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FURUTA INEQUALITY OF INDEFINITE TYPE

TAKASHI SANO

(communicated by F. Hansen)

Abstract. In this article, we study matrix inequalities on an (indefinite) inner product space,
including a generalization of Furuta inequality: let A, B be J-selfadjoint matrices with non-

negative eigenvalues and / 2 TA z JB. Then for each r 2 0,
1 1
(ATAPATYG 27 (AZBPAT)Y

holds for p = 0,q = 1 with (14 r)g=p+r.

1. Introduction

In [2], T. Ando studies matrix inequalities on an (indefinite) inner product space;
he shows the following:
(1.1) ([2, Theorem4]) Let J be a selfadjoint involution, and A, B J -selfadjoint matrices
with o(A), 6(B) C (a, B). Then

AZ'B=f(A)27f(B)

for any operator monotone function f (t) on (a, f3).
(1.2) (2, Theorem 6]) Let A, B be J -selfadjoint matrices with non-negative eigenval-
ues. If
127A27B,

then J -selfadjoint square roots Az , B? are well defined and
=742 >7B3.

In this article, we would like to show a generalization of (1.2) for o -powers
(Theorem 2.4); moreover Furuta inequality of indefinite type (Theorem 3.3). Although
we can show them as well as the corresponding ones on a Hilbert space, we think that
careful argument is required; therefore, we have this article.

In the remainder of this section, we recall basic facts about matrices on an (indefi-
nite) inner product space. We refer the reader to [3, 1].

Let M,(C) be the set of all complex n-square matrices, and (-, -) the standard
inner product on C". For a pair of selfadjoint matrices A, B, A= B means that A — B
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is positive semidefinite. For a selfadjoint involution J: J = J*,J? = I, we consider
an (indefinite) inner product [-, -] on C" given by

eyl = (Jxy)  (nyeC)
The J -adjoint matrix A* of A is defined as
[Ax)] = x4 (nyeC”).

In other words, A* = JA*J. A matrix A is said to be J -selfadjoint if A* = A or JA is
selfadjoint: JA = A*J. For a pair of J -selfadjoint matrices A, B, the J-order, denoted
as A>’B, is defined by

A2 [Bry  (xeC”),

i.e., JAZJB. A matrix A is called J -positive if [Ax,x] =0 (x € C"), or equivalently
JA>0. A matrix A is said to be a J -contraction if 1=7A*A or [x,x] > [Ax, Ax] for
x € C". Remark that / >7A implies that all eigenvalues of A are real. Hence, fora J -
contraction A all eigenvalues of A*A are real. In fact, by a result of Potapov-Ginzburg
(see [3, Chapter 2, Section 4]), all eigenvalues of A*A are non-negative.

If all eigenvalues of a J -selfadjoint matrix A are real and o(A) < (e, B), where
o(A) means the set of all eigenvalues of A, then for any real-valued function f(¢) on

(a, B) with analytic continuation, we can define f (A) by the Dunford integral

flA) = /r FOT— Ay g,

where T is a closed rectifiable contour in the domain of analytic continuation of f (7)
with positive direction surrounding o(A) inits interior. Note that f (A) is J -selfadjoint.

2. Inequality for powers
In Section 1, we recall the inequalities (1.1) and (1.2) by T. Ando. In this section,
we have a generalization of (1.2): Theorem 2.4.

LEMMA 2.1. (cf., [2, Lemma 5]) Suppose that A € M,,(C) is J -selfadjoint with
non-negative eigenvalues. If 1>7A, that is, J = JA, then the integral

sin To
s

/ ACTTAAL + A)"dA
0

converges for 0 < o0 < 1.

The integral is denoted by A*. Remark that for a J -selfadjoint matrix A with
positive eigenvalues the integral is just the Dunford integral f(A): f(r) = t* on
(0,00).

The following proof is given for the reader’s convenience; it is the same as that for
[2, Lemma 5].
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Proof. When M := kerA = {0}, then the assertion follows immediately from the
above remark. Hence, we assume that M # {0}. Let C := J(I — A). The assumption
C 2 O yields that

ICI{Cx,x) 2[Cxl* (x € C).
This means that
ICl Iz IvI> (v eMm).

Hence, M is a J- positive subspace. Then it is known (see [3, Chapter 1, Section
7] that positive definiteness of M implies projective completeness of M: C" is the
algebraic direct sum of M and its J -orthocomplement N, defined by

N={zy,7 =0 (VyeM)},
both of which are invariant for A. By definition, 6(4 /) & (0, 00). Any vector x € C"
is uniquely written as
x=y+z (YEM,ZEN),
and for any A > 0,
AL+ A)x = (ApN) AT+ (Appn) 'z,
which guarantees the convergence of the integral

sin o
T

/ ATTAM + A) " x dA,
0
and the proof is complete. [J

LEMMA 2.2. Let A € M,(C) be a J-positive matrix. Then X*AX is J -positive
forany X € M,(C).

Proof. By definition, JA > O. Hence, JX'AX = X*(JA)X = O and the proof is
complete. [J

LEMMA 2.3. Let A, B be J -selfadjoint matrices with positive eigenvalues. If
A>'B,

then
B~'=7A7"
This is a consequence of (1.1); here is a simple proof (see also [2, Lemma 3]):

Proof. Note that A? is defined by the Dunford integral and it is invertible J -
selfadjoint. The assumption and Lemma 2.2 yield

I=A"3AA"7 27A3BA™7 = (B:A™7)}(B7A™ 7).
Hence, by a theorem of Potapov-Ginzburg (see [3, Chapter 2, Section 4]),

1>7(B’A~%)(B?A™ %) = B3A~'B1.
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Therefore, by Lemma 2.2,
B '=B 1B 1>'BiBiA BB = A,
and the proof is complete. [J

THEOREM 2.4. Let A, B be J -selfadjoint matrices with non-negative eigenvalues
and 0 < a<1.If
1>7A>7B,

then J -selfadjoint powers A%, B* are well defined and
1>27A%>7B%,
Proof. When all eigenvalues of A and B are positive, the assertion is a conse-
quence of (1.1) with the operator monotone function f (r) = * on (0, c0).

When A or B has 0O as its eigenvalue, the powers can be defined by Lemma 2.1.
The assumption A >“B and Lemma 2.3 imply that

A +B)'Z/AI+A) (A >0),

or
AAM+A)'2'BAI+B)™" (A >0).

Therefore, A* >7B%* and the proof is complete. [J

REMARK 2.5. We comment on an alternative proof of the inequality A% >’B%*,
For simplicity, assume that A, B are invertible. Then similar argument as in the proof
of [4, Theorem V.1.9] and (1.2) yield A” =’B" for all dyadic rationals r € [0, 1]. By
continuity, the assertion follows.

3. Furuta inequality of indefinite type

LEMMA 3.1. Let A,B be J-selfadjoint matrices with non-negative eigenvalues
and 1=27'A,127B. Then the eigenvalues of ABA are non-negative and

1>74%
for A > 0.
Proof. By assumption, A and B’ are J -contractive, so is B3A . Since
ABA = (B>A)(B2A)(£71),
it follows from a theorem of Potapov-Ginzburg that
0(ABA) € [0, c0).

The second assertion is easy to see; the detail is left to the reader, and the proof is
complete. [J
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LEMMA 3.2. (cf.,[6, Lemma 1]) Ler A, B be J -selfadjoint matrices with positive
eigenvalues and 1>'A,1>7B. Then

(ABAY* = AB*(B3A?B*)*~'B7A
holds for A € R.
Proof. Let us consider a J -polar decomposition of AB?
AB? = UH,
where U is J-unitary; U‘U = I and H is the J-modulus {(AB2)!(AB2)}z =
(B2A2B%)z. Then it follows that
(ABA)* = (AB*(AB%)")* = (UH*U*)*
— UH*U* = AB*H '"H»H™'BiA
= AB?(H**~'B?A = AB* (B*A2B*)*~'BA
and the proof is complete. [J
PROPOSITION 3.3. Let A € M,,(C) be J -selfadjoint with non-negative eigenvalues
and 1 27A, and A, (n € N) J -selfadjoint with positive eigenvalues. Suppose that
A, — A
as n— oo. Thenfor 0 < x < 1,
AY — A%
as n — oo.

Proof. Note that C" is the algebraic direct sum of M := kerA and its J-
orthocomplement N as in the proof of Lemma 2.1. Since AY,A* on N are given
by the Dunford integral, the assertion on A is clear. Hence, it suffices to see that for
y € kerA

/ ACTAL AT+ Ay dA
0
tends to

/ ATTAMI+A) Yy dA =0
0
as n — oo . But this follows from Lebesgue’s dominated convergence theorem, and the

proof is complete. [
Here is a generalization of Furuta inequality:

THEOREM 3.4. (cf.,[5, Theorem|) Let A,B be J -selfadjoint matrices with non-
negative eigenvalues and 1>'A 27B. For each r 20,

(ATAPAT)T >/ (ASBPAT )4
holds for p=20,q=1 with (1+r)gZp +r.
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Proof. Since a proof given here is just the same as that of [5, Theorem], we have a
brief sketch; the detail is left to the reader.

Thanks to Proposition 3.3, we may assume that A, B are invertible; if necessary,
by considering invertible

1 1
A, =A+-1,B,: =B+ -1,
n n

and after having that
(AZAPAZ)T =7 (AZBPAL)T,
then take n as n — oo to get the conclusion.
For 1 Zp =0, by Theorem 2.4,

AP >'BP

holds and the assertion in this case follows from Lemma 2.2.

Since the inequality for p = 1,9 = I; i prr

1+r
because of Theorem 2.4, it suffices to consider the case p 2 1, g = I;—H .For0=r<1,
Lemmas 2.2, 2.3, and 3.2 yield that +

r implies the inequality forp =2 1, g >
;

AT = ATAAZ
>/ATBA?

4
2

Note thatby Lemma 3.1 eigenvalues of BZA"B

Let

. Py _pp b
are positive, soare thoseof B"2A7"B™2

Ltr

Ay = A" By = (ATBPAT)P
then by the above calculation, A; = /B, and

n noa
AP 2T (AT B AT )
forplzl,lzrlzo.
Putting p;,r; as

Py =1
147

pr=
implies
l+r 14r

A 2(1+r) >J{A (AzBPAz)A 2 }p+2r+1 — {Ar+2BPAr+2}p+2r+1
And taking r as 1 4+ s = 2(1 + r) yields that s € [1,3] and

AV > TAATBPAS YIS
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Repeating this manner, we can get the conclusion. [

REMARK 3.5. In Theorem 3.4, the assumption that /=>7A >“B can be replaced
by that
al >’A>"'B

for some o > 0.
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