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SOME EXTENSIONS OF UNIVALENT CONDITIONS
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DANIEL BREAZ AND SHIGEYOSHI OWA

(communicated by D. Bainov)

Abstract. Three subclasses S(p) , T2 and T2,μ of analytic functions f (z) in the open unit disk
U are introduced. The object of the present paper is to discuss some extensions of univalent
conditions for an integral operator Fα,β (z) of f (z) belonging to the classes S(p) , T2 and
T2,μ .

1. Introduction

Let A be the class of analytic functions f (z) of the form

f (z) = z +
∞∑
k=2

akz
k

in the open unit disk U = {z ∈ C | |z| < 1} . Also, let S denote the subclass of A
consisting of functions f (z) which are univalent in U . For some real number p with
0 < p�2 , we define the subclass S(p) of A consisting of all functions f (z) which
satisfy ∣∣∣∣∣

(
z

f (z)

)′′∣∣∣∣∣ � p (z ∈ U).

Singh [3] has shown that if f (z) ∈ S(p) , then f (z) satisfies∣∣∣∣∣ z
2f ′(z)

(f (z))2 − 1

∣∣∣∣∣ � p|z|2 (z ∈ U).

Furthermore, we define the subclass T2,μ of S consisting of functions f (z) given by

f (z) = z +
∞∑
k=3

akz
k (a2 = 0)

which satisfy ∣∣∣∣∣ z
2f ′(z)

(f (z))2 − 1

∣∣∣∣∣ < μ (z ∈ U)

for some μ (0 < μ �1) . Let us denote by T2,1 ≡ T2 when μ = 1 .
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To discuss our problems, we have to recall here the following results for the classes
T2 , S(p) and T2,μ .

SCHWARZ LEMMA Let the function g(z) be regular in the open unit disc U with
g(0) = 0 . If |g (z)| � 1 (z ∈ U) , then

|g (z)| � |z| (z ∈ U).

Equality holds only for g(z) = εz (|ε| = 1) .

THEOREM 1. [2] Let α ∈ C, Re(α) > 0 and f (z) ∈ A . If f (z) satisfies

1 − |z|2Re(α)

Re(α)

∣∣∣∣ zf ′′(z)
f ′(z)

∣∣∣∣ �1 (z ∈ U),

then the integral operator

Fβ(z) =
{
β
∫ z

0
tβ−1f ′(t) dt

}1/β

(1)

is univalent in U .

For f (z) ∈ T2 , we know

THEOREM 2. [1] Let f i(z) ∈ T2 and

f i(z) = z +
∞∑
k=3

ai
kz

k (2)

for ∀i = 1, n, n ∈ N∗ . If |f i(z)|� 1 (z ∈ U) , then, for β ∈ C ,

Fα,β(z) =

{
β
∫ z

0
tβ−1

n∏
i=1

(
f i(t)

t

)1/α

dt

}1/β

∈ S, (3)

where α, β ∈ C, Re(α)� 3n
|α| , and Re(β)�Re(α).

Further, for f (z) ∈ T2,μ , we see:

THEOREM 3. [1] Let f i(z) defined by (2) be in the class T2,μ for ∀i = 1, n, n ∈
N∗ . If |f i(z)|� 1 (z ∈ U) , then, for β ∈ C , the integral operator Fα,β defined by (3)

is in the class S , where α, β ∈ C, Re(α)� n(μ + 2)
|α| , and Re(β)�Re(α).

Also, for f (z) ∈ S(p) , we introduce:

THEOREM 4. [1] Let f i(z) defined by (2) be in the class S(p) for ∀i = 1, n, n ∈
N∗ . If |f i(z)|� 1 (z ∈ U) , then, for β ∈ C , the integral operator Fα,β defined by (3)

is in the class S , where α, β ∈ C, Re(α)� n(p + 2)
|α| , and Re(β)�Re(α).
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2. Some extensions

We discuss about some extensions for the results introduced in the previous section.
The first extension is contained in

THEOREM 5. Let f i(z) defined by (2) be in the class T2 for ∀i = 1, n, n ∈ N∗ .
If |f i(z)|� M (M �1 ; z ∈ U) , then, for β ∈ C , the integral operator Fα,β defined by

(3) is in the class S , where α, β ∈ C, Re(α)� (2M + 1)n
|α| , and Re(β)�Re(α).

Proof. Let us define the function h(z) by

h(z) =
∫ z

0

n∏
i=1

(
f i(t)

t

)1/α

dt

for f i(z) ∈ T2 . Since

h′(z) =
n∏

i=1

(
f i(z)

z

)1/α

,

we see that h(0) = 0 and h′(0) = 1 . Further, noting that

h′′(z) =
n∑

i=1

(
Bi

α
h′(z)

)

with

Bi =
(

z
f i (z)

)
zf ′

i (z) − f i (z)
z2

(i = 1, 2, 3, . . . , n),

we obtain that

zh′′(z)
h′(z)

=

z
1
α

h′(z)
n∑

i=1

Bi

h′(z)
=

z
α

n∑
i=1

Bi (z ∈ U). (4)

Replacing Bi in the formula (4), we obtain

zh′′(z)
h′(z)

=
1
α

n∑
i=1

(
zf ′

i (z)
f i(z)

− 1

)
. (5)

It follows from (5) that

1 − |z|2Re(α)

Re(α)

∣∣∣∣ zh′′(z)h′(z)

∣∣∣∣ � 1 − |z|2Re(α)

|α|Re(α)

n∑
i=1

(∣∣∣∣∣ z
2f ′

i (z)

(f i(z))
2

∣∣∣∣∣
∣∣∣∣ f i(z)

z

∣∣∣∣+ 1

)
.

Since |f i(z)|�M (z ∈ U) , applying the Schwarz lemma, we know that∣∣∣∣ f i(z)
z

∣∣∣∣ � M (z ∈ U).
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Therefore, we obtain that

1 − |z|2Re(α)

Re(α)

∣∣∣∣ zh′′(z)h′(z)

∣∣∣∣ � 1 − |z|2Re(α)

|α|Re(α)

n∑
i=1

(∣∣∣∣∣ z
2f ′

i (z)

(f i(z))
2

∣∣∣∣∣ M + 1

)
. (6)

Note that f i(z) ∈ T2 implies∣∣∣∣∣ z
2f ′

i (z)

(f i(z))
2

∣∣∣∣∣ =

∣∣∣∣∣ z
2f ′

i (z)

(f i(z))
2 − 1 + 1

∣∣∣∣∣
�
∣∣∣∣∣ z

2f ′
i (z)

(f i(z))
2 − 1

∣∣∣∣∣+ 1 < 2 (z ∈ U).

(7)

Thus, it follows from (6) and (7) that

1 − |z|2Re(α)

Re(α)

∣∣∣∣ zh′′(z)h′(z)

∣∣∣∣�
(
1 − |z|2Re(α)

)
(2M + 1)n

|α|Re(α)

� (2M + 1)n
|α|Re(α)

�1 (z ∈ U)

because Re(α)� (2M + 1)n
|α| . Finally, applying Theorem 1 for the function h(z) , we

prove that Fα,β ∈ S .

REMARK 1. If we take M = 1 in Theorem 5, then we have Theorem 2 in [1].
Therefore, Theorem 5 is an extension of Theorem 2.

Next, we derive

THEOREM 6. Let f i(z) defined by (2) be in the class T2,μ for ∀i = 1, n, n ∈ N∗ . If
|f i(z)|� M (M �1 ; z ∈ U) , then, for β ∈ C , the integral operator Fα,β defined by (3)

is in the class S , where α, β ∈ C, Re(α)� ((μ + 1)M + 1)n
|α| , and Re(β)�Re(α).

Proof. Defining the function h(z) by

h(z) =
∫ z

0

n∏
i=1

(
f i(t)

t

)1/α

dt,

we take the same steps as in the proof of Theorem 5. Then, we obtain that

1 − |z|2Re(α)

Re(α)

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣� 1 − |z|2Re(α)

|α|Re(α)

n∑
i=1

(∣∣∣∣∣ z
2f ′

i (z)

(f i(z))
2 − 1

∣∣∣∣∣ M + M + 1

)

� 1 − |z|2Re(α)

|α|Re(α)
((μ + 1)M + 1) n � 1

for f i(z) ∈ T2,μ . In view of Theorem 1, we know that Fα,β(z) ∈ S .

REMARK 2. We see that Theorem 6 is a generalization of Theorem 3 in [1].
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Finally, we discuss

THEOREM 7. Let f i(z) defined by (2) be in the class S(p) for ∀i = 1, n, n ∈ N∗ . If
|f i(z)|� M (M �1 ; z ∈ U) , then, for β ∈ C , the integral operator Fα,β defined by (3)

is in the class S , where α, β ∈ C, Re(α)� ((p + 1)M + 1)n
|α| , and Re(β)�Re(α).

Proof. Considering

h(z) =
∫ z

0

n∏
i=1

(
f i(t)

t

)1/α

dt,

and spending the same way as in the proof of Theorem 5, we see that

1 − |z|2Re(α)

Re(α)

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣� 1 − |z|2Re(α)

|α|Re(α)

n∑
i=1

(∣∣∣∣∣ z
2f ′

i (z)

(f i(z))
2 − 1

∣∣∣∣∣ M + M + 1

)

� 1 − |z|2Re(α)

|α|Re(α)
(
(p|z|2 + 1)M + 1

)
n � 1

for f i(z) ∈ S(p) . Therefore, Fα,β(z) ∈ S follows from Theorem 1.

REMARK 3. Letting M = 1 in Theorem 7, we see that Theorem 7 is a generaliza-
tion of Theorem 4 in [1].
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