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Abstract. In the present paper, we study a Durrmeyer type integral modification of the well-
known Baskakov operators with the weight function of Beta basis function. Some approximation
properties of these operators were recently studied by Finta [2]. Here we study simultaneous
approximation properties for these operators. We estimate local direct result in terms of modulus
of continuity. The operators considered in this paper reproduce not only the constant functions
but also the linear ones, due to this property we can improve the order of approximation for
these operators by applying the iterative combinations, which were first studied by Micchelli [7].
We establish an asymptotic formula and error estimation in terms of higher order modulus of
continuity in simultaneous approximation for the Micchelli combinations of these operators.

1. Introduction

The new type of Baskakov-Durrmeyer operator is defined as

Bn(f (t), x) =
∞∑
v=1

pn,v(x)
∫ ∞

0
bn,v(t)f (t)dt + (1 + x)−nf (0) =

∫ ∞

0
Kn(x, t)f (t)dt, (1)

where pn,v(x) =
(n+v−1

v

)
xv

(1+x)n+v ; bn,v(t) = 1
B(n+1,v)

tv−1

(1+t)n+v+1 and Kn(x, t) =
∞∑
v=1

pn,v(x)

bn,v(t) + (1 + x)−nδ(t) , δ(t) being the Dirac delta function.
The operators defined by (1) are the Durrmeyer integral modification of the well

known Baskakov operators having weight functions of Beta basis functions. Some
approximation properties of the operators Bn(f , x) were recently discussed by Finta
[2]. The operators Bn have different approximation properties than the other usual
Baskakov Durrmeyer operators studied in [4], [8] and [9] etc. These operators reproduce
not only the constant functions but also the linear functions, which is the interesting
property of these operators, while the usual Baskakov Durrmeyer operators reproduce
only the constant functions. However it turns out that the order of approximation for
the operators (1) is at best O(n−1) even for smooth functions. To improve the order
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of approximation, we consider the iterative combinations due to Micchelli [7] of these
operators.

We define the class Cγ [0,∞) ≡ {f ∈ C[0,∞) : |f (t)| � Mtγ for some M >
0, γ > 0} . The norm ‖.‖γ on Cγ [0,∞) is defined as ‖f ‖γ = sup0<t<∞ |f (t)|t−γ .
For f ∈ Cγ [0,∞) , we introduce the operators Bn,k(f , x), which are defined by

Bn,k(f , x) = (I − (I − Bn)k)(f (t), x) =
k∑

p=1

(−1)p+1

(
k
p

)
Bp

n(f , x),

where Bp
n(f , x) , p ∈ N denotes the p-th iterate, and B0

n(f , x) = I . For some other
operators such type of iterative combinations were recently considered in [1] and [6].

For sufficiently small δ > 0 , linear approximating function viz. Steklov mean
fη,2k(t) of 2k-th order corresponding to f ∈ Cγ [0,∞) is defined by

fη,2k(t) = δ−2k
∫ δ

2

− δ
2

.......

∫ δ
2

− δ
2

(
f (t) − Δ2k

η f (t)
)
dt1dt2....dt2k,

where η = 1
2

∑2k
i=1 ti, t ∈ [a, b] and Δ2k

η f (t) is the 2k -th order forward difference of f
with step length η . It is easily checked for 0 < a1 < a2 < b2 < b1 < ∞ that:
(i) fη,2k has continuous derivatives up to order 2k on [a1, b1] ,
(ii) ‖f (r)

η,2k‖C[a2,b2 ] � M̂1δ−rω2k(f , δ, a1, b1) ,

(iii) ‖f − fη,2k‖C[a2,b2] � M̂2ω2k(f , δ, a1, b1) ,
(iv) ‖fη,2k‖C[a2,b2 ] � M̂3‖f ‖γ ,
where M̂i, i = 1, 2, 3 are certain constants that depend on [a, b] but are independent of
f and n . These properties are also mentioned in [6].

By CB[0,∞) we denote the space of all real valued continuous bounded func-
tions f on [0,∞) endowed with the norm ‖f ‖ = supx�0 |f (x)| . Let ω(f , δ) =
sup0<h�δ supx�0 |f (x+h)− f (x)| be the usual modulus of continuity of f ∈ CB[0,∞) .

In the present paper we investigate and study simultaneous approximation, in first
main result, we establish a local direct result in terms of ordinary modulus of continuity.
Second and third main result in the present paper are respectively Voronovskaja type
asymptotic formula and an estimation of error for the iterative combinations of the
operators (1).

Our main results are as follows:

THEOREM 1.1. Let n > r + 1 � 2 and f (i) ∈ CB[0,∞) for i ∈ {0, 1, 2, ..., r} .
Then

|B(r)
n (f , x) − f (r)(x)| �

(
(n + r − 1)!(n − r)!

n!(n − 1)!
− 1

)
‖f (r)‖

+ 2
(n + r − 1)!(n − r)!

n!(n − 1)!
ω
(
f (r), δ(n, r, x)

)
,

where δ(n, r, x) =
{

2n + 4r(1 + r)
(n − r)(n − r − 1)

x2+
2n + 4r(1 + r)

(n − r)(n − r − 1)
x+

r(1 + r)
(n − r)(n − r − 1

} 1
2

,

and x ∈ [0,∞) .
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THEOREM 1.2. Let f ∈ Cγ [0,∞) and f (2k+r) exists at a point x ∈ (0,∞) . Then

lim
n→∞ nk[B(r)

n,k

(
f (t), x

) − f (r)(x)] =
2k+r∑
j=r

P(j, k, r, x)f (j)(x),

where P(j, k, r, x) are certain polynomials in x .

THEOREM 1.3. Let f ∈ Cγ [0,∞) and suppose 0 < a1 < a2 < b2 < b1 < ∞ .
Then for all n sufficiently large, we have

‖B(r)
n,k(f , •) − f (r)‖C[a2,b2] � M

{
ω2k(f (r), n−

1
2 , a1, b1) + n−k‖f ‖γ

}
,

where M is a constant independent of f and n .

2. Basic results

In this section we mention certain lemmas which will be used in the sequel.

LEMMA 2.1. [4] Let m ∈ N ∪ {0} ., If the mth order moment is defined as

Un,m(x) =
∞∑
v=0

pn,v(x)
(

v
n
− x

)m

,

then Un,0(x) = 1, Un,1(x) = 0 and also there holds the recurrence relation:

nUn,m+1(x) = x(1 + x)�U(1)
n,m(x) + mUn,m−1(x)�.

Consequently we have Un,m(x) = O
(
n−[(m+1)/2]

)
.

LEMMA 2.2. Let the function Tn,m(x), m ∈ N ∪ {0} , be defined as

Tn,m(x) = Bn

(
(t − x)m, x

)
=

∞∑
v=1

pn,v(x)
∫ ∞

0
bn,v(t)(t − x)mdt + (1 + x)−n(−x)m.

Then Tn,0(x) = 1, Tn,1 = 0, Tn,2(x) = 2x(1+x)
n−1 . Also, there holds the recurrence relation

(n − m)Tn,m+1(x) = x(1 + x)�T(1)
n,m(x) + 2mTn,m−1(x)� + m(1 + 2x)Tn,m(x), n > m.

From the above recurrence relation, it is easily verified that for all x ∈ [0,∞) , we have

Tn,m(x) = O
(
n−[(m+1)/2]).

The proof of Lemma 2.2 can easily be done along the lines of the proof of [5,
Lemma 2.2].

REMARK 1. It is easily verified from Lemma 2.2 that for each x ∈ (0,∞)

Bn(ti, x) =
(n + i + 1)!(n − i)!

n!(n − 1)!
xi + i(i − 1)

(n + i − 2)!(n − i)!
n!(n − 1)!

xi−1 + O(n−2).
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COROLLARY 2.1. Let δ be a positive number. Then for every γ > 0, x ∈ (0,∞) ,
there exists a constant M(s, x) independent of n and depending on s and x such that∥∥∥∥∥

∫
|t−x|>δ

Kn(x, t)tγ dt

∥∥∥∥∥
C[a,b]

� M(s, x)n−s, s = 1, 2, 3....

The m -th order moment for the operators Bp
n(f , x) is denoted by T(p)

n,m(x) and

defined as T(p)
n,m(x) = Bp

n((t − x)m, x) . In particular T(1)
n,m(x) reduces to Tn,m(x) , defined

in Lemma 2.2.

LEMMA 2.3. For p ∈ N , there holds the following relation

T{p+1}
n,m (x) =

m∑
j=0

(
m
j

) m−j∑
i=0

1
i!

Tn,i+j(x)
∂ i

∂xi
T{p}

n,m−j(x).

LEMMA 2.4. We have

T(p)
n,m(x) = O

(
n−[(m+1)/2]).

Proof. For p = 1 , the result follows easily from Lemma 2.2. By using Lemma
2.3, and the fact that T{p}

n,m−j(x) is a polynomial in x of degree at most m− j , the result,
in the general case, follows immediately by the principle of mathematical induction.

LEMMA 2.5. For l ∈ N , we have

Bn,k((t − x)l, x) = O(n−k).

Proof. For k = 1 the result easily follows from Lemma 2.2, and in the general
case it follows immediately on applying Lemma 2.3, Lemma 2.4, and the induction
hypothesis.

LEMMA 2.6. [4] There exist the polynomials Qi,j,r(x) , independent of n and v
such that

{x(1 + x)}rDr
[
pn,v(x)

]
=
∑

2i+j�r
i,j�0

ni(v − nx)jQi,j,r(x)pn,v(x),

where D ≡ d
dx .

LEMMA 2.7. If f is r times differentiable on [0,∞) , and f (r−1) = O(tα),α > 0
as t → ∞ then for r = 1, 2, 3, .... and n > α + r we have

B(r)
n (f , x) =

(n + r − 1)!(n − r)!
n!(n − 1)!

∞∑
v=0

pn+r,v(x)
∫ ∞

0
bn−r,v+r(t)f (r)(t)dt.

The proof of the above lemma easily follows along the lines of the proof of [5,
Lemma 2.3].
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3. Proofs

In this section we present the proofs of main results.

Proof of Theorem 1.1 . Applying Lemma 2.7, we get

B(r)
n (f , x) − f (r)(x) =

[
(n + r − 1)!(n − r)!

n!(n − 1)!
− 1

]
f (r)(x)

+
(n + r − 1)!(n − r)!

n!(n − 1)!

∞∑
v=0

pn+r,v(x)
∫ ∞

0
bn−r,v+r(t)

[
f (r)(t) − f (r)(x)

]
dt,

because
∫∞

0 bn−r,v+r(t)dt = 1 and
∑∞

v=0 pn+r,v(x) = 1 .
Using the inequality ω

(
f (r), λδ

)
� (1 + λ )ω

(
f (r), δ

)
, λ � 0 we get

|B(r)
n (f , x) − f (r)(x)| �

[
(n + r − 1)!(n − r)!

n!(n − 1)!
− 1

]
‖f (r)‖

+
(n + r − 1)!(n − r)!

n!(n − 1)!

∞∑
v=0

pn+r,v(x)
∫ ∞

0
bn−r,v+r(t)|f (r)(t) − f (r)(x)|dt

� (n + r − 1)!(n − r)!
n!(n − 1)!

∞∑
v=0

pn+r,v(x)
∫ ∞

0
bn−r,v+r(t)

(
1 + δ−1|t − x|)ω(f (r), δ

)
dt

+
[
(n + r − 1)!(n − r)!

n!(n − 1)!
− 1

]
‖f (r)‖.

(2)
Using Cauchy-Schwarz inequality, we obtain

∞∑
v=0

pn+r,v(x)
∫ ∞

0
bn−r,v+r(t)|t − x|dt �

( ∞∑
v=0

pn+r,v(x)
∫ ∞

0
bn−r,v+r(t)(t − x)2dt

) 1
2

. (3)

Also, by easy computation, we are led to
∞∑
v=0

pn+r,v(x)
∫ ∞

0
bn−r,v+r(t)(t − x)2dt

=
2n + 4r(1 + r)

(n − r)(n − r − 1)
x2 +

2n + 4r(1 + r)
(n − r)(n − r − 1)

x +
r(1 + r)

(n − r)(n − r − 1)
.

(4)

On combining (2)-(4), we get∣∣B(r)
n (f , x) − f (r)(x)

∣∣
� (n + r − 1)!(n − r)!

n!(n − 1)!

(
1 + δ−1

[
2n + 4r(1 + r)

(n − r)(n − r − 1)
x2

+
2n + 4r(1 + r)

(n − r)(n − r − 1)
.x +

r(r + 1)
(n − r)(n − r − 1)

] 1
2

)
ω(f (r), δ)

+
[
(n + r − 1)!(n − r)!

n!(n − 1)!
− 1

]∥∥f (r)
∥∥.
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Finally, if we choose δ = δ(n, r, x) , we obtain the assertion of the theorem.

Proof of Theorem 1.2 . By Taylor expansion of f , we have

f (t) =
2k+r∑
i=0

f (i)(x)
i!

(t − x)i + ε(t, x)(t − x)2k+r,

where ε(t, x) → 0 as t → x .
Note that,

B(r)
n,k(f , x) =

k∑
p=1

(−1)p+1

(
k
p

)
∂r

∂xr
Bp

n(f , x)

=
k∑

p=1

(−1)p+1

(
k
p

)∫ ∞

0
K(r)

n (x, y)×

×
{

2k+r∑
j=r

f (j)(x)
j!

Bp−1
n ((t − x)i, y) + Bp−1

n (ε(t, x)(t − x)2k+r, y)

}
dy

=: E1 + E2.

Using Lemma 2.2, we get

E1 =
2k+r∑
j=r

f (j)(x)
j!

j∑
i=0

(
j
i

)
(−x)j−iB(r)

n,k(t
i, x)

=
2k+r∑
j=r

f (j)(x)
j!

j∑
i=0

(
j
i

)
(−x)j−i

{
∂r

∂xr
xi + n−k ∂r

∂xr

(P(j, k, x)
j!

∂ j

∂xj
xj
)

+ o(n−k)
}

=
2k+r∑
j=r

f (j)(x)
j!

r!
j∑

i=0

(−1)j−i

(
j
i

)(
j
r

)
xj−i + n−k

2k+r∑
j=r

P(j, k, r, x)f (j)(x) + o(n−k)

= f (r)(x) + n−k
2k+r∑
j=r

P(j, k, r, x)f (j)(x) + o(n−k),

in view of the identities

j∑
i=0

(−1)i

(
j
i

)(
i
r

)
=
{

0 j > r
(−1)r j = r.

To estimate E2 , note that if

I =
∫ ∞

0
K(r)

n (x, y)Br−1
n (ε(t, x)(t − x)2k+r, y) dy,

then on applying Lemma 2.6, we get
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|I| �
∑

2i+j�r
i,j�0

ni |Qi,j,r(x)|
{x(1 + x)}r

∞∑
v=1

|v−nx|jpn,v(x)
∫ ∞

0
bn,v(y)Bp−1

n (|ε(t, x)||t−x|2k+r, y)dy

+
(n + r + 1)!

(n − 1)!
(1 + x)−n−r|ε(0, x)|x2k+r.

The second term in the right hand side of above expression multiplied by nk tends
to zero as n → ∞ . Since ε(t, x) → 0 as t → x for a given ε > 0 there exists a
δ > 0 , such that |ε(t, x)| < ε whenever 0 < |t − x| < δ . Therefore, for |t − x| � δ ,
we have |ε(t, x)(t − x)2k+r| � Mtγ for some M > 0 . Hence

|I| �
∑

2i+j�r
i,j�0

ni |Qi,j,r(x)|
{x(1 + x)}r

∞∑
v=1

|v − nx|jpn,v(x)×

×
{
ε
∫
|t−x|<δ

bn,v(y)Bp−1
n (|t − x|2k+r, y)dy +

∫
|t−x|�δ

bn,v(y)Bp−1
n (Mtγ , y)dy

}
=: I1 + I2.

If we apply Cauchy-Schwarz inequality, Lemma 2.1 and Lemma 2.4, we get
that I1 = εO(n−k) . Now, proceeding in a similar way by applying Cauchy-Schwarz
inequality and Corollary 2.1, we obtain I2 = o(n−k) . Since ε > 0 is arbitrary, we get
I = o(n−k) , and this completes the proof of the theorem.

Proof of Theorem 1.3 . Using the linearity property, we get

||B(r)
n,k(f , •) − f (r)||C[a2,b2]

� ‖B(r)
n,k(f − fη,2k, •)‖C[a2,b2 ] + ||B(r)

n,k(fη,2k, •) − f (r)
η,2k||C[a2,b2] + ||f (r) − f (r)

η,2k||C[a2,b2]

=: J1 + J2 + J3.

Since f (r)
η,2k =

(
f (r)
)
η,2k

(t) , by the property (iii) of the Steklov mean, we have

J3 � M1ω2k(f (r), δ, a1, b1).

Next on applying Theorem 1.2, we get

J2 � M2n
−k

2k+r∑
j=r

‖f (j)
η,2k‖C[a1,b1].

If we now apply the interpolation property due to Goldberg and Meir [3], for each j = r,
r + 1, . . . , 2k + r , it follows that

‖f (j)
η,2k‖C[a2,b2] � M3

{‖fη,2k‖C[a1,b1] + ‖f (2k+r)
η,2k ‖C[a1,b1 ]

}
,
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and by applying properties (iii) and (iv) of the Steklov mean, we obtain

J2 � M4.n
−k
{‖f ‖γ + δ−2kω2k(f (r), δ)

}
.

Finally we shall estimate J1 , choosing a∗, b∗ satisfying the conditions 0 < a1 <
a∗ < a2 < b2 < b∗ < b1 < ∞ , and for this if ψ(t) denotes the characteristic function
of the interval [a∗, b∗] , then

J1 � ‖B(r)
n,k(ψ(t)(f (t)−f 2,δ (t)), •)‖C[a1 ,b1]+‖B(r)

n,k((1 − ψ(t))(f (t)−f 2,δ (t)), •)‖C[a1 ,b1]

=: J4 + J5.

We may note here that to estimate J4 and J5 , it is enough to consider their
expressions without the iterative combinations. By using Lemma 2.7, it is clear that

B(r)
n

(
ψ(t)(f (t) − fη,2k(t)), x

)
=

(n + r − 1)!(n − r)!
n!(n − 1)!

∞∑
v=0

pn+r,v(x)
∫ ∞

0
bn−r,v+r(t)ψ(t)(f (r)(t) − f (r)

η,2k(t))dt.

Hence

‖B(r)
n,k(ψ(t)(f (t) − fη,2k(t)), •)‖C[a1 ,b1] � M5‖f (r) − f (r)

η,2k‖C[a∗,b∗].

Next for x ∈ [a1, b1] and t ∈ [0,∞) \ [a∗, b∗] , we choose a δ1 > 0 satisfying
|t − x| � δ1 .

Therefore, by applying Lemma 2.6 and Cauchy-Schwarz inequality, we get that if

I ≡ B(r)
n ((1 − ψ(t))(f (t) − fη,2k(t)), x),

then

|I| �
∑

2i+j�r
i,j�0

ni |Qi,j,r(x)|
{x(1 + x)}r

∞∑
v=1

pn,v(x)|v − nx|j
∫ ∞

0
bn,v(t)(1 − ψ(t))|f (t) − fη,2k(t)|dt

+
(n + r − 1)!

(n − 1)!
(1 + x)−n−r(1 − ψ(0))|f (0) − fη,2k(0)|.

Note that for sufficiently large n , the second term tends to zero. Hence

|I| � M6‖f ‖γ
∑

2i+j�r
i,j�0

ni
∞∑
v=1

pn,v(x)|v−nx|j
∫
|t−x|�δ1

bn,v(t)dt

� M6‖f ‖γ δ−2s
1

∑
2i+j�r
i,j�0

ni
∞∑
v=1

pn,v(x)|v−nx|j
(∫ ∞

0
bn,v(t)dt

) 1
2
(∫ ∞

0
bn,v(t)(t−x)4sdt

) 1
2

� M6‖f ‖γ δ−2m
1

∑
2i+j�r
i,j�0

ni

{ ∞∑
v=1

pn,v(x)(v−nx)2j

} 1
2
{ ∞∑

v=1

pn,v(x)
∫ ∞

0
bn,v(t)(t−x)4sdt

} 1
2

.
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If we now use Lemmas 2.1 and 2.2, we get

|I| � M7‖f ‖γ δ−2s
1 O(n(i+ j

2−s)) � M7n
−q‖f ‖γ ,

where q = s − r
2 . Next choosing s > 0 satisfying q > k we obtain

|I| � M7n
−k‖f ‖γ .

Therefore by property (iii) of the function fη,2k(t) , we get

J1 � M8‖f (r) − f (r)
η,2k‖C[a∗,b∗] + M7n

−k‖f ‖γ
� M9ω2k(f (r), δ, a1, b1) + M7n

−k‖f ‖γ ,
and now, on choosing δ = n−

1
2 , the Theorem 1.3 follows.
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