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(communicated by Th. M. Rassias)

Abstract. In this paper, we establish a sufficient condition for the controllability of nonau-
tonomous integrodifferential inclusions with nonlocal conditions in Banach spaces. The approach
used is the Sadovskii’s fixed point theorem with the theory of resolvent operators.

1. Introduction

Controllability of nonlinear systems represented by ordinary differential equations
in Banach spaces has been extensively studied by many authors, see survey paper [1] by
Balachandran and Dauer. Recently, several authors have established the controllability
results for differential inclusions or integrodifferential inclusions in Banach spaces,
such as [2, 3, 7, 10] and the references therein. In [3], the authors studied the following
semilinear integrodifferential inclusions with nonlocal conditions of the form

y′ (t) ∈ A

[
y (t) +

∫ t

0
G (t − s) y (s) ds

]
+ F (t, y) + (Bu) (t) , t ∈ J,

y (0) +
p∑

k=1

cky (tk) = y0,

where F : J × X → P (X) is a multi-valued map, P (X) is the family of all nonempty
subsets of X , G (t) , t ∈ J , is a bounded operator, J = [0, b] , b > 0 , y0 ∈ X ,
0 � t1 < t2 < · · · < tp � b , p ∈ N , ck �= 0 , k = 1, 2, · · · , p , A is the infinitesimal
generator of a linear semigroup, and X is a real separable Banach space with the norm
|·| . Also, the control function u (·) is given in L2 (J, U) , a Banach space of admissible
control functions with U as a Banach space. B is a bounded linear operator from U
into X. They proved controllability results in the cases when the multivalued map F
has convex values or nonconvex values, respectively.
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Motivated by excellent work in [3], in this paper we consider the controllability of
the following nonautonomous semilinear functional integrodifferential inclusions

y′ (t) ∈ A (t)
[
y (t) +

∫ t

0
G (t, s) y (s) ds

]
+ F (t, y) + (Bu) (t) , t ∈ J, (1.1)

y (0) + g (y) = y0, (1.2)
where A (·) generates a strongly continuous semigroups, and g : C (J, X) → X ,
G(t, s), t, s ∈ J, is a bounded operator, F, B, u, y0 are defined as before. By using
Sadovskii’s fixed point theorem combined with the theory of resolvent operators, we
establish a nonlocal controllability result for mild solutions of the system (1.1)− (1.2) .
Instead of the usual assumption that F is convex valued, we assume that F has
decomposable values. The result obtained here can be seen as a continuation and an
extension of autonomous control system in [3].

2. Preliminaries

In this section, we shall introduce some basic definitions, lemmas which are used
throughout this paper.

Let C (J, X) be the Banach spaces of all continuous functions from J into X with
the norm

‖y‖ := sup {|y (t)| : t ∈ J}
and B(X) denotes the Banach space of bounded linear operators from X into itself.

A measurable function y : J → X is Bochner integrable if and only if |y| is
Lebesgue integrable. For properties of the Bochner integral see Yosida [14].

Let L1 (J, X) denote the Banach space of continuous functions y : J → X which
are Bochner integrable, normed by

‖y‖L1 =
∫ b

0
|y (t)| dt, for all y ∈ L1 (J, X) .

Let (X, |·|) be a Banach space. Then a multi-valued map G : X → P(X) is convex
(closed, compact) valued if G(x) is convex (closed, compact) for all x ∈ X . G is
bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for any bounded set B
of X (i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞ ).

Let Z be a nonempty closed subset of X, and G : Z → P(X) be a multi-valued
map with nonempty closed values. G is lower semi-continuous (l.s.c.) on Z if the set
{x ∈ Z : G(x) ∩ C �= ∅} is open for any open set C in X .

Let A be a subset of J×X . We say that A is L⊗B measurable if A belongs to the
σ -algebra generated by all sets of the form N× D , where N is Lebesgue measurable
in J and D is Borel measurable in X . A subset S of L1(J, X) is decomposable if,
for all u, v ∈ S and all measurable subsets N of J , the function uχN + vχJ−N ∈ S ,
where χ denotes the characteristic function.

Let F : J × X → P(X) be a multi-valued map with nonempty compact values.
Assign to F the multi-valued operator

F : C (J, X) → P(L1(J, X))



CONTROLLABILITY OF NONAUTONOMOUS SEMILINEAR INTEGRODIFFERENTIAL INCLUSIONS 345

by letting
F(y) = {w ∈ L1(J, X) : w(t) ∈ F(t, y) for a.e. t ∈ J}.

The operator F is called the Niemytzki operator associated with F .
G has a fixed point if there is x ∈ X such that x ∈ G (x) . For more details on

multi-valued maps, see the books of Deimling [5] and Hu and Papageorgious [9].
To set the framework for our main controllability result, we make use of the

following definitions and lemmas.

DEFINITION 2.1. Let Y be a separable metric space and let G : Y → P(L1(J, X))
be a multi-valued operator. We say G has property (BC) if

(i) G is lower semi-continuous (l.s.c);
(ii) G has nonempty closed and decomposable values.

DEFINITION 2.2. Let F : J × X → P(X) be a multi-valued map with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its asso-
ciated Niemytzki operator F is lower semi continuous and has nonempty closed and
decomposable values.

DEFINITION 2.3. [11] A resolvent operator for the system (1.1) − (1.2) is a
operator-valued function R (t, s) ∈ B (X) , 0 � s � t � b , having the following
properties:

(i) R(s, s) = I, the identity operator on X , 0 � s � b . R (t, s) is strongly
continuous in s and t , ‖R (t, s)‖ � Meβ(t−s) for some constants M and β .

(ii) R (t, s) Y ⊂ Y, R (t, s) is strongly continuous in s and t on Y, and Y is the
Banach space formed from D (A) , the domain of A (t) , endowed with the graph norm.

(iii) For each y ∈ Y , R (t, s) y is continuously differentiable in s and t , and

∂

∂t
R (t, s) y = A (t)

[
R (t, s) y +

∫ t

s
G (t, r) R (r, s) ydr

]
, t ∈ J.

DEFINITION 2.4. A function y (·) ∈ C (J, X) is called a mild solution of the
problem (1.1) − (1.2) , if there exists a function f ∈ L1(J, X) such that f (t) ∈
F (t, y (t)) a.e. in J and

y (t) = R (t, 0) [y0 − g (y)] +
∫ t

0
R (t, s) [f (s) + (Bu) (s)] ds.

DEFINITION 2.5. The system (1.1) − (1.2) is said to be nonlocally controllable
on the interval J if, for every y0, y1 ∈ X, there exists a control u ∈ L2 (J, U) such that
the mild solution y (·) of the problem (1.1) − (1.2) satisfies y (b) + g (y) = y1.

LEMMA 2.1. ([4]) Let Y be a separable metric space and G : Y → P(L1(J, X)) be
a multi-valued operator which has property (BC) . Then G has a continuous selection,
i.e. there exists a continuous function (single-valued) g : Y → L1(J, X) such that
g(y) ∈ G(y) for every y ∈ Y.
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LEMMA 2.2. ((Sadovskii’s fixed point theorem [13])) Let P be a condensing
operator on a Banach space X, i.e., P is continuous and takes bounded sets into
bounded sets, and α (P (B)) < α (B) for every bounded set B of X with α (B) > 0.
If P (D) ⊂ D for a convex, closed and bounded set D of X, then P has a fixed point
in D (where α (·) denotes Kuratowski’s measure of non-compactness).

We remark that a completely continuous operator is the easiest example of a
condensing map.

3. Controllability result

In this section, we shall present and prove our main result. Let us list the following
assumptions:

(H1) The operator R (t, s) is compact when t − s > 0 and there exists a positive
constant M1 such that ‖R (t, s)‖ � M1.

(H2) The linear operator W : L2 (J, U) → X define by

Wu =
∫ b

0
R (b, s) (Bu) (s) ds

has an induced inverse operator W−1 which takes values in L2 (J, U) / kerW , and there
exist positive constants M2, M3 such that

‖B‖ � M2,
∥∥W−1

∥∥ � M3.

(H3) Let F : J × X → P (X) be a nonempty, compact-valued multi-valued map
such that (i) (t, u) �→ F(t, u) is L ⊗ B measurable; and (ii) u �→ F(t, u) is lower
semi-continuous for a.e. t ∈ J.

(H4) For each r > 0, there exists hr ∈ L1 (J, R+) such that for a.e. t ∈ J and
u ∈ X with |u| � r,

‖F (t, u)‖ = sup {|v| : v ∈ F (t, u)} � hr (t)

and

lim inf
r→+∞

1
r

∫ b

0
hr (t) dt = γ < ∞.

(H5) g : C(J, X) → X is a completely continuous operator and there exists a
nondecreasing function m : R+ → R+ such that

|g (y)| � m (‖y‖) for all y ∈ C(J, X)

and
lim inf
r→+∞

m (r)
r

= 0.

REMARK 3.1. The construction of the operator W and its inverse is studied by
Quinn and Carmichael in reference [12].

REMARK 3.2. The existence of the resolvent operator R (t, s) is discussed in
references [8] and [11].
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REMARK 3.3. The function m : R+ → R+ satisfying (H5) does exist, such as,
we may take m (‖y‖) = c + d ‖y‖α , where constants c, d ∈ R,α ∈ [0, 1) .

Before stating our main result, we give a lemma which will be needed in the sequel.

LEMMA 3.1. ([6]) Let F : J × X → P (X) be a multi-valued map with nonempty,
compact values. Assume (H3) and (H4) hold. Then F is of l.s.c. type.

THEOREM 3.1. Assume that (H1)−(H5) are satisfied, then the system (1.1)−(1.2)
is nonlocally controllable on J , provided

δγ < 1, (3.1)

where δ = M1 (1 + bM1M2M3) .

Proof. Assumptions (H3) and (H4) imply by Lemma 3.1 that F is of the lower
semi-continuous type. Then from Lemma 2.1 there exists a continuous function f :
C (J, X) → L1 (J, X) such that f (y) ∈ F (y) for all y ∈ C (J, X) . Using the assumption
(H2), for an arbitrary function y (·) define the control

uy (t) = W−1

{
y1 − g (y) − R (b, 0) (y0 − g (y)) −

∫ b

0
R (b, s) f (y) (s) ds

}
(t) .

Now, we shall show that, when using this control, the operator N : C (J, X) → C (J, X)
defined by

N (y) (t) = R (t, 0) (y0 − g (y)) +
∫ t

0
R (t, s) [f (y) (s) + (Buy) (s)] ds

has a fixed point. This fixed point is then a mild solution of the system (1.1) − (1.2) .
Clearly, y1 − g (y) ∈ N (y) (b) and

|uy (t)| � M3

[
|y1| + m (‖y‖) + M1 (|y0| + m (‖y‖)) + M1

∫ b

0
|f (y) (s)| ds

]
. (3.2)

Next, we shall show that N satisfies the conditions of Lemma 2.2. The proof will
be given in several steps.

Step 1. For each constant r > 0, let Br = {y ∈ C (J, X) : ‖y‖ � r} , clearly Br

is a bounded closed convex set in C (J, X) . We claim that for some positive number
r∗, N (Br∗) ⊆ Br∗ .

If it is not true, then for each positive number r , there exists a function yr (·) ∈ Br

such that ‖N (yr (tr))‖ > r for some tr ∈ J . However, on the other hand, we have

r < ‖N (yr (tr))‖

=

∥∥∥∥∥R (tr, 0) (y0 − g (yr)) +
∫ tr

0
R (tr, s) [f (yr) (s) + (Buyr) (s)] ds

∥∥∥∥∥
� M1 (|y0| + m (r)) + M1

∫ tr

0
hr (s) ds + M1M2

∫ tr

0
|uyr | ds
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� M1 (|y0| + m (r)) + M1

∫ tr

0
hr (s) ds + bM1M2M3 (|y1| + m (r))

+ bM2
1M2M3 (|y0| + m (r)) + bM2

1M2M3

∫ b

0
hr (s) ds

= M + δ
∫ b

0
hr (s) ds + ζm (r)

⇒ 1 <
1
r

[
M + δ

∫ b

0
hr (s) ds + ζm (r)

]
,

(3.3)

where M is independent of r , δ = M1 (1 + bM1M2M3) , ζ = M1(1 + bM2M3 +
bM1M2M3) . Observing (H4) , (H5) and by passing to the lower limit as r → ∞ in
inequality (3.3) , we get

δγ � 1,

which contradicts (3.1) . Hence, there exists a positive number r∗ such that N (Br∗) ⊆
Br∗ .

Step 2. N is continuous on Br∗ .
Let {yn} be a sequence such that yn → y in Br∗ . Then

|N (yn) (t) − N (y) (t)| � |R (t, 0) [g (y) − g (yn)]|

+
∣∣∣∣
∫ t

0
R (t, s) [f (yn) (s) − f (y) (s)] ds

∣∣∣∣
+

∣∣∣∣
∫ t

0
R (t, s) B [uyn (s) − uy (s)] ds

∣∣∣∣
� M1 |g (yn) − g (y)| + M1

∫ t

0
|f (yn) (s) − f (y) (s)| ds

+ M1M2

∫ t

0
|uyn (s) − uy (s)| ds.

Since f , g are continuous and uyn (s) → uy (s) , n → ∞ , by the dominated convergence
theorem we have

‖N (yn) − N (y)‖ = sup
t∈J

|N (yn) (t) − N (y) (t)| → 0, as n → ∞,

i.e. N is continuous on Br∗ .

Step 3. {N (y) : y ∈ Br∗} is a equicontinuous family of functions.
Let ε > 0 small, 0 < τ1 < τ2, then

|N (yn) (τ2) − N (y) (τ1)| � ‖R (τ2, 0) − R (τ1, 0)‖ |y0 − g (y)|

+
∫ τ1−ε

0
‖R (τ2, s) − R (τ1, s)‖ hr∗ (s) ds

+
∫ τ1

τ1−ε
‖R (τ2, s) − R (τ1, s)‖ hr∗ (s) ds + M1

∫ τ2

τ1

hr∗ (s) ds
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+ M2

∫ τ1−ε

0
‖R (τ2, s) − R (τ1, s)‖ |uy (s)| ds

+ M2

∫ τ1

τ1−ε
‖R (τ2, s) − R (τ1, s)‖ |uy (s)| ds + M1M2

∫ τ2

τ1

|uy (s)| ds.

In view of (3.2) , |g(y)| � m(r∗) and (H1), as τ2 → τ1 and ε sufficiently
small, the right-hand side of the above inequality tends to zero, since the compactness
of R (t, s) ( t − s > 0 ) implies the continuity of R (t, s) in t in the uniform operator
topology. Hence, N maps Br∗ into a family of equicontinuous functions.

Step 4. The set V (t) = {N (y) (t) : y ∈ Br∗} is relatively compact in X.
Let 0 < t � b be fixed, 0 < ε < t, for y ∈ Br∗ , we define

Nε (y) (t) = R (t, 0) (y0 − g (y)) +
∫ t−ε

0
R (t, s) [f (y) (s) + (Buy) (s)] ds.

Using the estimation on |uy (s)| as (3.2) and by the compactness of R (t, s)
( t − s > 0 ), we obtain the set Vε (t) = {Nε (y) (t) : y ∈ Br∗} is relatively compact in
X for every ε, 0 < ε < t. Moreover for each y ∈ Br∗ we have

|N (y) (t) − Nε (y) (t)| =
∣∣∣∣
∫ t

t−ε
R (t, s) [f (y) (s) + (Buy) (s)] ds

∣∣∣∣
� M1

∫ t

t−ε
hr∗ (s) ds + M1M2

∫ t

t−ε
|uy (s)| ds.

Therefore, there are relatively compact sets arbitrarily close to the set V (t) =
{N (y) (t) : y ∈ Br∗} . Hence, the set V (t) = {N (y) (t) : y ∈ Br∗} is relatively compact
in X.

As a consequence of Step 1 to Step 4, (H5) , together with the Arzela-Ascoli
theorem, we conclude that N is completely continuous on Br∗ , therefore, a condensing
map. In view of Lemma 2.2, N has a fixed point on Br∗ , which is in turn a mild solution
of (1.1)− (1.2) . Therefore, the system (1.1)− (1.2) is nonlocally controllable on J.

REMARK 3.4. If (H4) holds with γ = 0 (which is used in [10]), then the system
(1.1) − (1.2) is nonlocally controllable on J.
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