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THE STABILITY PROBLEM OF THE

HERMITE–HADAMARD INEQUALITY

KAZIMIERZ NIKODEM, THOMAS RIEDEL AND PRASANNA K. SAHOO

(communicated by Zs. Páles)

Abstract. The problem of the Hyers-Ulam stability of the Hermite-Hadamard inequality posed
by Zs. Páles is solved. It is shown that for continuous functions f : I → R neither the inequality

f ( x+y
2 ) � 1

y−x
∫ y
x f (t) dt + ε nor 1

y−x
∫ y
x f (t) dt � f (x)+f (y)

2 + ε implies the cε− convexity

of f (with any c > 0 ). However, if f is continuous and satisfies both of the above inequalities
simultaneously, then it is 4ε -convex.

1. Introduction

It is well known that if a function f : I → R defined on an interval I ⊂ R is
convex, that is if

f (tx + (1 − t)y) � tf (x) + (1 − t)f (y), x, y ∈ I, t ∈ [0, 1], (1.1)

then it satisfies the following Hermite-Hadamard inequality

f

(
x + y

2

)
� 1

y − x

∫ y

x
f (t) dt � f (x) + f (y)

2
, x, y ∈ I, x < y. (1.2)

Moreover, for continuous functions f the validity of the left or the right-hand side
inequality in (1.2) is equivalent to the convexity of f (cf. e.g. [1], [3]).

By the classical Hyers-Ulam stability theorem [2] we also know that if f : I → R

is ε -convex, that is if it satisfies

f (tx + (1 − t)y) � tf (x) + (1 − t)f (y) + ε, x, y ∈ I, t ∈ [0, 1], (1.3)

with an ε > 0 , then there exists a convex function g such that |f −g| � ε
2 on I . Using

the above results one can show easily that ε -convex functions satisfy also the following
inequalities

f

(
x + y

2

)
� 1

y − x

∫ y

x
f (t) dt + ε (1.4)

1
y − x

∫ y

x
f (t) dt � f (x) + f (y)

2
+ ε, (1.5)
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for all x < y in I . The problem, if for continuous functions the validity of (1.4) or
(1.5) implies the cε -convexity of f with any constant c > 0 independent of f , was
posed recently by Zs. Páles [5].

In this note we show that the answer to this question is negative. However, if a
continuous function f satisfies simultaneously both inequalities (1.4) and (1.5), then it
is 4ε -convex. Then by the Hyers-Ulam theorem, there exists a convex function g such
that |f − g| � 2ε .

2. Counterexamples

COUNTEREXAMPLE 1. The function f (x) = ln x , x > 0 , satisfies inequality (1.4)
with ε = 1 , but it is not c -convex with any c > 0 .

Proof. We will prove first that f satisfies (1.4) with ε = 1 , that is

(y − x) ln
x + y

2
�

∫ y

x
ln t dt + (y − x). (2.1)

Fix x, y with x < y . The right-hand side of (2.1) is equal to∫ y

x
ln t dt + (y − x) = y(ln y − 1) − x(ln x − 1) + y − x

= y ln y − x ln x

= ln
yy

xx
.

(2.2)

Since 0 < x < x+y
2 < y , we have(

x + y
2

)y

xx � yy xx � yy

(
x + y

2

)x

,

or, equivalently, (
x + y

2

)y−x

� yy

xx
.

Consequently

(y − x) ln
x + y

2
� ln

yy

xx
,

which together with (2.2) proves (2.1).
To show that f is not c -convex, fix arbitrary c > 0 and x0 > 0 . For every n > 1

x0

we can express x0 as the convex combination of the points 1
n and 2x0 − 1

n

x0 =
1
2
· 1
n

+
1
2
·
(

2x0 − 1
n

)
.

Since ln 1
n tends to −∞ if n → +∞ , for large enough n ∈ N we have

ln

(
1
2
· 1
n

+
1
2
·
(

2x0 − 1
n

))
= ln x0 >

1
2

ln
1
n

+
1
2

ln

(
2x0 − 1

n

)
+ c,

which proves that f is not c -convex. �
In the proof of the next statement we will use the following simple facts which we

formulate here as lemmas.
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LEMMA 2.1. For every n ∈ N and h � 0 such that e−n + h � 1

∫ e−n+h

e−n
− ln t dt � h − h ln(e−n + h).

LEMMA 2.2. If a � c and d � b , then ab + cd � 1
2 (a + c)(b + d) .

COUNTEREXAMPLE 2. For every n ∈ N the function

f n(x) =

{ − ln( |x| + e−n ) if |x| � 1 − e−n

0 if 1 − e−n < |x| � 1

satisfies inequality (1.5) with ε = 1 , but it is not c -convex with any c < n .

Proof. First we will prove that f n satisfy (1.5) with ε = 1 , that is∫ y

x
f n(t) dt � f n(x) + f n(y)

2
(y − x) + (y − x). (2.3)

We will consider three cases.

Case 1. Suppose x, y ∈ [0, 1] or x, y ∈ [−1, 0] . Then (2.3) holds because
f n restricted to each of these intervals is convex and therefore satisfies the Hermite-
Hadamard inequality.

Case 2. Suppose −1 + e−n � x � 0 � y � 1 − e−n . Without loss of generality
we may assume additionally that |x| � y . By Lemma 2.1 we obtain∫ y

x
f n(t) dt =

∫ 0

x
f n(t) dt +

∫ y

0
f n(t) dt

=
∫ e−n−x

e−n
− ln t dt +

∫ e−n+y

e−n
− ln t dt

� − x + x ln(e−n − x) + y − y ln(e−n + y).

Now, using Lemma 2.2 for a = −x , b = − ln(e−n − x) , c = y and d =
− ln(e−n + y) , we get∫ y

x
f n(t) dt � 1

2

(− ln(e−n − x) − ln(e−n + y)
)
(y − x) + (y − x)

=
f n(x) + f n(y)

2
(y − x) + (y − x).

Case 3. Suppose −1 � x < −1 + e−n , 0 � y � 1 − e−n (the symmetric
case: −1 + e−n � x � 0 , 1 − e−n < y � 1 , and the case: −1 � x < −1 + e−n ,
1 − e−n < y � 1 can be proved analogously). Using the fact proved in Case 2, we
obtain
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∫ y

x
f n(t) dt =

∫ y

−1+e−n
f n(t) dt

� f n(−1 + e−n) + f n(y)
2

(
y − (−1 + e−n)

)
+

(
y − (−1 + e−n)

)
� f n(x) + f n(y)

2
(y − x) + (y − x).

This finishes the proof of (2.3).
Now, take x = −1 , y = 1 and c < n . Then

f n

(
1
2
· (−1) +

1
2
· 1

)
= f n(0) = n >

1
2
f n(−1) +

1
2
f n(1) + c,

which shows that f n is not c -convex with any c < n . �
The referee provided another example of such a function: f (x) = ln(1 + |x|) ,

x ∈ R also satisfies inequality (1.5) with ε = 1 , and it is not cε -convex. Unlike the
function in Counterexample 2, this function is “universal” in the sense that it does not
depend on the constant c . The integral of f on compact subintervals, is given by

∫ y

x
f (t) dt =

⎧⎪⎨
⎪⎩

(1 + x) ln(1 + x) − (1 + y) ln(1 + y) + (y − x) if 0 � x < y;

− (1 − x) ln(1 − x) − (1 + y) ln(1 + y) + (y − x) if x < 0 < y;

− (1 − x) ln(1 − x) + (1 − y) ln(1 − y) + (y − x) if x < y � 0.

Comparing this with the corresponding form of the right side of the inequality (1.5)
with ε = 1 and applying equivalent rearrangements, it suffice to check the validity of
the inequalities

(x + y + 2) ln(1 + x) � (x + y + 2) ln(1 + y) (0 � x < y),
(x + y − 2) ln(1 − x) � (x + y + 2) ln(1 + y) (x < 0 < y),
(x + y − 2) ln(1 − x) � (x + y − 2) ln(1 − y) (x < y � 0).

The first and the last ones are quite trivial. The second can be proved after some
further rearrangements:

0 � ln(1 − x)2(1 + y)2

(
1 + y
1 − x

)x+y

.

Clearly, 1− x > 1 and 1+ y > 1 . On the other hand, 1+ y � 1− x if and only if
x + y � 0 , therefore the last term in the argument is always greater than or equal to 1 .
To complete the proof, observe that f (0) = 0 , while 1

2 f (−n) + 1
2 f (n) = − ln(n + 1)

tends to −∞ as n → ∞ which together show that f cannot be cε -convex.

3. Conclusion

Having presented counterexamples we now conclude with a positive result and
some remarks.

THEOREM 3.1. If a function f : I → R is continuous and satisfies inequalities
(1.4) and (1.5) , then it is 4ε -convex.
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Proof. By (1.4) and (1.5) we obtain that f is 2ε -midconvex, that is

f

(
x + y

2

)
� f (x) + f (y)

2
+ 2ε, x, y ∈ I.

Since f is continuous, this implies that it is 4ε -convex (cf. [4], Thm. 2). �

REMARK 3.2. Since the Ng-Nikodem theorem used in the above proof holds under
much weaker assumptions than the continuity of f (for instance, for f locally bounded
from above at a point or Lebesgue measurable (cf. [4]), Theorem 3.1) also holds under
such assumptions (provided the integrals in (1.4) and (1.5) are defined).

REMARK 3.3. As was mentioned at the beginning, the left as well as the right-hand
side inequality in the Hermite-Hadamard inequality (1.2) is (for continuous f ) equiv-
alent to (1.1), and hence each of them defines the convexity of f . However, the above
counterexamples show that these inequalities are not stable, whereas the inequality (1.1)
is stable by the Hyers-Ulam theorem. Also the whole Hermite-Hadamard inequality is
stable by Theorem 3.1. This shows that the stability of convex functions is connected
with an individual inequality defining the convexity but not with the convexity property
itself.
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