (3.2) is
attained by functions strictly increasing on the interval.

All the remaining cases are treated in the following theorem.

THEOREM 4. If H0(x) > 0 for all a < x < b , then for every g ∈ C holds∫ b

a
g(x)h(x)dx � − inf

a<x<b
H0(x)

[
b − a

(x − a)(b − x)

]1/2

. (3.4)

If the infimum of the right-hand side of (3.4) is attained at some a < θ < b , then the
equality holds there for

gθ(x) =

{
− b−θ

(b−a)H0(θ) , a < x < θ,
θ−a

(b−a)H0(θ) , θ < x < b.
(3.5)

If the infimum is attained in the limit as x ↘ a ( x ↗ b , respectively), then the equality
in (3.4) is attained in limit for sequences of functions (3.5) with θ ↘ a (θ ↗ b ,
respectively).

Proof. Recalling Theorem 1 again yields

Th(g) =
∫ b

a
g(x)h(x)dx � 0, g ∈ C. (3.6)

By assumption, the integral amounts to zero if g(x) = const. on H = (a, b) . How-
ever, no element of (1.3) is constant, because

∫ b
a g(x)dx = 0 implies g(x) = 0 and

contradicts ||g|| = 1 . Therefore we have the strict inequality in (3.6). Suppose that for
a given g ∈ C

Th(g) =
∫ b

a
g(x)h(x)dx = −t,
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for some positive number t . Function g(x)/t is orthogonal to constants, satisfies
Th(g/t) = −1 and ||g/t|| = 1/t . Obviously, both the negative and reciprocal of t
increase as t itself decreases. Therefore the original problem of maximizing functional
(1.1) over the set (1.3) is dual to that of maximizing the norm functional over the convex
set

D = {g ∈ L2(a, b) : g ↗, T1(g) = 0, Th(g) = −1}. (3.7)

We focus on the latter one. We first note that the norm functional is convex, and so

||αg1 + (1 − α)g2|| � α||g1|| + (1 − α)||g2|| � max{||g1||, ||g2||}

for every 0 < α < 1 and arbitrary functions g1, g2 . For the L2(a, b) norm, the former
inequality is equivalent to the Minkowski inequality, in which the equality is attained iff
either g1 = 0 or g2 = 0 or g2 = βg1 for some positive β (see, Mitrinović [6, Theorem
29.6, p. 57]). This implies that for arbitrary distinct g1, g2 ∈ D and 0 < α < 1 we
have

||αg1 + (1 − α)g2|| < max{||g1||, ||g2||},
which allows us to confine ourselves to the problem of maximizing the norm over the
subset of extreme points of (3.7).

We claim that the subset consists of two-valued functions only. As we noticed,
constant functions do not belong to (3.7). A two-valued function with a positive jump
at a < θ < b is an element of the set if its values α < 0 < β satisfy the equations

α(θ − a) + β(b − θ) = 0,

αH0(θ) − βH0(θ) = −1.

They have the forms (3.5), dependent on the jump points θ . We easily check that
(3.5) are extreme in (3.7). Indeed, any proper convex combination of nondecreasing
functions is constant on (a, θ) and (θ, b) if both the components are constant on the
respective intervals. The only element of (3.7) with constant values there has the form
(3.5).

Now we verify that any function from (3.7) with n values (n � 3 ) is a convex
combination of (3.5). Suppose that g ∈ D has n− 1 jumps at a < θ1 < . . . < θn−1 <
b , say. Obviously, the linear subspace of n -valued elements of L2(a, b) orthogonal to
constants has dimension n − 1 . Functions gθi , i = 1, . . . , n− 1 , form the basis of the
subspace. Indeed, representations

gθi(x) =
∑
j�=i

αjigθj(x), i = 1, . . . n − 1,

are not possible for any real coefficients αij , because the left-hand side has a jump at
θi , and the right-hand side does not. It follows that

g(x) =
n−1∑
i=1

αigθi(x) (3.8)



OPTIMAL BOUNDS FOR LINEAR FUNCTIONALS ON MONOTONE FUNCTIONS 307

for some real αi , i = 1, . . . n − 1 . Since each gθi has the jump of size 1/H0(θi) > 0 ,
and (3.8) has the jump αi/H0(θi) there, which is nonnegative if αi � 0 . Since

−1 = Th(g) =
n−1∑
i=1

αiTh(gθi) = −
n−1∑
i=1

αi,

we conclude that (3.8) is a convex combination.
The next step of proof consists in showing that every g ∈ D is the limit of piecewise

constant elements of D . Our reasoning is standard. We represent

g = g+ − g− = max{g, 0} − min{−g, 0}
as the difference of two nonnegative functions. The former is nondecreasing and the
latter is nonincreasing. Then for every positive integer k we partition [a, b] into 2k

intervals [θi−1,k, θi,k] =
[
a + i−1

2k (b − a), a + i
2k (b − a)

]
, i = 1, . . . , 2k , and construct

stepwise interpolations

g+
k (x) =

2k∑
i=1

g+(θi−1,k)1[θi−1,k ,θi,k ](x), (3.9)

g−k (x) =
2k∑
i=1

g−(θi,k)1[θi−1,k ,θi,k ](x) (3.10)

of g+ and g− , respectively. Sequences (3.9) and (3.10) are nondecreasing and converge
pointwise to g+ and g− , respectively. By the monotone convergence theorem, ||g+

k −
g+|| → 0 and ||g−k − g−|| → 0 so that gk = g+

k − g−k tend to g in the norm. This also
implies that ∫ b

a
gk(x)dx = T1(gk) → T1(g) = 0,

∫ b

a
gk(x)h(x)dx = Th(gk) → Th(g) = −1,

∫ b

a
gk(x)g(x)dx = Tg(gk) → Tg(g) = ||g||2.

Therefore for

g̃k =
gk − T1(gk)
|Th(gk)| ∈ D,

we have

||g − g̃k||2 =
∣∣∣∣
∣∣∣∣g − gk

|Th(gk)| +
T1(gk)
|Th(gk)|

∣∣∣∣
∣∣∣∣
2

= ||g||2 +
||gk||2
T2

h (gk)
+

T2
1 (gk)

T2
h (gk)

(b − a)

− 2
Tg(gk)
|Th(gk)| − 2

T2
1 (gk)

T2
h (gk)

−→ 0 as k → ∞.
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Summing up, we proved that each element of (3.7) can be approximated by convex
combinations of two-valued functions (3.5), and the procedure results in decreasing the
norm. Therefore we can restrict ourselves to examining the norms

||gθ || =

[∫ θ

a

(b − θ)2

(b − a)2H2
0(θ)

dx +
∫ b

θ

(θ − a)2

(b − a)2H2
0(θ)

dx

]1/2

=
[
(θ − a)(b − θ)

b − a

]1/2 1
H0(θ)

, a < θ < b.

Coming back to the original problem, we obtain

|||Th||| = − 1
supa<θ<b ||gθ ||

= − inf
a<θ<b

[
b − a

(θ − a)(b − θ)

]1/2

H0(θ). (3.11)

We finally note that the function in (3.11) is positive continuous on (a, b) . If the
infimum is attained at some a < θ0 < b , then |||Th||| = Th(gθ0) . If the infimum is
attained in limit for θ ↘ a (θ ↗ b ), then

|||Th||| = lim
θ↘a(θ↗b)

Th(gθ). � (3.12)

If the function in (3.4) has aminimum, then the respective bound is strictly negative.
If the minimum is unique, then it is attained by a unique two-valued function (3.7). If
the function in (3.4) has more global minima, the functional is minimized by respective
functions (3.7). By the Minkowski theorem, no other functions attain the minimum.
The sequences of functions for which the functional attains the limiting value do not
need to consist of two-valued functions. If (3.12) holds, then |||Th||| may be either
negative or equal to zero. The null value occurs in the example of sharp bounds on the
sample minimum

E
mn − μ

σ
� − inf

0<θ<1

1 − θ − (1 − θ)n

[θ(1 − θ)]1/2
= 0

(cf. (1.8) and (1.10)). This is rather a common case. In order to get a strictly negative
bound, we need

1
H0(θ)

= O
(
(θ − a)−1/2

)
, as θ ↘ a,

1
H0(θ)

= O
(
(b − θ)−1/2

)
, as θ ↗ b.

This holds if

1
h0(θ)

= O
(
(θ − a)1/2

)
, as θ ↘ a,

1
h0(θ)

= O
(
(b − θ)1/2

)
, as θ ↗ b,
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which means that the centered function (2.1) has to tend to infinity at the domain borders
sufficiently fast.

We finally note that similar results can be derived for the Hilbert spaces L2((a, b) ,
W(dx)) with non-uniformmeasures generated by nondecreasing functions W on (a, b) .
Since the weighted versions of the Schwarz and Minkowski inequalities are well-known,
the only problem is to establish a counterpart of Theorem 1. The idea is sketched below.
Suppose that W(a) = 0 and W(b) < ∞ , which implies that constant functions belong
to the spaces. If h ∈ L2((a, b), W(dx)) , then∫ b

a
h(x)W(dx) =

∫ W(b)

0
h(W−1(x))dx

is finite, where

W−1(x) = sup{y : W(y) � x}, 0 < x < W(b).

Function

HW(x) =
∫ x

0
h(W−1(t))dt, 0 < x < W(b),

has a greatest convex minorant HW , with the derivative hW . Put h(x) = hW(W(x)) ,
a < x < b . Then for all nondecreasing g ∈ L2((a, b), W(dx)) yields∫ b

a
g(x)h(x)W(dx) =

∫ W(b)

0
g(W−1(x))h(W−1(x))dx

�
∫ W(b)

0
g(W−1(x))hW(x))dx

=
∫ b

a
g(x)h(x)W(dx).

Observe that h is the projection of h onto the convex cone of nondecreasing functions
in L2((a, b), W(dx)) .
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