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CERTAIN PROPERTIES ARISING FROM SOME

INEQUALITIES CONCERNING SUBCLASSES

OF MULTIVALENTLY ANALYTIC FUNCTIONS

HÜSEYIN IRMAK AND RAVINDER KRISHNA RAINA

(communicated by S. Owa)

Abstract. In this investigation we prove several theorems involving a general class of multiva-
lently analytic functions in the open unit disk. The applications of the main results are also
considered for multivalently starlike functions and multivalenly convex functions.

1. Introduction, notations and definitions

Let T(p) denote the class of functions f (z) of the form:

f (z) = zp + ap+1z
p+1 + ap+2z

p+2 + · · · ,

(ak ∈ C; p ∈ N = {1, 2, 3, ...}), (1.1)

which are analytic and multivalent in the open unit disk U = {z : z ∈ C and |z| < 1},
where C denotes the set of complex numbers. A function f (z) belonging to T(p) is
said to be multivalently starlike of order α in U if it satisfies the inequality:

�e

(
zf ′(z)
f (z)

)
> α, (z ∈ U; 0 � α < p; p ∈ N), (1.2)

and, a function f (z) ∈ T(p) is said to be multivalently convex of order α in U if it
satisfies the inequality:

�e

(
1 +

zf ′′(z)
f ′(z)

)
> α, (z ∈ U; 0 � α < p; p ∈ N). (1.3)

By virtue of the definitions (1.2) and (1.3), it is easily seen that a function f (z) is
multivalently convex of order α in U if and only if zf ′(z)/p is multivalently starlike
of order in α in U, where f (z) ∈ Tn(p) and 0 � α < p , and p ∈ N. For their details,
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one may refer to [1] and [2] (see also [12]). Further, a function f (z) ∈ T(p) is said to
be in the subclass Ωw(p;α, λ ) if it satisfies the inequality:

�e

{(
zf ′(z) + λ z2f ′′(z)

(1 − λ )f (z) + λ zf ′(z)

)w
}

> α, (1.4)

where z ∈ U, w ∈ C∗ := C − {0}, 0 � λ � 1, 0 � α < p, and p ∈ N.
Here and throughout this paper, the value of the complex expressions like(

zf ′(z) + λ z2f ′′(z)
(1 − λ )f (z) + λ zf ′(z)

)w

(f (z) ∈ T(p); w ∈ C∗; 0 � λ � 1),

is taken to be as its principal value.
We mention below some of the subclasses of functions Ωw(p;α, λ ) (defined

above). Indeed, we have:

Vw(p;α) ≡ Ωw(p;α, 0) (w ∈ C∗; 0 � α < p; p ∈ N), (1.5)

Ww(p;α) ≡ Ωw(p;α, 1) (w ∈ C∗; 0 � α < p; p ∈ N), (1.6)

Uw(α, λ ) ≡ Ωw(1;α, λ ) (w ∈ C∗; 0 � α < 1), (1.7)

TSKδ
λ (p;α) ≡ Ωδ (p;α, λ ) (δ ∈ R∗; 0 � α < p; p ∈ N) (see[3]), (1.8)

TSδ (p;α) ≡ TSKδ
0 (p;α) (δ ∈ R∗; 0 � α < p; p ∈ N), (1.9)

TKδ (p;α) ≡ TSKδ (p;α) (δ ∈ R∗; 0 � α < p; p ∈ N), (1.10)

Tλ (p;α) ≡ TSK1
λ (p;α) (0 � λ � 1; 0 � α < p; p ∈ N) (see[6]), (1.11)

where R denotes the set of real numbers and R∗ := R − {0} .
In particular:

S(p;α) ≡ TS 1(p;α), K(p;α) ≡ TK1(p;α)) (0 � α < p; p ∈ N),
S(α) ≡ S(1;α), K(α) ≡ K(1;α) (0 � α < 1),

S(p) ≡ S(p; 0), K(p) ≡ K(p; 0),

and
S ≡ S(1; 0), K ≡ K(1; 0).

From the literature, we well know that the important subclasses in the Geometric
Function Theory such as the multivalently starlike functions S(p;α) of order α (0 �
α < p; p ∈ N) in U, the multivalently convex functions K(p;α) of order α (0 �
α < p; p ∈ N) in U, the multivalently starlike functions S(p) in U, the multivalently
convex functions K(p) in U, the starlike functions S(α) of order α (0 � α < 1) in
U, the convex functions K(α) of order α (0 � α < 1) in U, the starlike functions
S in U, and the convex functions K in U, are seen to be easily identifiable with the
aforementioned classes ([1], [2] and [13]).

By introducing a general subclass Ωw(p;α, λ ), w is a complex number with
w �= 0, of functions f (z) ∈ T(p) satisfying the inequality (1.4), our motive in this paper
is to obtain sufficient conditions for a function to belong to the above subclass. The other
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results investigated include certain inequalities concerning functions of multivalently
starlikeness and multivalently convexity in the open unit disk. Several corollaries are
deduced as worthwhile consequences of our main results. We note that some of the
results in this investigation are also generalizations of the results of the earlier paper in
[3]. Inequalities concerning analytic and multivalent functions were also studied in [4],
[6]-[8], and [10]-[12].

2. The main results

Before stating and proving our main results, we need the following assertion which
is popularly known as Jack’s Lemma (see [9]).

LEMMA 1. Let w(z) be non-constant and analytic function in the open unit disk
U, such that w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1
at a point z0 , then z0w′(z0) = cw(z0), where c � 1 .

THEOREM 1. Let f (z) ∈ T(p), w ∈ C∗, 0 � α < p, p ∈ N and z ∈ U. Then,
if the function F(z), defined by

F(z) = (1 − λ )f (z) + λ zf ′(z) (0 � λ � 1), (2.1)

satisfies any one of the cases of the following inequalities:

�e

⎛
⎜⎝1 + z

(F′′(z)
F′(z) − F′(z)

F(z)

)
1 − pw

(
zF′(z)
F(z)

)−w

⎞
⎟⎠

{
< |w|−2�e{w} when �e{w} > 0

> |w|−2�e{w} when �e{w} < 0
(2.2)

or

�m

⎛
⎜⎝1 + z

(F′′(z)
F′(z) − F′(z)

F(z)

)
1 − pw

(
zF′(z)
F(z)

)−w

⎞
⎟⎠

{
< |w|−2�m{w} when �m{w} > 0

> |w|−2�me{w} when �m{w} < 0,
(2.3)

then f (z) ∈ Ωw(p; β , λ ), where β := �e {pw} − |(p − α)w| � 0 .

Proof. Let f (z) ∈ T(p) and the function F(z) be defined by (2.1). With the help
of (1.1) and (2.1), we easily see that

zF′(z)
F(z)

=
p + (p + 1)cp+1z + · · ·

1 + cp+1z + · · · , (2.4)

where

ck =
{

1 + λ (k − 1)
1 + λ (p − 1)

}
ak (k = p + 1, p + 2, ...) ,

and
z ∈ U, 0 � λ � 1, 0 � α < p, and p ∈ N.
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Let us define a function v(z) by(
zF′(z)
F(z)

)w

− pw = (p − α)wv(z) (z ∈ U; w ∈ C∗; 0 � α < p; p ∈ N), (2.5)

where the values of above complex powers are considered to be as their principal values.
Clearly, the function v(z) defined above is analytic in U with v(0) = 0. Differ-

entiation of (2.5) with respect to the variable z gives us

1 + z

(
F′′(z)
F′(z)

− F′(z)
F(z)

)
=

zv′(z)(p − α)w

w[pw + (p − α)wv(z)]
(w ∈ C∗). (2.6)

Hence, from (2.5) and (2.6), we get

H(z) :=
1 + z

(F′′(z)
F′(z) − F′(z)

F(z)

)
1 − pw

(
zF′(z)
F(z)

)−w =
1
w

· zv′(z)
v(z)

(z ∈ U; w ∈ C∗). (2.7)

We now claim that |v(z)| < 1 in U. For otherwise (by Lemma), there exists a
point z0 ∈ U such that z0v′(z0) = cv(z0), where |v(z0)| = 1 (c � 1).

Therefore, (2.7) yields

�e {H(z0)} =
c

|w|2 �e{w}

⎧⎪⎪⎨
⎪⎪⎩

� 1
|w|2 · �e{w} when �e{w} > 0

� 1
|w|2 · �e{w} when �e{w} < 0,

(2.8)

and also

�m {H(z0)} =
c

|w|2 �m{w}

⎧⎪⎪⎨
⎪⎪⎩

� 1
|w|2 · �m{w} when �m{w} > 0

� 1
|w|2 · �m{w} when �m{w} < 0,

(2.9)

which contradict the assumptions in (2.2) and (2.3), respectively. Therefore, |v(z)| < 1
holds true for all z ∈ U, and we conclude from (2.5) that∣∣∣∣

(
zF′(z)
F(z)

)w

− pw

∣∣∣∣ = |(p − α)wv(z)| < |(p − α)w| (2.10)

which implies that

�e

{(
zF′(z)
F(z)

)w}
> �e {pw} − |(p − α)w| � 0, (2.11)

where z ∈ U, w ∈ C∗, 0 � α < p, and p ∈ N.
Hence f (z) ∈ Ωw(p; β , λ ), where β = �e {pw} − |(p − α)w| .

REMARK 1. If we choose the complex parameter w as w := δ ∈ R∗ in the
Theorem 1, we arrive at the result which was earlier given by Irmak and Raina in [3].
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THEOREM 2. Let z ∈ U; δ ∈ R∗; n, m, p ∈ N; q − l = n − m ∈ N; l ∈ N0; and
f (z) ∈ T(n); g(z) ∈ T(m). If

�e

⎧⎨
⎩

zD1+l
(

f (z)
g(z)

)
Dl

(
f (z)
g(z)

)
⎫⎬
⎭

⎧⎪⎨
⎪⎩

< q − l +
1
2δ

when δ > 0

> q − l +
1
2δ

when δ < 0,

(2.12)

then

�e

{[
(q − l)!

q!
· zl−q · Dl

(
f (z)
g(z)

)]δ}
> 0, (2.13)

where

Dl{h(z)} =
s!

(s − l)!
zs−l +

∞∑
k=s+1

k!
(k − l)!

akz
k−l,

(l � s; l ∈ N0 := N ∪ {0})
(2.14)

when
h(z) = zs + as+1z

s+1 + as+2z
s+2 + · · · ∈ T(s) (s ∈ N). (2.15)

Proof. Let f (z) ∈ T(n) and g(z) ∈ T(m) with, of course, n − m ∈ N. Since

f (z)
g(z)

= zq + c1z
1+q + c2z

2+q + · · · ∈ T(q) (q = n − m ∈ N),

and using the definition of the operator Dl{·} given by (2.14), we define a function
w(z) by [

(q − l)!
q!

· zl−q · Dl

(
f (z)
g(z)

)]δ
= 1 + w(z) (z ∈ U; δ ∈ R∗), (2.16)

where the value of the above power is taken to be its principal value. Obviously, the
function w(z) is analytic in U and w(0) = 0.

Differentiating (2.16), we find

l − q +
zD1+l

(
f (z)
g(z)

)
Dl

(
f (z)
g(z)

) =
1
δ
· zw′(z)
1 + w(z)

. (2.17)

If we next suppose that there exists a point z0 ∈ U such that z0w′(z0) = cw(z0), where
|w(z0)| = 1 (c � 1), i.e., w(z0) = eiθ (θ ∈ [0, 2π)− {π}), then (2.17) gives

�e

⎧⎪⎨
⎪⎩

zD1+l
(

f (z)
g(z)

)
Dl

(
f (z)
g(z)

)
∣∣∣∣∣∣
z=z0

⎫⎪⎬
⎪⎭ = q − l +

1
δ

�e

(
z0w′(z0)

1 + w(z0)

)

= q − l +
c
δ

�e

(
eiθ

1 + eiθ

)
⎧⎪⎨
⎪⎩

� q − l +
1
2δ

when δ > 0

� q − l +
1
2δ

when δ < 0.

(2.18)
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But the inequalities in (2.18) contradict the inequalities in (2.12). Hence |w(z)| < 1
for all z ∈ U, and therefore (2.16) yields∣∣∣∣∣

[
(q − l)!

q!
· zl−q · Dl

(
f (z)
g(z)

)]δ
− 1

∣∣∣∣∣ = |w(z)| < 1,

which evidently implies (2.13). The desired proof is thus completed.

The following Theorem 3 (below) which was earlier stated by Irmak and Raina
(see [3]) can easily be obtained, when we take l := 0 in Theorem 2 under certain
conditions.

THEOREM 3. Let z ∈ U; δ ∈ R∗; 0 � α < p; n, m, p ∈ N; q = n − m ∈
N; f (z) ∈ T(n) and g(z) ∈ T(m). If f (z) satisfies the inequality:

�e

(
zf ′(z)
f (z)

) ⎧⎪⎨
⎪⎩

< q + α +
1
2δ

when δ > 0, g(z) ∈ Sm(α)

> q + α +
1
2δ

when δ < 0, g(z) �∈ Sm(α),

then

�e

{(
z−q f (z)

g(z)

)δ
}

> 0.

THEOREM 4. Let z ∈ U; δ ∈ R∗; n, m, p ∈ N; l ∈ N0; q − l = n − m ∈ N;
f (z) ∈ T(n) and g(z) ∈ T(m). If

�e

⎧⎨
⎩

zD1+l
(

f ′(z)
g′(z)

)
Dl

(
f ′(z)
g′(z)

)
⎫⎬
⎭

⎧⎪⎨
⎪⎩

< q − l +
1
2δ

when δ > 0

> q − l +
1
2δ

when δ < 0,

(2.19)

then

�e

{[
(q − l)!

q!
· zl−q · Dl

(
m
n

f ′(z)
g′(z)

)]δ}
> 0, (2.20)

where the operator Dl{·} is defined by (2.14).

Proof. Let f (z) ∈ T(n) and g(z) ∈ T(m) with n − m ∈ N. Since

m
n

f ′(z)
g′(z)

= zq + k1z
1+q + k2z

2+q + · · · ∈ T(q) (q = n − m ∈ N),

and also using the definition of Dl{·} , given by (2.14), we again define a function w(z)
by [

(q − l)!
q!

· zl−q · Dl

(
m
n
· f ′(z)
g′(z)

)]δ
= 1 + w(z) (z ∈ U; δ ∈ R∗),

then by appealing to the same technique as in the proof of Theorem 2, we arrive at the
assertion (2.20) of Theorem 3 under the conditions stated with (2.19).
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The following Theorem 5 (below) which was earlier given by Irmak and Raina in
[3] can easily be obtained when we put l := 0 under certain conditions.

THEOREM 5. Let z ∈ U; δ ∈ R∗; 0 � α < p; n, m, p ∈ N; q = n − m ∈
N; f (z) ∈ T(n) and g(z) ∈ T(m). If f (z) satisfies the inequality:

�e

(
zf ′′(z)
f ′(z)

) ⎧⎪⎨
⎪⎩

< q + α − 1 +
1
2δ

when δ > 0, g(z) ∈ Km(α)

> q + α − 1 +
1
2δ

when δ < 0, g(z) �∈ Km(α),
(2.21)

then

�e

{(
z−q m

n
f ′(z)
g′(z)

)δ
}

> 0, (2.22)

where the value of (
z−q m

n
f ′(z)
g′(z)

)δ

is taken its principal value.

Finally, ifwe select suitable values of the parameters in the general class Ωw(p;α, λ ),
then we obtain several useful results consisting of the subclasses

Vw(p;α) (w ∈ C∗; 0 � α < p; p ∈ N),

Ww(p;α) (w ∈ C∗; 0 � α < p; p ∈ N),

Uw(α, λ ) (w ∈ C∗; 0 � α < 1),

TSKδ
λ (p;α) (δ ∈ R∗; 0 � α < p; p ∈ N) (see[3]),

TSδ (p;α) (δ ∈ R∗; 0 � α < p; p ∈ N),

TKδ (p;α) (δ ∈ R∗; 0 � α < p; p ∈ N),

Tλ (p;α) (0 � λ � 1; 0 � α < p; p ∈ N) (see[6]),

S(p;α),K(p;α), (0 � α < p; p ∈ N),

S(α),K(α) (0 � α < 1),

S(p), K(p), S and K.
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Mehmet Haberal, Rector of Başkent University, who generously supports scientific
researches in all aspects. The second author was also supported by All India Council
of Technical Education (Govt. of India), New Delhi.
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