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(communicated by L. Maligranda)

Abstract. By an elementary method, we exactly determine the best possible constant and its at-
taining function which satisfy ‖f ‖q � Cq‖f ′‖q (1 < q < ∞) for certain class of continuously
differentiable functions on the unit interval [0, 1] .

1. Introduction and results

Let 1 � q � ∞ and ‖f ‖q the Lq -norm of a continuous function f on the unit
interval [0, 1] . Let us denote by C1[0, 1] the class of continuously differentiable real-
valued functions on [0, 1] . The original Wirtinger’s inequalities (cf. [2, p. 184–185])
assert that
(a) ‖f ‖2 � 2

π ‖f ′‖2 holds for all f ∈ C1[0, 1] with f (0) = 0 and the equality is
attained if and only if f is a multiple of sin π

2 t .
(b) ‖f ‖2 � 1

π ‖f ′‖2 for all f ∈ C1[0, 1] with f (0) = f (1) = 0 and the equality is
attained if and only if f is a multiple of sin πt .
After that, many mathematicians have investigated Wirtinger-type inequalities.

The purpose of this paper is to investigate Wirtinger’s inequality for Lq -norm by an
elementary method used in [3, 4]. Let 1 < p, q < ∞ with 1/p + 1/q = 1 . Let us
consider the function

Fp(s) =
∫ s

0

du
|u|p + 1

(−∞ < s < ∞).

Set
Tp,ω(t) = F−1

p ((1 − ω t)θp) (0 < t < 2/ω),

where ω = 1, 2 and θp =
∫ ∞

0 (up + 1)−1 du . Of course θp = π/(p sinπ/p) as is
well-known. Also we can observe that Tp,ω is a strictly decreasing C1 -function on the
open unit interval (0, 2/ω) by Lemma 1. Note that Tp,ω (1/ω) = 0 . Our main result
is stated in the following theorem.

THEOREM 1. Let 1 < p, q < ∞ with 1/p + 1/q = 1 and ω = 1, 2 . Then
‖f ‖q � Cq,ω‖f ′‖q holds for all f ∈ C1[0, 1] with f (0) = f (ω − 1) = 0 , where
Cq,ω = (q − 1)−1/q q

ωπ sin π
p . The equality is attained if and only if f is a multiple of

(|Tp,ω |p + 1)−1/q .
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REMARK 1. Since C2,ω = 2
ωπ and (T2,ω(t)2 + 1)−1/2 = sin(ωπt/2) , it follows

that the original Wirtinger’s inequalities (a) and (b) are special cases of Theorem 1.
Also the contents of Theorem 1 in case when ω = 1 and q is an even positive integer
can be observed in [2, p. 182, Theorem 256] which is implied by higher method.

REMARK2. By a simple computation,we can see that limq↘1 Cq,ω = limq→∞ Cq,ω
= 1/ω . Then ‖f ‖q � 1

ω ‖f ′‖q (q = 1,∞) holds for all f ∈ C1[0, 1] with
f (0) = f (ω − 1) = 0 by Theorem 1. In more detail,
(i) ‖f ‖∞ � ‖f ′‖∞ holds for all f ∈ C1[0, 1] with f (0) = 0 . The equality is

attained if and only if f is a multiple of t .
(ii) ‖f ‖∞ < 1

2‖f ′‖∞ holds for all f ∈ C1[0, 1] with f (0) = f (1) = 0 unless f is
the zero function.

(iii) ‖f ‖1 < 1
ω ‖f ′‖1 holds for all f ∈ C1[0, 1] with f (0) = f (ω − 1) = 0 unless f

is the zero function.
In fact, (i) and (ii) can be obtained by an easy observation. To see (iii) , let

1 < q < ∞ , ω = 1, 2 and f ∈ C1[0, 1] with f (0) = f (ω − 1) = 0 . Then

∫ 1

0
|f (t)|q dt = − 1

ω

([
|f (t)|q(1 − ω t)

]1

0

−
∫ 1

0
(|f (t)|q)′(1 − ω t) dt

)

=
1
ω

∫ 1

0
(|f (t)|q)′(1 − ω t) dt

=
q
ω

∫ 1

0
(sgn f (t))|f (t)|q−1 f ′(t)(1 − ω t) dt (by Lemma 3)

� q
ω

∫ 1

0
|f (t)|q−1|f ′(t)||1 − ω t| dt.

By letting q ↘ 0 , we have
∫ 1

0
|f (t)| dt � 1

ω

∫ 1

0
|f ′(t)||1 − ω t| dt.

This inequality implies easily (iii) .

REMARK 3. Theorem1 implies easily the following fact: For 1 � p � q � ∞ and
n � 1 , there exists a positive constant K(p, q; n) such that ‖f ‖p � K(p, q; n)‖f (n)‖q

holds for all Cn -functions f on [0, 1] with f (0) = f ′(0) = · · · = f (n−1)(0) = 0 . In
fact putting K(p, q; n) = Cn

p,1 , we obtain the desired result by Theorem 1. The similar

holds for the case of f (0) = f (1) = f ′(0) = f ′(1) = · · · = f (n−1)(0) = f (n−1)(1) =
0 . Refer to J. Brink [2] for another detail.

2. Lemmas

Unless explicitly stated otherwise, p , q and ω will be such that 1 < p, q < ∞
with 1/p + 1/q = 1 and 0 < ω � 2 .

LEMMA 1. T ′
p,ω(t) = −ωθp(|Tp,ω(t)|p + 1) (0 < t < 2/ω) .
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Proof. Since Fp(Tp,ω(t)) = (1 − ω t)θp , it follows that F′
p(Tp,ω(t))Tp,ω

′(t) =
−ωθp and hence

Tp,ω
′(t)

|Tp,ω(t)|p + 1
= −ωθp,

which implies the desired inequality. �

LEMMA 2.

lim
t↘0

tq−1Tp,ω(t) =
(

q − 1
ωθp

)1/(p−1)

(1)

lim
t↗1

(1 − t)q−1Tp,ω(t) = 0 (ω < 2) (2)

lim
t↗2/ω

(2/ω − t)q−1Tp,ω(t) = −
(

q − 1
ωθp

)1/(p−1)

. (3)

Proof. Set s = Tp,ω(t) . Then t = θp−Fp(s)
ωθp

. Hence t ↘ 0 if and only if s → ∞ .
Note that one has

tq−1Tp,ω(t) =
(

1
ωθp

)q−1

s(θp − Fp(s))q−1 (0 � s < ∞)

and so limt↘0 tq−1Tp,ω(t) exists if and only if lims→∞ s(θp − Fp(s))q−1 exists. Set
h(s) = s(θp − Fp(s))q−1 (s � 0) . Then

h′(s) = (θp − Fp(s))q−2(θp − Fp(s) − (q − 1)
s

sp + 1
) (s � 0).

Set g(s) = θp − Fp(s) − (q − 1)s/(sp + 1) (0 � s < ∞) . Then one has g(0) = θp

and lims→∞ g(s) = 0 . By differentiation

g′(s) = − 1
sp + 1

− (q − 1)
sp + 1 − psp

(sp + 1)2
=

−q
(sp + 1)2

< 0.

It implies g(s) > 0 and thus h′(s) > 0 (0 � s < ∞) so that h(s) is an increasing
function. Since

h(s) = s(θp − Fp(s))q−1 = s

(∫ ∞

s

dt
tp + 1

)q−1

� s

(
s1−p

p − 1

)q−1

=
1

(p − 1)q−1 ,

it follows that h(s) is bounded on [0,∞) . Therefore lims→∞ s(θp − Fp(s))q−1 ,
say, α exists and α > 0 . Therefore limt→0 tq−1Tp,ω(t) , say, β exists and one has
β = α · (ωθp)−q+1 . By L’Hospital’s theorem, we have

β = lim
t↘0

tq−1Tp,ω(t) = lim
t↘0

−ωθp(Tp,ω(t)p + 1)
(1 − q)t−q

=
ωθp

q − 1
lim
t↘0

tqTp,ω(t)p =
ωθpβp

q − 1
.
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Hence β = ( q−1
ωθp

)1/(p−1) .

If ω < 2 , then Tp,ω(1) < ∞ , so we have limt↗1(1 − t)q−1Tp,ω (t) = 0 . To
see (3) we remark that, since F−1

p (t) (−θp < t < θp) is an odd function,

Tp,ω(2/ω − t) = −Tp,ω(t) (0 < t < 2/ω).

Hence

lim
t↗2/ω

(2/ω − t)q−1Tp,ω(t) = − lim
t↘0

tq−1Tp,ω(t)

= −
(

q − 1
ωθp

)1/(p−1)

. �

LEMMA 3. Let f ∈ C1[0, 1] . Then |f |q ∈ C1[0, 1] and

(|f |q)′(t) = q(sgn f (t))|f (t)|q−1 f ′(t) (0 � t � 1).

Proof. Since x �→ |x|q for q > 1 is C1(−∞,∞) and f ∈ C1[0, 1] is real-
valued, |f |q is well-defined and belongs to C1[0, 1] . The formula follows directly from
(|x|q)′ = q(sgn x)|x|q−1 . �

LEMMA 4. Let f ∈ C1[0, 1] with f (0) = 0 . Then limt↘0(sgn f (t))f ′(t) ,
say αf exists and is evaluated as αf = |f ′(0)| . Additionally if f (1) = 0 , then
limt↗1(sgn f (t))f ′(t) exists and is evaluated as |f ′(1)| .

Proof. Since f ′ is continuous on [0, 1] , it follows that limt↘0(sgn f (t))f ′(t) = 0
when f ′(0) = 0 . Suppose f ′(0) > 0 . Then limt↘0 f (t)/t = f ′(t) > 0 . Hence
f (t) > 0 holds for sufficiently small t > 0 . This implies the assertion. The case
f ′(0) < 0 is similar. �

LEMMA 5. For all f ∈ C1[0, 1] with f (0) = 0 , we assume f (1) = 0 when
ω �= 1 . Then it holds

∫ 1

0
Tp,ω

′(t)|f (t)|q dt = −
∫ 1

0
Tp,ω(t)(|f (t)|q)′ dt.

Proof. Let f ∈ C1[0, 1] be as such. Since

lim
t↘0

Tp,ω(t)(|f (t)|q)′ = q lim
t↘0

Tp,ω(t)(sgn f (t))|f (t)|q−1 f ′(t) (by Lemma 3)

= q lim
t↘0

tq−1Tp,ω(t)(sgn f (t))f ′(t)
∣∣∣∣ f (t)

t

∣∣∣∣
q−1

= q

(
q − 1
ωθp

)1/(p−1)

|f ′(0)|q (by Lemmas 2 and (4)),
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it follows that limt↘0 Tp,ω(t)(|f (t)|q)′ exists. If ω < 2 , it is clear that limt↗1 Tp,ω(t)
(|f (t)|q)′ exists. If ω = 2 then

lim
t↗1

Tp,2(t)(|f (t)|q)′ = q lim
t↗1

Tp,2(t)(sgn f (t))|f (t)|q−1 f ′(t)

= q lim
t↗1

(1 − t)q−1Tp,2(t)(sgn f (t))f ′(t)
∣∣∣∣ f (t)
t − 1

∣∣∣∣
q−1

= −q

(
q − 1
ωθp

)1/(p−1)

|f ′(1)|q−1 (by Lemma 4)

and so limt↗1 Tp,2(t)(|f (t)|q)′ exists. Hence the function t → Tp,ω(t)(|f (t)|q)′ has the
unique continuous extension to [0, 1] , so that the integral of the right hand side should
converge. To show the equality, we use the integration by parts.

∫ ε1

ε0

T ′
p,ω(t)|f (t)|q dt =

[
Tp,ω(t)|f (t)|q

]ε1

ε0

−
∫ ε1

ε0

Tp,ω(t)(|f (t)|q)′ dt. (4)

Similar calculation shows

lim
t↘0

Tp,ω(t)|f (t)|q = lim
t↘0

t · tq−1Tp,ω(t)
∣∣∣∣ f (t)

t

∣∣∣∣
q

= lim
t↘0

t ·
(

q − 1
ωθp

)1/(p−1)

· |f ′(0)|q = 0.

If ω < 2 then
lim
t↗1

Tp,ω(t)|f (t)|q = Tp,ω(1)|f (1)|q = 0.

Else if ω = 2 then

lim
t↗1

Tp,2(t)|f (t)|q = lim
t↗1

(1 − t) · (1 − t)q−1Tp,2(t)
∣∣∣∣ f (t) − f (1)

t − 1

∣∣∣∣
q

= − lim
t↗1

(1 − t) ·
(

q − 1
ωθp

)1/(p−1)

· |f ′(1)|q = 0.

Taking the limit ε0 ↘ 0 , ε1 ↗ 0 , we see the left hand side of (4) thus converges,
which also show the equality of the assertion. �

Next we consider the function Sp,ω on (0, 2/ω) defined as follows:

Sp,ω(t) = (|Tp,ω(t)|p + 1)−1/q (0 < t < 2/ω).

As observed in the proof of Lemma 3, Sp,ω is a C1 -function on (0, 2/ω) . Since
limt↘0 Tp,ω(t) = ∞ , it follows that limt↘0 Sp,ω(t) = 0 . Wealso have limt↗2/ω Tp,ω(t) =
−∞ and so limt↗2/ω Sp,ω(t) = 0 . Therefore we can regard Sp,ω as a function on
[0, 2/ω ] such that Sp,ω(2/ω) = Sp,ω(0) = 0 . Actually we have more.

LEMMA6. Sp,ω is a C1 -function on [0, 2/ω ] such that Sp,ω
′(0) = −Sp,ω

′(2/ω) =
ω(p − 1)θp .
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Proof. Set s = Tp,ω(t) . Since

Sp,ω
′(t) = ωθp

p
q
· (sp + 1)−1/qsp−1 = ω(p − 1)θp

(
sp

(sp + 1)

)1/q

for sufficiently small t > 0 , it follows that

lim
t↘0

Sp,ω
′(t) = ω(p − 1)θp.

Hence limt↘0 Sp,ω(t)/t , say Sp,ω
′(0) exists and is evaluated as ω(p − 1)θp . From

the oddness property of Tp,ω(t) , we have Sp,ω(t) = Sp,ω(2/ω − t) and so Sp,ω
′(t) =

−Sp,ω
′(2/ω − t) , which implies the desired equality. �

We remark that Sp,ω(1/ω) = 1 and Sp,ω
′(1/ω) = 0 .

LEMMA 7. We have

Sp,ω(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

(
ω(1 − p)θp

∫ 1/ω

t
Tp,ω(u)p−1 du

)
(0 < t � 1/ω)

exp

(
ω(p − 1)θp

∫ 1/ω

t
(−Tp,ω(u))p−1 du

)
(1/ω < t < 2/ω).

Proof. Set s = Tp,ω(t) . Then dt = −ds/ωθp(|s|p + 1) . If 0 < t � 1/ω , then
s � 0 and

ω(1 − p)θp

∫ 1/ω

t
Tp,ω(u)p−1 du = ω(1 − p)θp

∫ Tp,ω (1)

Tp,ω (t)
sp−1 −ds

ωθp(sp + 1)

=
1 − p

p

∫ Tp,ω (t)

0

psp−1

sp + 1
ds

= −1
q

∫ Tp,ω (t)p

0

dx
x + 1

(x = sp)

= −1
q

log(Tp,ω(t)p + 1),

which implies the desired equality. Consider next the case 1/ω < t < 2/ω . By the
oddness property, we have

Sp,ω(t) = Sp,ω(2/ω − t) = exp

(
ω(1 − p)θp

∫ 1/ω

2/ω−t
Tp,ω(u)p−1 du

)

= exp

(
ω(1 − p)θp

∫ 1/ω

t
Tp,ω(2/ω − v)p−1 (−dv)

)

= exp

(
ω(1 − p)θp

∫ 1/ω

t
(−Tp,ω(v))p−1 (−dv)

)
.

So we have the lemma. �
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3. Proof of Theorem 1

Let f ∈ C1[0, 1] with f (0) = 0 . Assume f (1) = 0 if ω �= 1 . Set

Ap,ω = −
(
ωpθp

q

)1/(p−1)

= −(ω(p − 1)θp)1/(p−1).

Then one has ωAp,ωθp + (q/p)|Ap,ω |p = 0 . By the Hölder-Rogers and Young inequal-
ities, we have∫ 1

0
Ap,ωTp,ω

′(t)|f (t)|q dt = −
∫ 1

0
Ap,ωTp,ω(t)(|f (t)|q)′ dt (by Lemma 5)

= −q
∫ 1

0
Ap,ωTp,ω(t)(sgn f (t))|f (t)|q−1 f ′(t) dt (by Lemma 3)

� q
∫ 1

0
|Ap,ωTp,ω(t)| · |f (t)|q−1|f ′(t)| dt

� q

(∫ 1

0
|Ap,ωTp,ω(t)|p|f (t)|q dt

)1/p(∫ 1

0
|f ′(t)|q dt

)1/q

� q

(
1
p

∫ 1

0
|Ap,ωTp,ω(t)|p|f (t)|q dt +

1
q

∫ 1

0
|f ′(t)|q dt

)
.

On the other hand, by Lemma 1,

Ap,ωTp,ω
′(t) − q

p
|Ap,ωTp,ω(t)|p = −ωAp,ωθp(|Tp,ω(t)|p + 1) − q

p
|Ap,ω |p|Tp,ω(t)|p

= −|Tp,ω(t)|p(ωAp,ωθp +
q
p
|Ap,ω |p) − ωAp,ωθp

= −ωAp,ωθp

for all 0 < t < 1 . Then we obtain∫ 1

0
(−ωAp,ωθp)|f (t)|q dt �

∫ 1

0
|f ′(t)|q dt.

By definition of Ap,ω ,

1
−ωAp,ωθp

=
1

ωθp

(
q

ωpθp

) 1
p−1

=
(

q
p

)q/p( 1
ωθp

)q

=
(

q
p

)q/p(p sin(π/p)
ωπ

)q

=
(

q
p

)q/p

· pq ·
(

sin(π/q)
ωπ

)q

=
1

(q − 1)

(
q sin(π/q)

ωπ

)q

.

Thus the former part of the theorem follows from
∫ 1

0
|f (t)|q dt � 1

(q − 1)

(
q sin(π/q)

ωπ

)q ∫ 1

0
|f ′(t)|q dt,
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that is
‖f ‖q � Cq,ω‖f ′‖q. (5)

To see the latter part, we see that the equality of (5) is attained if and only if all of
the following three conditions hold:

∫ 1

0
|Ap,ωTp,ω(t)|p|f (t)|q dt =

∫ 1

0
|f ′(t)|q dt (6)

|Ap,ωTp,ω(t)|p|f (t)|q = B|f ′(t)|q (0 < t < 1) , for some non-negative number B (7)

− Ap,ωTp,ω(t)(sgn f (t))|f (t)|q−1 f ′(t) � 0 (0 < t < 1). (8)

Without loss of generality, we can assume that f �= 0 . Then (6) and (7) imply B = 1 .
Then (7) holds if and only if

|Ap,ωTp,ω |p/q|f (t)| = |f ′(t)| (0 < t < 1).

Note that (8) holds if and only if (sgn f (t))f ′(t) � 0 (0 < t � min(1, 1/ω)) and
(sgn f (t))f ′(t) � 0 (min(1, 1/ω) � t < 1) . By this observation, the equality of (5)
holds if and only if

|Ap,ωTp,ω(t)|p/qf (t) = f ′(t) (0 < t � min(1, 1/ω))

and
|Ap,ωTp,ω(t)|p/qf (t) = −f ′(t) (min(1, 1/ω) � t < 1).

Since |Ap,ω |p/q = ωpθp/q and p/q = p− 1 , it follows that the equality of (5) holds if
and only if

ω(p − 1)θpTp,ω(t)p−1f (t) = f ′(t) (0 < t � min(1, 1/ω))

and
ω(p − 1)θp(−Tp,ω(t))p−1f (t) = −f ′(t) (min(1, 1/ω) < t < 1).

Then the equality of (5) holds if and only if

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ0 exp

(
ω(1 − p)θp

∫ min(1,1/ω)

t
Tp,ω(u)p−1 du

)
(0 < t � min(1, 1/ω))

λ1 exp

(
ω(p − 1)θp

∫ min(1,1/ω)

t
(−Tp,ω(u))p−1 du

)
(min(1, 1/ω) � t < 1)

for some real numbers λ0, λ1 . In this case one finds λ0 = λ1 = f (min(1, 1/ω)) .
We see that this function is a multiple of Sp,ω by Lemma 7. By Lemma 6, Sp,ω is
a C1 -function on [0, 1] such that Sp,ω(0) = 0 . When ω = 2 or ω < 2 , one has
Sp,ω(1) = 0 or Sp,ω(1) �= 0 respectively. By the condition of f the equality of (5)
holds if and only if ω = 1, 2 and f is a multiple of Sp,ω . Now we finish the proof of
the theorem.



ON WIRTINGER’S INEQUALITY AND ITS ELEMENTARY PROOF 319

Acknowledgement The authors are grateful to the referee for his or her valuable
comments. The authors thank Shin Takayanagi. The idea of our proofs flashed into our
mind during oral communication with her. The first and second authors are partially
supported by the Grants-in-Aid for Scientific Research, The Ministry of Education,
Science, Sports and Culture, Japan.

RE F ER EN C ES

[1] J. BRINK, Inequalities involving f p and f (n)
q for f with n zeros, Pacific J. Math., 42, (1972), 289–311.
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