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ON A SUMMABILITY FACTOR THEOREM
EKREM SAVAS

(communicated by J. Marshall Ash)

Abstract. Let 1 < k < s < oo. In the present paper we obtain sufficient conditions for a series
>~ ap , which is absolutely summable of order k by a weighted mean method to be such that
>~ apAy is absolutely summable of order s by a triangular matrix. As corollary of this result we
obtain an inclusion theorem.

1. Introduction

In a recent paper (see, [6]) the author obtained necessary conditions for the series
>~ ay,A, to be absolutely summable of order s by a triangular matrix whenever the
series Y ay, is absolutely summable of order k& by a weighted mean matrix

In this paper we obtain sufficient conditions for a series > @, , which is absolutely
summable of order k by a weighted mean method, to be such that » a,A, is absolutely
summable of order s by a triangular matrix.

Let T be alower lower triangular matrix, {s,} a sequence.Then

Tyi= Y tusk. (1.1)
k=0

A series Y a, is said to be summable [T, k > 1, if
oo
> AT, f < oo (1.2)
n=1
Given any lower triangular matrix 7 one can associate the matrices 7 and T,
with entries defined by

n
fnk:Ztnh n7i:071727"'7 tnk:fnkffnfl,lﬁ n= 1727""
i=k

respectively.
Mathematics subject classification (2000): 40F05, 40D25, 40G99.
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With Sp = Z?:O ankn s

n n k
Ih = Z InkSk = Z Ink Zazﬂi
k=0 =0 =0
n n n
= Z a;\; Z Lk = Z k@il
i=0 k=i i=0
n n—1
Vo=t —ta1 = lnlidi = Y byo1itid
n i i=0

i= —
= § tm'ailia since tnfl,n = 0.

i=0

We shall call T a triangle if T is lower triangular and t,,, # O for each n.
We shall always assume that {p,} is a positive sequence with P, — oo. Also,

Avl‘nv = tnv tn v+1-

THEOREM 1.1. Let 1 < k < s < 00. Let {A,} be a sequence of constants, T be
a triangle with bounded entries such that T and {p,} satisfy

(i) twhv = 0((%)v1/‘“1/k) i
(i) (%) = 0(1),

n—1

(i) > 1A (vdv)| = Ot
v=1

(iv) Z (a2 )~ AV (FnAV) | = OVt A ),
n=v+1

n—1

) Z ‘IVVA,VHI?,LVAA = 0(|tnnﬂfn‘)a and

oo

(Vl) Z (n|tnnAnD 1|tn VA‘ | = ((V|tv,vﬂrv‘)s_l)7

n=v+1
where X, is defined in formula (1.4).
Then Y a,A, is summable |T|; whenever > ay, is summable |N,p,|.

Proof. Let {u,} denote the sequence of (N,p,) means of the series > a,.

n
Up = Pi Zpisi = szzav
n

i=0 v=0

:_Zav Pvl
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Thus X —u Z": ( ) ’:Z_l ( )

v=0
= %“ﬂ (1.4)
v—1dy.
Therefore, ;
Faln1Xn = vaflav
Pn v=1
Py 1Py oXy 1 i b
7[}}1_1 - o v—1Uy
PubPp1Xn  Poo1PnoXn—1 _ P ia,.
DPn Pn—1
Hence,
a, = PuXn _ Pn_zX"_l, n> 0. (L.5)

Pn Pn—1
Substituting (1.5) into (1.3) gives

Y, = anv)tvav
(XVPV Xv—IPv—2)
- Ztnv \% -

Pv Pv—1

n n
N X, P o Xy_1Py_
— Ztnv)tv vivo_ Ztnvlvw
_ Pv = Pv—1
v=1
n n—1

X, P X,P
—Ztnv \ s _Ztnv+l)tv+l vpv !

v=1 v v=0 v

n—1
P An X Py, X
T + Z tnv vPv tn v+llv+1Pv l)pv

v=1 v

We may write
fnvlvpv - fn,v+llv+1Pv71 = Pvfl(lvfnv - )LerltAn,erl) + fnv)tva

Therefore

n—1

Pt,m)LX P
Y, = + ( v—1

Av(funiy) + Avfn,v)x
v=1

=T +Tpn+ Tn37 say.

From Minkowski’s inequality it is sufficient to show that
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Zns_l|Tni|s<Oo> i=1,2,3.
Using condition (i),

0o o0
_ Znsfl‘Tnl ‘s — Znsfl
n=1 n=1

ns—1 (nl/sfl/k)s|Xn‘s

N

tnnA'nPn Xn‘
p

= o(1)

1[~]s

— 0(1) nk71|Xn‘k(ns7s/k7k+l‘Xn|s7k).

NE

n=1

But, from (ii)
nsfs/kkarl‘XnPfk _ (nlfl/k‘XnDsfk

= O((n|X,|)’™") = 0(1).
Hence J; = O(1).
Using (i), Holder’s inequality, (ii), (iii) and (iv)

n—1

S = S (B ation |

n=1
—o(m) Yy n!( Z VRt 20 | Al ) DX
n=1 v=1

8

_o(l)zn‘1(§v“/k|tw/1v|mv(tnv ) % (Zm (Frvhy) )
v=1

n=1
0o n—1

= 0(1) > (nltwnda)* ™Y VTt A A () | X
n=1 v=1

= 01) 3V Mt IS (i) A G|
v=1 n=v+1

1) Z vlfs/k|tvvlv‘fs‘xv‘svv71 ‘tvvlv‘s

v=1

1) Z Vsfs/k|Xv|s
v=1

1) Z kal |Xv|k(vs7s/k7k+1 ‘Xv|s7k)
v=1

o) SV = o),

v=1
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since > a, is summable |N, p,|.
By Holder’s inequality, (ii), (v) and (vi), we have

n—1

Zl’lb 1|T3|b Zné llztnvxxv

n=1

oo

<Yone I(Zw )

n=1

<> 1(Z|rwml Vsl Xl) x (menwv\)

n=1

n—1

= 0(1) > (nltwnda)* ™Y [tuvAo] = [ A | [X
n=1 v=1

= 0(1) > It X D (altandol)* ™ [ A
v=1 n=v+1

\tvv7L X (Vi)

VY 1‘X |v

Mg ] Mg ] Mg

=0(1) ) VX[ (vixy[)

Il
_

V:

=0(1) 3 VX = 0(1).

V=

—_

We now state sufficient conditions when k = s .

THEOREM 1.2. Let {A,} be a sequence of constants, T a triangle with bounded
entries such that T and {p,} satisfy
. Pn
tnnﬂfn = 0(_)a
() :

n

n—1
(ii) > |Av(EvAv)| = O[tundal),

(i) > (altn 2l AV Fvv)| = OV A1),
n=v+1
n—1

(@) > [twAvlliwAv] = O(tnAnl),

v=1
o0

V) Y @ltada) il = O((VIEw A ).
n=v+1
Then > a, summable |N,p,|. implies > Anay is summable |T|g, k > 1
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Every summability factor theorem of this type implies an inclusion theorem by
setting each A, = 1. We have

COROLLARY 1.1. ([3]) Let 1 < k < s < co. Let T be a triangle with bounded
entries such that T and {p,} satisfy

(i) tw = 0((%>VI/AY*1/1¢> ’
(i) () = o).

—1
(”l) Z |Av(fn\’)‘ = 0(‘tnn|)’
v=1

() D (lta) AV )| = O],

n=v+1

n—1
v) Z [ty lliny| = O|tun]), and
v=1

Vi) Y (ltn]) " ] = O((VIEw)* ™).

n=v+1
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