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A GENERALIZATION OF HYERS–ULAM–RASSIAS

STABILITY OF THE G–FUNCTIONAL EQUATION

GWANG HUI KIM

(communicated by Th. M. Rassias)

Abstract. We investigate a generalization of the Hyers-Ulam-Rassias stability for the gamma
type functional equation f (x+p) = Γ(x)f (x)+ψ(x) and the stability in the sense of Ger for the
functional equation of the form f (x + p) = Γ(x)f (x) . As a consequence, we obtain a stability
result in the sense of Hyers-Ulam-Rassias for G -functional type equations.

1. Introduction

In 1940, the stability problem raised by S. M. Ulam [19] was solved by D. H.
Hyers in [5]. The result of Hyers has been generalized to the unbounded case by Th. M.
Rassias [16], and this has been extended by P. Gǎvruta [3] and R. Ger [4].

The gamma function

Γ(x) =
∫ ∞

0
e−ttx−1dt (x > 0)

is a solution of the gamma functional equation g(x + 1) = xg(x) , whose stability is
proved by S.-M. Jung ([8], [9], [10]) and G. H. Kim ([11], [12], [13]).

The G -function introduced by E. W. Barnes [2]

G(z) = (2π)
z−1

2 e−
z(z−1)

2 e−γ (z−1)2

2

∞∏
k=1

[(
1 +

z − 1
k

)k
e1−z+ (z−1)2

2k
]

does satisfy the equation G(x + 1) = Γ(x)G(x) and Γ(1) = G(1) = 1 , where
γ is the Euler-Mascheroni’s constant defined by γ = limn→∞

(∑n
k=1

1
k − log n

) ∼=
0.577215664 · · · .

The properties and values of G -function depend on those of the gamma function.
Since the double gamma function Γ2 is defined by the reciprocal of the G -function(see
[2]), Γ2(x) = 1/G(x) , and its functional equation can bewritten in the form Γ2(x+1) =
Γ2(x)/Γ(x) . Therefore the stability problem for the G -function is equivalent to the
stability for the reciprocal of the double gamma function.
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In this paper, we will investigate a generalization of the Hyers-Ulam stability in
the sense of Gǎvruta and Ger for the functional equations

f (x + p) = Γ(x)f (x) + ψ(x), (1.1)

f (x + p) = Γ(x)f (x), (1.2)

f (x + 1) = Γ(x)f (x), (1.3)

where ψ is the given function, while f is the unknown function. The equation (1.3)
will be called the G -functional equation because its solution is the G-function.

In section 2, we will study the stability in the sense of Gǎvruta for the functional
equations (1.1), (1.2).

In section 3, we will consider the stability in the sense of Ger for the functional
equations (1.2).

Throughout this paper, let R, R+ and R∗ denote the set of real numbers, the set of
all positive real numbers and the set of all nonnegative real numbers, respectively. Each
positive real number δ is fixed. The functions ψ : R+ → R∗ and ε : R+ → R∗ are
defined.

2. Generalization of Hyers-Ulam-Rassias stability

THEOREM 1. Let ε be a given function such that

ω(x) :=
∞∑
k=0

ε(x + kp)∏k
j=0 |Γ(x + jp)| < ∞ ∀x ∈ R+. (2.1)

If a function f : R+ −→ R+ satisfies the inequality

|f (x + p) − Γ(x)f (x) − ψ(x)| � ε(x) ∀x ∈ R+, (2.2)

then there exists a unique solution g : R+ −→ R+ of the equation (1.1) with

|g(x) − f (x)| � ω(x) ∀x ∈ R+. (2.3)

Proof. For any x ∈ R+ and for every positive integer n , let ωn : R+ −→ R∗ and
gn : R+ −→ R+ be the functions defined by

ωn(x) :=
n−1∑
k=0

ε(x + kp)∏k
j=0 |Γ(x + jp)|

and

gn(x) :=
f (x + np)∏n−1
j=0 Γ(x + jp)

−
n−1∑
k=0

ψ(x + kp)∏k
j=0 Γ(x + jp)

for all x ∈ R+ , respectively.
By (2.2), it follows that

∣∣ f (x + p)
Γ(x)

− f (x) − ψ(x)
Γ(x)

∣∣ � ε(x)
|Γ(x)| for all x ∈ R+.
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Substituting x by x+ np in this inequality, and then dividing both sides of the obtained
inequality by

∏n−1
j=0 |Γ(x + jp)| , we get

|gn+1(x) − gn(x)| =
ε(x + np)∏n

j=0 |Γ(x + jp)| . (2.4)

By induction on n we prove that

|gn(x) − f (x)| � ωn(x) (2.5)

for all x ∈ R+ , and for all positive integers n . For the case n = 1 , the inequality (2.5)
is an immediate consequence of (2.2).

Assume that the inequality (2.5) holds true for some n . Then we obtain the
inequality for n + 1 by (2.4) in the following way:

|gn+1(x) − f (x)| � |gn+1(x) − gn(x)| + |gn(x) − f (x)|
� ε(x + np)∏n

j=0 |Γ(x + jp)| + ωn(x)

= ωn+1(x).

We claim that {gn(x)} is a Cauchy sequence. Indeed, by (2.4) and (2.1), we have
for n > m that

|gn(x) − gm(x)| �
n−1∑
k=m

|gk+1(x) − gk(x)|

�
n−1∑
k=m

ε(x + kp)∏k
j=0 |Γ(x + jp)| −→ 0

as m −→ ∞ .
Hence, we can define a function g : R+ −→ R+ by

g(x) := lim
n→∞ gn(x). (2.6)

From the definition of gn , we have gn(x + p) = Γ(x)gn+1(x) + ψ(x) , hence the
function g satisfies (1.1).

We show from (2.5) that g satisfies the inequality (2.3) as follows:

|g(x) − f (x)| = lim
n→∞ |gn(x) − f (x)|

� lim
n→∞ωn(x)

= ω(x) ∀x ∈ R+.
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If h : R+ −→ R+ is another such function, which satisfies (1.1) and (2.3), then
we have

|g(x) − h(x)| = |g(x + np)− h(x + np)| ·
n−1∏
j=0

1
|Γ(x + jp)|

� 2ωn(x + np) ·
n−1∏
j=0

1
|Γ(x + jp)|

= 2
( ∞∑

k=0

ε(x + (n + k)p)∏k
j=0 |Γ(x + (n + j)p)|

)
·

n−1∏
j=0

1
|Γ(x + jp)|

= 2
∞∑
k=n

ε(x + kp)∏k
j=0 |Γ(x + jp)|

for all x ∈ R+ and all positive integers n , which tends to zero as n → ∞ , since ω(x)
is bounded. This implies the uniqueness of g . �

COROLLARY 1. If a function f : R+ −→ R+ satisfies the inequality

|f (x + p) − Γ(x)f (x) − ψ(x)| � δ ∀x ∈ R+, (2.7)

then there exists a unique solution g : R+ −→ R+ of the equation (1.1) with

|g(x) − f (x)| � δμ(x) ∀x ∈ R+, (2.8)

where the function μ(x) :=
∑∞

k=0

∏k
j=0

1
Γ(x+jp) for all x ∈ R+ .

In particular, if either p � 1 or x + p > 2 in the stability inequality (2.7) , then
there exists a unique solution g : R+ −→ R+ of the equation (1.1) with

|g(x) − f (x)| �

⎧⎪⎪⎨
⎪⎪⎩

δ (Γ(x + p) + 1 + e)
Γ(x)Γ(x + p)

or

δΓ(x + p)
Γ(x) (Γ(x + p) − 1)

.

(2.9)

Proof. Set ε(x) = δ in Theorem1. The infinite series μ(x) satisfies the condition
(2.1). Indeed, the sequence of partial sums {un(x)} defined by

μn(x) :=
n∑

k=0

k∏
j=0

1
Γ(x + jp)

is a Cauchy sequence with simple calculation.
In the case of p � 1 , the defined function μ(x) implies

∞∑
k=0

k∏
j=0

1
Γ(x + jp)

� 1
Γ(x)Γ(x + p)

⎛
⎝Γ(x + p) + 1 +

∞∑
k=2

k∏
j=2

1
Γ(x + j)

⎞
⎠

<
Γ(x + p) + 1 + e
Γ(x)Γ(x + p)

.
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In the case of x + p > 2 , the defined function μ(x) implies

∞∑
k=0

k∏
j=0

1
Γ(x + jp)

� 1
Γ(x)

(
1 +

1
Γ(x + p)

+
1

Γ(x + p)2 + · · ·
)

=
Γ(x + p)

Γ(x) (Γ(x + p) − 1)
. �

Theorem 2 and Corollary 2 follow immediately from Theorem 1 and Corollary 1
with ψ(x) = 0 .

THEOREM 2. Let the function ε satisfies the condition (2.1) . If a function f :
R+ −→ R+ satisfies the inequality

|f (x + p) − Γ(x)f (x)| � ε(x) ∀x ∈ R+, (2.10)

then there exists a unique solution g : R+ −→ R+ of the equation (1.2) subject to the
condition (2.3) for all x ∈ R+ .

COROLLARY 2. If a function f : R+ −→ R+ satisfies the inequality

|f (x + p) − Γ(x)f (x)| � δ ∀x ∈ R+, (2.11)

then there exists a unique solution g : R+ −→ R+ of the equation (1.2) satisfying
(2.8) for all x ∈ R+ .

In particular, if either p � 1 or x + p > 2 in the stability inequality (2.11) , then
there exists a unique solution g : R+ −→ R+ of the equation (1.2) satisfying (2.9) .

REMARK 1. Theorem 2 and Corollary 2 in the case of p = 1 provide the general-
ization of the Hyers-Ulam-Rassias stability in the sense of Gǎvruta and the Hyers-Ulam
stability for the G-functional equation (1.3), respectively. For the latter the reader is
referred in paper [14].

3. Stability in the sense of Ger for the equation (1.2)

THEOREM 3. Let a function f : R+ −→ R+ satisfies the inequality∣∣∣∣ f (x + p)
Γ(x) f (x)

− 1

∣∣∣∣ � ε(x) ∀x ∈ R+, (3.1)

where ε : R+ −→ (0, 1) is a function such that
∞∑
j=0

ε(x + jp) < +∞. (3.2)

Then there exists a unique solution g : R+ −→ R+ of the equation (1.2) with

α(x) � g(x)
f (x)

� β(x), (3.3)

where α(x) :=
∏∞

j=0(1− ε(x + jp)) and β(x) :=
∏∞

j=0(1+ ε(x + jp)) for all x ∈ R+ .
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Proof. The condition (3.2) implies that
∏∞

j=0(1 ± ε(x + jp)) converges. Hence,
we can define the functions α, β for all x ∈ R+ such that 0 < α(x) :=

∏∞
j=0(1 −

ε(x + jp)) <
∏∞

j=0(1 + ε(x + jp)) := β(x) < +∞ , that is, these series are bounded.
For any x ∈ R+ and for every positive integer n , we define

gn(x) =
n−1∏
j=0

f (x + np)
Γ(x + jp)

. (3.3)

For all positive integers m, n with n > m , we have

gn(x)
gm(x)

=
f (x + (m + 1)p)

Γ(x + mp)f (x + mp)
×

× f (x + (m + 2)p)
Γ(x + (m + 1)p)f (x + (m + 1)p)

×

× · · · f (x + np)
Γ(x + (n − 1)p)f (x + (n − 1)p)

.

(3.5)

It also follows from (3.1) that

0 < 1 − ε(x + jp) � f (x + (j + 1)p)
Γ(x + jp) f (x + jp)

� 1 + ε(x + jp) (3.5)

for all x ∈ R+ and j = 0, 1, 2, · · · . From (3.5) and (3.6), we get

n−1∏
j=m

(1 − ε(x + jp)) � gn(x)
gm(x)

�
n−1∏
j=m

(1 + ε(x + jp))

or
n−1∑
j=m

log(1 − ε(x + jp)) � log gn(x) − log gm(x)

�
n−1∑
j=m

log(1 + ε(x + jp)).

Since
∑∞

j=0 log(1− ε(x + jp)) = logα(x) and
∑∞

j=0 log(1 + ε(x + jp)) = logβ(x) , it
follows that limm→∞

∑∞
j=m log(1−ε(x+ jp)) = limm→∞

∑∞
j=m log(1+ε(x+ jp)) = 0

by boundedness of α, β . Hence, we note that {log gn(x)} is a Cauchy sequence for all
x ∈ R+ . It is reasonable to define a function g : R+ → R+ by

g(x) = eL(x) = lim
n→∞ gn(x) ∀x ∈ R+, (3.6)

where L(x) := limn→∞ log gn(x) .
We get that

g(x + p) = Γ(x)g(x) ∀x ∈ R+. (3.7)
Since

gn(x)
f (x)

=
f (x + p)
Γ(x)f (x)

· f (x + 2p)
Γ(x + p)f (x + p)

· · · f (x + np)
Γ(x + (n − 1)p) f (x + (n − 1)p)

,
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we get
n−1∏
j=0

(1 − ε(x + jp)) � gn(x)
f (x)

�
n−1∏
j=0

(1 + ε(x + jp))

for all x ∈ R+ . This inequality implies (3.3) with the definition of α, β as n −→ ∞ .
Assume h : R+ −→ R+ is a solution of equation (3.8)which satisfies the inequality

(3.3). By (3.8), we have

g(x)
h(x)

=
g(x + np)
h(x + np)

=
g(x + np)
f (x + np)

· f (x + np)
h(x + np)

for any x ∈ R+ and for any natural number n .
Hence, we have

α(x + np)
β(x + np)

� g(x)
h(x)

� β(x + np)
α(x + np)

for any natural number n . By the boundedness of the series ε ,

α(x + np) =
∞∏
j=n

(1 − ε(x + jp)) −→ 1

as n −→ ∞ . Similarly β(x + np) −→ 1 as n −→ ∞ .
Therefore, it is obvious that h(x) ≡ g(x). �
From the proof of Theorem 3, we can see that the assumption (3.2) is a weak

condition for the convergenceof α and β . The special case p = 1 has been considered
in [14].

COROLLARY 3. Let a function f satisfies inequality (3.1) , in which ε : R+ −→
(0, 1) is a function such that

α(x) :=
∞∏
j=0

(1 − ε(x + jp)) and β(x) :=
∞∏
j=0

(1 + ε(x + jp))

are bounded for all x ∈ R+ . Then there exists a unique solution g : R+ −→ R+ of the
equation (1.2) satisfying (3.3) for all x ∈ R+ .

COROLLARY 4. Let θ > 0 be given. If a mapping f : R+ −→ R+ satisfies the
inequality

| f (x + 1)
Γ(x)f (x)

− 1| � δ
x1+θ ∀x ∈ R+,

then there exists a unique solution g : R+ −→ R+ of the gamma functional equation
(1.3) such that for any x > δ

1
1+θ the following inequality is satisfied

α(x) � g(x)
f (x)

� β(x),

where α(x) :=
∏∞

j=0(1 − δ
(x+j)1+θ ) and β(x) :=

∏∞
j=0(1 + δ

(x+j)1+θ ) .

Proof. Applying Theorem 3 with p = 1, ε(x) = δ
x1+θ , if x > δ

1
1+θ , then∑∞

j=0
δ

(x+j)1+θ converges by the p -series method. Hence, we get the desired result. �



358 GWANG HUI KIM

4. Examples

We apply the result of Theorem 3 with p = 1 .

EXAMPLE 1. ε(1 + i) = 1
(1+i)q , for q > 1 . Note that the series

∑∞
k=0

1
kq in the

case q > 1 converges.

EXAMPLE 2. ε(1 + i) = 1
(1+i)! . Note that

∑∞
i=0

1
(1+i)! = e − 1 .
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