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ON A SUMMABILITY FACTOR THEOREM

EKREM SAVAŞ

(communicated by J. Marshall Ash)

Abstract. Let 1 < k � s < ∞ . In the present paper we obtain sufficient conditions for a series∑
an , which is absolutely summable of order k by a weighted mean method to be such that∑
anλn is absolutely summable of order s by a triangular matrix. As corollary of this result we

obtain an inclusion theorem.

1. Introduction

In a recent paper (see, [6]) the author obtained necessary conditions for the series∑
anλn to be absolutely summable of order s by a triangular matrix whenever the

series
∑

an , is absolutely summable of order k by a weighted mean matrix
In this paper we obtain sufficient conditions for a series

∑
an , which is absolutely

summable of order k by a weighted mean method, to be such that
∑

anλn is absolutely
summable of order s by a triangular matrix.

Let T be a lower lower triangular matrix,{sn} a sequence.Then

Tn :=
n∑

k=0

tnksk. (1.1)

A series
∑

an is said to be summable |T|k, k � 1 , if

∞∑
n=1

nk−1|ΔTn−1|k < ∞. (1.2)

Given any lower triangular matrix T one can associate the matrices T̄ and T̂ ,
with entries defined by

t̄nk =
n∑

i=k

tni, n, i = 0, 1, 2, ..., t̂nk = t̄nk − t̄n−1,k, n = 1, 2, ....

respectively.
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With sn :=
∑n

i=0 anλn ,

tn =
n∑

k=0

tnksk =
n∑

k=0

tnk

k∑
i=0

aiλi

=
n∑

i=0

aiλi

n∑
k=i

tnk =
n∑

i=0

t̄nkaiλi.

Yn := tn − tn−1 =
n∑

i=0

t̄niaiλi −
n−1∑
i=0

t̄n−1,iaiλi

=
n∑

i=0

t̂niaiλi, since t̄n−1,n = 0.

(1.3)

We shall call T a triangle if T is lower triangular and tnn �= 0 for each n.

We shall always assume that {pn} is a positive sequence with Pn → ∞ . Also,
Δν t̂nν := t̂nν − t̂n,ν+1.

THEOREM 1.1. Let 1 < k � s < ∞ . Let {λn} be a sequence of constants, T be
a triangle with bounded entries such that T and {pn} satisfy

(i) tννλν = O
(( pν

Pν

)
ν1/s−1/k

)
,

(ii) (n|Xn|)s−k = O(1) ,

(iii)
n−1∑
ν=1

|Δν(t̂nνλν)| = O(|tnnλn|) ,

(iv)
∞∑

n=ν+1

(n|tnnλn|)s−1|Δν(t̂nνλν)| = O(νs−1|tννλν|s),

(v)
n−1∑
ν=1

|tννλν||t̂n,νλν| = O(|tnnλn|), and

(vi)
∞∑

n=ν+1

(n|tnnλn|)s−1|t̂n,νλν| = O((ν|tν,νλν|)s−1),

where Xn is defined in formula (1.4) .

Then
∑

anλn is summable |T|s whenever
∑

an is summable |N̄, pn|k .

Proof. Let {un} denote the sequence of (N̄, pn) means of the series
∑

an .

un =
1
Pn

n∑
i=0

pisi =
1
Pn

n∑
i=0

pi

i∑
ν=0

aν

=
1
Pn

n∑
ν=0

aν(Pn − Pν−1)
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Thus
Xn= un − un−1 =

n∑
ν=0

(
1 − Pν−1

Pn

)
aν −

n−1∑
ν=0

(
1 − Pν−1

Pn−1

)
aν

=
pn

Pn
an +

pn

PnPn−1

n−1∑
ν=1

Pν−1aν

=
pn

PnPn−1

n∑
ν=1

Pν−1aν.

(1.4)

Therefore,
PnPn−1Xn

pn
=

n∑
ν=1

Pν−1aν

Pn−1Pn−2Xn−1

pn−1
=

n−1∑
ν=1

Pν−1aν

PnPn−1Xn

pn
− Pn−1Pn−2Xn−1

pn−1
= Pn−1an.

Hence,

an =
PnXn

pn
− Pn−2Xn−1

pn−1
, n > 0. (1.5)

Substituting (1.5) into (1.3) gives

Yn =
n∑

ν=1

t̂nνλνaν

=
n∑

ν=1

t̂nνλν
(XνPν

pν
− Xν−1Pν−2

pν−1

)

=
n∑

ν=1

t̂nνλν
XνPν

pν
−

n∑
ν=1

t̂nνλν
Xν−1Pν−2

pν−1

=
n∑

ν=1

t̂nνλν
XνPν

pν
−

n−1∑
ν=0

t̂n,ν+1λν+1
XνPν−1

pν

=
t̂nnλnXnPn

pn
+

n−1∑
ν=1

(t̂nνλνPν − t̂n,ν+1λν+1Pν−1)
Xν

pν
.

We may write

t̂nνλνPν − t̂n,ν+1λν+1Pν−1 = Pν−1(λν t̂nν − λν+1 t̂n,ν+1) + t̂nνλνpν.

Therefore

Yn =
PntnnλnXn

pn
+

n−1∑
ν=1

(Pν−1

pν
Δν(t̂n,νλν) + λν t̂n,ν

)
Xν

= Tn1 + Tn2 + Tn3, say.

From Minkowski’s inequality it is sufficient to show that
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∞∑
n=1

ns−1|Tni|s < ∞, i = 1, 2, 3.

Using condition (i) ,

J1 : =
∞∑
n=1

ns−1|Tn1|s =
∞∑
n=1

ns−1
∣∣∣ tnnλnPn

pn
Xn

∣∣s

= O(1)
∞∑
n=1

ns−1(n1/s−1/k)s|Xn|s

= O(1)
∞∑

n=1

nk−1|Xn|k(ns−s/k−k+1|Xn|s−k).

But, from (ii)

ns−s/k−k+1|Xn|s−k = (n1−1/k|Xn|)s−k

= O((n|Xn|)s−k) = O(1).

Hence J1 = O(1).
Using (i) , Hölder’s inequality, (ii) , (iii) and (iv)

J2 : =
∞∑

n=1

ns−1|Tn2|s =
∞∑

n=1

ns−1
∣∣∣

n−1∑
ν=1

(Pν−1

pν

)
Δν(t̂nνλν)Xν

∣∣∣
s

= O(1)
∞∑

n=1

ns−1
( n−1∑

ν=1

ν1/s−1/k|tννλν|−1|Δν(t̂nνλν)||Xν|
)s

= O(1)
∞∑

n=1

ns−1
( n−1∑

ν=1

ν1−s/k|tννλν|−s|Δν(t̂nνλν)||Xν|s
)
×

( n−1∑
ν=1

|Δν(t̂nνλν)|
)s−1

= O(1)
∞∑

n=1

(n|tnnλn|)s−1
n−1∑
ν=1

ν1−s/k|tννλν|−s|Δν(t̂nνλν)||Xν|s

= O(1)
∞∑
ν=1

ν1−s/k|tννλν|−s|Xν|s
∞∑

n=ν+1

(n|tnnλn|)s−1|Δν(t̂nνλν)|

= O(1)
∞∑
ν=1

ν1−s/k|tννλν|−s|Xν|sνs−1|tννλν|s

= O(1)
∞∑
ν=1

νs−s/k|Xν|s

= O(1)
∞∑
ν=1

νk−1|Xν|k(νs−s/k−k+1|Xν|s−k)

= O(1)
∞∑
ν=1

νk−1|Xν|k = O(1),
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since
∑

an is summable |N̄, pn|k .
By Hölder’s inequality, (ii) , (v) and (vi) , we have

J3 : =
∞∑
n=1

ns−1|Tn3|s =
∞∑
n=1

ns−1
∣∣∣

n−1∑
ν=1

t̂n,νλνXν

∣∣∣
s

�
∞∑
n=1

ns−1
( n−1∑

ν=1

|t̂n,νλν||Xν|
)s

�
∞∑
n=1

ns−1
( n−1∑

ν=1

|tννλν|1−s|t̂n,νλν||Xν|s
)
×

( n−1∑
ν=1

|tννλν||t̂n,νλν|
)s−1

= O(1)
∞∑
n=1

(n|tnnλn|)s−1
n−1∑
ν=1

|tννλν|1−s|t̂n,νλν||Xν|s

= O(1)
∞∑
ν=1

|tννλν|1−s|Xν|s
∞∑

n=ν+1

(n|tnnλn|)s−1|t̂n,νλν|

= O(1)
∞∑
ν=1

|tννλν|1−s|Xν|s(ν|tννλν|)s−1

= O(1)
∞∑
ν=1

νs−1|Xν|s

= O(1)
∞∑
ν=1

νk−1|Xν|k(ν|Xν|)s−k

= O(1)
∞∑
ν=1

νk−1|Xν|k = O(1).

We now state sufficient conditions when k = s .

THEOREM 1.2. Let {λn} be a sequence of constants, T a triangle with bounded
entries such that T and {pn} satisfy

(i) tnnλn = O
( pn

Pn

)
,

(ii)
n−1∑
ν=1

|Δν(t̂nνλν)| = O(|tnnλn|) ,

(iii)
∞∑

n=ν+1

(n|tnnλn|)k−1|Δν(t̂nνλν)| = O(νk−1|tννλν|k) ,

(iv)
n−1∑
ν=1

|tννλν||t̂nνλν| = O(|tnnλn|) ,

(v)
∞∑

n=ν+1

(n|tnnλn|)k−1|t̂n,νλν| = O((ν|tννλν|)k−1) .

Then
∑

an summable |N̄, pn|k implies
∑

λnan is summable |T|k, k � 1 .
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Every summability factor theorem of this type implies an inclusion theorem by
setting each λn = 1 . We have

COROLLARY 1.1. ([3]) Let 1 < k � s < ∞ . Let T be a triangle with bounded
entries such that T and {pn} satisfy

(i) tνν = O
(( pν

Pν

)
ν1/s−1/k

)
,

(ii) (n|Xn|)s−k = O(1) ,

(iii)
n−1∑
ν=1

|Δν(t̂nν)| = O(|tnn|) ,

(iv)
∞∑

n=ν+1

(n|tnn|)s−1|Δν(t̂nν)| = O(νs−1|tνν|s),

(v)
n−1∑
ν=1

|tνν ||t̂n,ν| = O(|tnn|), and

(vi)
∞∑

n=ν+1

(n|tnn|)s−1|t̂n,ν| = O((ν|tνν |)s−1).
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[5] B. E. RHOADES, E. SAVAŞ, Necassary and sufficient conditions for inclusion relations for absolute
summability, Proc.Indian Acad.Sci.(Math. Sci.), 113, (2003), 243–250.
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