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A REMARK ON BETTER λ –INEQUALITY

JAN VYBÍRAL

(communicated by L. Pick)

Abstract. We generalize the inequality of R. J. Bagby and D. S. Kurtz [1] to a wider class of
potentials defined in terms of Young’s functions. We make use of a certain submultiplicativity
condition. We show that this condition cannot be omited.

1. Introduction

The classical Riesz potentials are defined for every real number 0 < γ < n
as a convolution operators (Iγ f )(x) = (Ĩγ ∗ f )(x) , where Ĩγ (x) = |x|γ−n . This
definition coincides with the usual one up to some multiplicative constant cγ which is
not interesting for our purpose. Burkholder and Gundy invented in [2] the technique
involving distribution function later known as good λ -inequality. This inequality dealt
with level sets of singular integral operators and of maximal operator. Later, Bagby
and Kurtz discovered in [1] that the reformulation of good λ -inequality in terms of
non-increasing rearrangement contains more information.

We generalize their approach in the following way. For every Young’s function Φ
satisfying the Δ2 -condition we define the Riesz potential

(IΦf )(x) =
∫

Rn
Φ̃−1

(
1

|x − y|n
)

f (y)dy,

where Φ̃ is Young’s function conjugated to Φ and Φ̃−1 is its inverse. Instead of
the classical Hardy-Littlewood maximal operator we work with a generalized maximal
operator

(Mϕ f )(x) = sup
Q�x

1
ϕ(|Q|)

∫
Q
|f (y)|dy,

where ϕ is a given nonnegative function on (0,∞) and the supremum is taken over all
cubes Q containing x with sides parallel to the coordinate axes such that ϕ(|Q|) > 0 .
For every measurable set Ω ⊂ R

n we denote by |Ω| its Lebesgue measure.
We prove that under some restrictive condition on function Φ one can obtain an

inequality combining the nonincreasing rearrangement of IΦf and MΦ̃−1 f . We also
show that this restrictive condition cannot be left out.
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2. Better λ –inequality

Before we state our main result, we give some definitions and recall some very
well known facts about Young’s functions and non-increasing rearrangements.

Lebesgue measure will be denoted by μ or simply be an absolute value. Let Ω be
a subset of R

n , n � 1 . We denote by M the collection of all extended scalar-valued
Lebesgue measurable functions on Ω and by M0 the class of functions in M that are
finite μ -a.e. Further let M + be the cone of nonnegative functions from M and M +

0
the class of nonnegative functions from M0 . We shall also write M (Ω), M +(Ω) and
so on when we want to emphasize the underlying space Ω .

The letter c denotes a general constant which does not depend on the parameters
involved. It may change from one occurrence to another.

DEFINITION 2.1. 1. Let φ : [0,∞) → [0,∞) be a non-decreasing and right-
continuous function with φ(0) = 0 and φ(∞) = limt→∞ φ(t) = ∞ . Then the
function Φ defined by

Φ(t) =
∫ t

0
φ(s)ds, t � 0

is said to be a Young’s function.
2. A Young’s function is said to satisfy the Δ2 –condition if there is c > 0 such

that
Φ(2t) � c Φ(t), t � 0.

3. A Young’s function is said to satisfy the ∇2 –condition if there is l > 1 such
that

Φ(t) � 1
2l
Φ(lt), t � 0.

4. Let Φ be a Young’s function, represented as the indefinite integral of φ . Let

ψ(s) = sup{u : φ(u) � s}, s � 0.

Then the function

Φ̃(t) =
∫ t

0
ψ(s)ds, t � 0,

is called the complementary Young’s function of Φ .

The following theorem puts these three notions together. For the proof see [3].

THEOREM 2.2. Let Φ be a Young’s function and Φ̃ be its complementary Young’s
function. Then Φ satisfies the Δ2 –condition if and only if Φ̃ satisfies the ∇2 –condition.

We shall need following Lemma.

LEMMA 2.3. Let Φ be a Young’s function satisfying the Δ2 —condition. Then
there is a constant c > 0 such that∫ t

0
Φ̃−1

(
1
u

)
du � c tΦ̃−1

(
1
t

)
, 0 < t < ∞
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Proof. If Φ satisfies the Δ2 —condition, then Φ̃ satisfies the ∇2 —condition. It
means that there is a real number k > 1 such that Φ̃(t) � 1

2k Φ̃(kt) for every t > 0 .
When we pass to inverses we get Φ̃−1

(
1
u

)
� l

2 Φ̃
−1

(
1
lu

)
, where l = 2k > 2 and

u > 0 . Now setting h(s) = Φ̃−1
(

1
s

)
and H(u) =

∫ u
0 h(s)ds we get 2h(s) � lh(ls)

and integrating this inequality from 0 to t we obtain 2H(t) � H(lt) . To show that H(t)
is finite for all t > 0 , write

H(t) =
∫ t

0
h(s)ds =

∞∑
k=0

∫ t/lk

t/lk+1

h(s)ds

�
∞∑
k=0

∫ t/lk

t/lk+1

lk

2k
h(lks)ds

=
∞∑
k=0

1
2k

∫ t

t/l
h(u)du < ∞.

Because h is a decreasing function, we can calculate

lth(t) �
∫ lt

t
h(s)ds = H(lt) − H(t) � 2H(t) − H(t) = H(t),

which can be rewritten as

ltΦ̃−1

(
1
t

)
�

∫ t

0
Φ̃−1

(
1
u

)
du.

DEFINITION 2.4. The distribution function μf of a function f in M0(Ω) is given
by

μf (λ ) = μ({x ∈ Ω : |f (x)| > λ}), λ � 0.

For every f ∈ M0(Ω) we define its nonincreasing rearrangement f ∗ by

f ∗(t) = inf{λ : μf (λ ) � t}, 0 � t < ∞
and its maximal function f ∗∗ by

f ∗∗(t) = t−1
∫ t

0
f ∗(u)du, 0 < t < ∞.

Assume now that Young’s function Φ satisfies the Δ2 –condition. Using the
classical O’Neil inequality (see [4]) and Lemma 2.3 we obtain

(IΦf )∗(t) � c

{
Φ̃−1

(
1
t

) ∫ t

0
f ∗(u)du +

∫ ∞

t
f ∗(u)Φ̃−1

(
1
u

)
du

}
, (1)

We shall derive a better λ -inequality connecting the operators IΦ and MΦ̃−1 .

THEOREM2.5. Let us suppose that a Young’s function Φ satisfies the Δ2 –condition.
Let us further suppose that there is a constant c1 > 0 such that

Φ̃−1(s)Φ̃−1(1/s) < c1, s > 0. (2)
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Then there is a constant c2 > 0 , such that for every function f and every positive
number t

(IΦf )∗(t) � (IΦ|f |)∗(t) � c2 (MΦ̃−1 f )∗(t/2) + (IΦ|f |)∗(2t) (3)

Proof. We may assume that given function f is nonnegative.
First we shall estimate the size of the level set G = {x ∈ R

n : (IΦg)(x) > λ} for
function g ∈ L1(Rn) . According to (1), |G| < ∞ . Hence we can find a real number
R � 0 such that |G| = |B(0, R)| . We can write

λ |G| =
∫

G
λ �

∫
G
(IΦg)(x)dx

=
∫

G

∫
Rn

g(y)Φ̃−1

(
1

|x − y|n
)

dydx

=
∫

Rn

∫
G
Φ̃−1

(
1

|x − y|n
)

dxg(y)dy

� ||g||1
∫

B(0,R)
Φ̃−1

(
1
|x|n

)
dx

= ||g||1αn

∫ |G|/αn

0
Φ̃−1(1/s)ds.

Dividing this inequality by |G| and using the Lemma 2.3 we obtain

λ � ||g||1 αn

|G|
∫ |G|/αn

0
Φ̃−1(1/s)ds � c̃ ||g||1Φ̃−1

(
1
|G|

)
.

This can be rewritten as

|G| � 1

Φ̃
(

λ
c̃||g||1

) , (4)

where c̃ is independent of g and λ .
We can now pass to the proof of our theorem which is mainly based on [1]. For

a given function f � 0 and a real number t > 0 we shall denote by E the set
{x ∈ R

n : (IΦf )(x) > (IΦf )∗(2t)} . Then |E| � 2t and we can find an open set Ω ,
|Ω| < 3t, E ⊂ Ω . Now using Whitney covering theorem (see [5]) we can find cubes
Qk with disjoint interiors, such that Ω = ∪∞

k=1Qk and diam Qk � dist (Qk, R
n \Ω) �

4 diam Qk .
We want to show that there is a constant C > 0 such that for every f , t and for

every corresponding cube Qk

|{x ∈ Qk : IΦf (x) > C(MΦ̃−1 f )(x) + (IΦf )∗(2t)}| � 1
6
|Qk|. (5)

Then we would have

|{x ∈ R
n : IΦf (x) > C(MΦ̃−1 f )(x) + (IΦf )∗(2t)}| � 1/6

∑
|Qk| � t/2
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and thus

|{x ∈ R
n : IΦf (x) > C(MΦ̃−1 f )∗(t/2) + (IΦf )∗(2t)}|

� |{x ∈ R
n : IΦf (x) > C(MΦ̃−1 f )(x) + (IΦf )∗(2t)}|

+ |{x ∈ R
n : (MΦ̃−1 f )(x) > (MΦ̃−1 f )∗(t/2)}|

� t/2 + t/2 = t,

which finishes the proof.
To prove (5) fix k ∈ N and choose xk ∈ (Rn \Ω) so that dist (xk, Qk) �

4 diam (Qk) . Let Q be a cube with center at xk having diameter 20 diam (Qk) . Split
f = g+h = f χQ + f χRn\Q . We may assume that g ∈ L1(Rn) , otherwise the right-hand
side of (3) would be infinite.

We shall prove that for C1 and C2 large enough

|{x ∈ Qk : (IΦg)(x) > C1(MΦ̃−1 f )(x)}| � 1/6|Qk|, (6)

and, for every x ∈ Qk ,

IΦh(x) � C2(MΦ̃−1 f )(x) + IΦf (xk) � C2(MΦ̃−1 f )(x) + (IΦf )∗(2t), (7)

which together gives (5).
For the first inequality, notice that for x ∈ Qk

(MΦ̃−1 f )(x) � 1

Φ̃−1(|Q|)
∫

Q
g =

||g||1
Φ̃−1(|Q|) .

Using (4) now gives

|{x ∈ Qk : (IΦg)(x) > C1(MΦ̃−1 f )(x)}| �
∣∣∣∣
{

x ∈ Qk : (IΦg)(x) >
C1||g||1
Φ̃−1(|Q|)

}∣∣∣∣
� 1

Φ̃
(

C1

c̃Φ̃−1(|Q|)

) ,

where c̃ is the constant from (4). The last expression is less then |Qk|/6 for C1 big
enough (here we use (2) again).

In the proof of the second inequality we shall use two observations. The first is
that ∣∣∣∣Φ̃−1

(
1

|x − y|n
)
− Φ̃−1

(
1

|xk − y|n
)∣∣∣∣ � c

|xk − x|
|x − y| Φ̃

−1

(
1

|x − y|n
)

(8)

with c independent of k , y ∈ (Rn \ Q) and x ∈ Qk .
The second is that for any δ > 0 and any x ∈ R

n

∫
y:|x−y|>δ

δ
f (y)
|x − y| Φ̃

−1

(
1

|x − y|n
)

dy � c MΦ̃−1 f (x). (9)
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The proof of (7) now follows easily. For every x ∈ Qk we get

IΦh(x) − IΦf (xk) � IΦh(x) − IΦh(xk)

�
∫

Rn\Q

∣∣∣∣Φ̃−1

(
1

|x − y|n
)
− Φ̃−1

(
1

|xk − y|n
)∣∣∣∣ f (y)dy

� c|xk − x|
∫

Rn\Q

1
|x − y| Φ̃

−1

(
1

|x − y|n
)

f (y)dy

� cMΦ̃−1 f (x).

It remains to prove (8) and (9). Proof of (9) is a combination of definition of
MΦ̃−1 and (2).

To prove (8) let us write Φ̃(t) =
∫ t

0 ϕ̃(u)du and A(t) = Φ̃−1(t−n) for t > 0 .
Then

1
s

∫ s

0
ϕ̃(u)du � ϕ̃(s), s > 0

or, equivalently, Φ̃(s) � sΦ̃′(s) for s > 0 . Now we set s = A(t) and obtain

−tA′(t) =
nt−n

Φ̃′(A(t))
� cA(t).

Finally the left hand side of (8) can be estimated by

|A(|x − y|) − A(|xk − y|)| � c

∣∣∣∣∣
∫ |xk−y|

|x−y|

A(t)
t

dt

∣∣∣∣∣ � c
|xk − x|
|x − y| A(|x − y|).

In the following example we will show that the assumption (2) cannot be omitted.

THEOREM 2.6. There is a Young’s function Φ satisfying the Δ2 —condition for
which

sup
f ,t>0

(IΦf )∗(t) − (IΦf )∗(2t)
(MΦ̃−1 f )∗(t/2)

= ∞

Proof. Set

Φ̃(u) =

⎧⎨
⎩

u3 if 0 < u < 1

3
2
u2 − 1

2
if 1 < u < ∞

, ϕ̃(u) =

{
3u2 if 0 < u < 1

3u if 1 < u < ∞
.

Then

Φ(u) =

⎧⎪⎪⎨
⎪⎪⎩

2

3
√

3
u3/2 if 0 < u < 3

u2

6
+

1
2

if 3 < u < ∞
, ϕ(u) =

⎧⎪⎪⎨
⎪⎪⎩

√
u
3

if 0 < u < 3

u
3

if 3 < u < ∞
.

Finally Φ̃−1(u) = 3√u for 0 < u < 1 and Φ̃−1(u) =
√

2/3(u + 1/2) for u > 1 .
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Let n = 1 . For any integer m > 0 set tm = 1/m , f m(x) = χ(0,tm)(x) . Then

(MΦ̃−1 f m)∗(tm/2) = (MΦ̃−1 f m)(0) = sup
0<s<1/m

1

Φ̃−1(s)

∫ s

0
1 = m−2/3,

(IΦf m)∗(tm) = (IΦf m)(0) =
∫ 1/m

0
Φ̃−1(1/s)ds =

√
2
3

∫ 1/m

0

√
1
u

+
1
2
du,

(IΦf m)∗(2tm) = (IΦf m)
(3
2
tm

)
=

∫ 3/(2m)

1/(2m)
Φ̃−1(1/s)ds =

√
2
3

∫ 3/(2m)

1/(2m)

√
1
u

+
1
2
du.

We can now estimate

(IΦf m)∗(tm) − (IΦf m)∗(2tm)
(MΦ̃−1 f m)∗(tm/2)

�
√

2
3
m2/3

{∫ 1/(2m)

0

√
1
u
du −

∫ 3/(2m)

1/m

√
m +

1
2
du

}

=

√
2
3
m2/3

⎧⎨
⎩

√
2√
m

−
√

m + 1
2

2m

⎫⎬
⎭ =

√
2
3
m1/6

{√
2 − 1

2

√
1 +

1
2m

}
.

The last expression tends to infinity as m tends to infinity.

RE F ER EN C ES

[1] R. J. BAGBY, D. S. KURTZ, A Rearranged Good λ -Inequality, Trans. Amer. Math. Soc., 293, (1986),
71–81.

[2] D. L. BURKHOLDER, R. F. GUNDY, Extrapolation and interpolation of quasilinear operators on martin-
gales, Acta Math., 124, (1970), 249–304.

[3] M. A. KRASNOSEL’SKII, YA. B. RUTICKII, Convex functions and Orlicz spaces, GITTL, Moscow, 1958;
English transl., Noordhoff, Groningen, 1961.

[4] R. O’NEIL, Convolution Operators and L(p,q) spaces, Duke Math. J., 30, (1963), 129–142.
[5] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press,

Princeton, N. J., 1970.

(Received April 7, 2005) Friedrich-Schiller Universität Jena
Mathematisches Institut

Ernst Abbe Platz 1-4
D-07737 Jena

Germany
e-mail: vybiral@minet.uni-jena.de

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


