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FURUTA INEQUALITY OF INDEFINITE TYPE
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(communicated by F. Hansen)

Abstract. In this article, we study matrix inequalities on an (indefinite) inner product space,
including a generalization of Furuta inequality: let A,B be J -selfadjoint matrices with non-
negative eigenvalues and I � JA � JB. Then for each r � 0 ,

(A
r
2 ApA

r
2 )

1
q � J(A

r
2 BpA

r
2 )

1
q

holds for p � 0, q � 1 with (1 + r)q� p + r.

1. Introduction

In [2], T. Ando studies matrix inequalities on an (indefinite) inner product space;
he shows the following:

(1.1) ([2, Theorem 4]) Let J be a selfadjoint involution, and A, B J -selfadjoint matrices
with σ(A),σ(B)� (α, β). Then

A� JB ⇒ f (A)� Jf (B)

for any operator monotone function f (t) on (α, β).
(1.2) ([2, Theorem 6]) Let A, B be J -selfadjoint matrices with non-negative eigenval-

ues. If
I � JA� JB,

then J -selfadjoint square roots A
1
2 , B

1
2 are well defined and

I � JA
1
2 � JB

1
2 .

In this article, we would like to show a generalization of (1.2) for α -powers
(Theorem 2.4); moreover Furuta inequality of indefinite type (Theorem 3.3). Although
we can show them as well as the corresponding ones on a Hilbert space, we think that
careful argument is required; therefore, we have this article.

In the remainder of this section, we recall basic facts about matrices on an (indefi-
nite) inner product space. We refer the reader to [3, 1].

Let Mn(C) be the set of all complex n -square matrices, and 〈 ·, ·〉 the standard
inner product on Cn. For a pair of selfadjoint matrices A, B, A�B means that A − B
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is positive semidefinite. For a selfadjoint involution J : J = J∗, J2 = I, we consider
an (indefinite) inner product [·, ·] on Cn given by

[x, y] := 〈 Jx, y〉 (x, y ∈ C
n).

The J -adjoint matrix A� of A is defined as

[Ax, y] = [x, A�y] (x, y ∈ C
n).

In other words, A� = JA∗J. A matrix A is said to be J -selfadjoint if A� = A or JA is
selfadjoint: JA = A∗J. For a pair of J -selfadjoint matrices A, B, the J -order, denoted
as A� JB , is defined by

[Ax, x]� [Bx, x] (x ∈ C
n),

i.e., JA� JB. A matrix A is called J -positive if [Ax, x]� 0 (x ∈ Cn), or equivalently
JA�O. A matrix A is said to be a J -contraction if I � JA�A or [x, x]� [Ax, Ax] for
x ∈ Cn. Remark that I � JA implies that all eigenvalues of A are real. Hence, for a J -
contraction A all eigenvalues of A�A are real. In fact, by a result of Potapov-Ginzburg
(see [3, Chapter 2, Section 4]), all eigenvalues of A�A are non-negative.

If all eigenvalues of a J -selfadjoint matrix A are real and σ(A)� (α, β), where
σ(A) means the set of all eigenvalues of A , then for any real-valued function f (t) on
(α, β) with analytic continuation, we can define f (A) by the Dunford integral

f (A) :=
∫
Γ
f (ζ)(ζI − A)−1dζ ,

where Γ is a closed rectifiable contour in the domain of analytic continuation of f (t)
with positive direction surrounding σ(A) in its interior. Note that f (A) is J -selfadjoint.

2. Inequality for powers

In Section 1, we recall the inequalities (1.1) and (1.2) by T. Ando. In this section,
we have a generalization of (1.2): Theorem 2.4.

LEMMA 2.1. (cf., [2, Lemma 5]) Suppose that A ∈ Mn(C) is J -selfadjoint with
non-negative eigenvalues. If 1� JA, that is, J � JA , then the integral

sinπα
π

∫ ∞

0
λα−1A(λ I + A)−1dλ

converges for 0 < α < 1 .

The integral is denoted by Aα . Remark that for a J -selfadjoint matrix A with
positive eigenvalues the integral is just the Dunford integral f (A) : f (t) = tα on
(0,∞) .

The following proof is given for the reader’s convenience; it is the same as that for
[2, Lemma 5].
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Proof. When M := kerA = {0}, then the assertion follows immediately from the
above remark. Hence, we assume that M �= {0}. Let C := J(I − A) . The assumption
C�O yields that

‖C‖〈Cx, x〉 �‖Cx‖2 (x ∈ C
n).

This means that
‖C‖[y, y]�‖y‖2 (y ∈ M).

Hence, M is a J - positive subspace. Then it is known (see [3, Chapter 1, Section
7] that positive definiteness of M implies projective completeness of M : Cn is the
algebraic direct sum of M and its J -orthocomplement N , defined by

N := {z; [y, z] = 0 (∀y ∈ M)},
both of which are invariant for A . By definition, σ(A|N)� (0,∞). Any vector x ∈ Cn

is uniquely written as
x = y + z (y ∈ M, z ∈ N),

and for any λ > 0,

A(λ I + A)−1x = (A|N)(λ I + (A|N))−1z,

which guarantees the convergence of the integral

sin πα
π

∫ ∞

0
λα−1A(λ I + A)−1x dλ ,

and the proof is complete. �

LEMMA 2.2. Let A ∈ Mn(C) be a J -positive matrix. Then X�AX is J -positive
for any X ∈ Mn(C).

Proof. By definition, JA�O. Hence, JX�AX = X∗(JA)X �O and the proof is
complete. �

LEMMA 2.3. Let A, B be J -selfadjoint matrices with positive eigenvalues. If

A� JB,

then
B−1 � JA−1.

This is a consequence of (1.1); here is a simple proof (see also [2, Lemma 3]):

Proof. Note that A
1
2 is defined by the Dunford integral and it is invertible J -

selfadjoint. The assumption and Lemma 2.2 yield

I = A− 1
2 AA− 1

2 � JA− 1
2 BA− 1

2 = (B
1
2 A− 1

2 )�(B
1
2 A− 1

2 ).

Hence, by a theorem of Potapov-Ginzburg (see [3, Chapter 2, Section 4]),

I � J(B
1
2 A− 1

2 )(B
1
2 A− 1

2 )� = B
1
2 A−1B

1
2 .
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Therefore, by Lemma 2.2,

B−1 = B− 1
2 IB− 1

2 � JB− 1
2 B

1
2 A−1B

1
2 B− 1

2 = A−1,

and the proof is complete. �

THEOREM 2.4. Let A, B be J -selfadjoint matrices with non-negative eigenvalues
and 0 < α < 1 . If

I � JA� JB,

then J -selfadjoint powers Aα , Bα are well defined and

I � JAα � JBα .

Proof. When all eigenvalues of A and B are positive, the assertion is a conse-
quence of (1.1) with the operator monotone function f (t) = tα on (0,∞).

When A or B has 0 as its eigenvalue, the powers can be defined by Lemma 2.1.
The assumption A� JB and Lemma 2.3 imply that

(λ I + B)−1 � J(λ I + A)−1 (λ > 0),

or
A(λ I + A)−1 � JB(λ I + B)−1 (λ > 0).

Therefore, Aα � JBα and the proof is complete. �

REMARK 2.5. We comment on an alternative proof of the inequality Aα � JBα .
For simplicity, assume that A, B are invertible. Then similar argument as in the proof
of [4, Theorem V.1.9] and (1.2) yield Ar � JBr for all dyadic rationals r ∈ [0, 1]. By
continuity, the assertion follows.

3. Furuta inequality of indefinite type

LEMMA 3.1. Let A, B be J -selfadjoint matrices with non-negative eigenvalues
and I � JA, I � JB. Then the eigenvalues of ABA are non-negative and

I � JAλ

for λ > 0.

Proof. By assumption, A and B
1
2 are J -contractive, so is B

1
2 A . Since

ABA = (B
1
2 A)�(B

1
2 A)(� JI),

it follows from a theorem of Potapov-Ginzburg that

σ(ABA)� [0,∞).

The second assertion is easy to see; the detail is left to the reader, and the proof is
complete. �
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LEMMA 3.2. (cf.,[6, Lemma 1]) Let A, B be J -selfadjoint matrices with positive
eigenvalues and I � JA, I � JB . Then

(ABA)λ = AB
1
2 (B

1
2 A2B

1
2 )λ−1B

1
2 A

holds for λ ∈ R .

Proof. Let us consider a J -polar decomposition of AB
1
2 :

AB
1
2 = UH,

where U is J -unitary; U�U = I and H is the J -modulus {(AB
1
2 )�(AB

1
2 )} 1

2 =
(B

1
2 A2B

1
2 )

1
2 . Then it follows that

(ABA)λ = (AB
1
2 (AB

1
2 )�)λ = (UH2U�)λ

= UH2λU� = AB
1
2 H−1H2λH−1B

1
2 A

= AB
1
2 (H2)λ−1B

1
2 A = AB

1
2 (B

1
2 A2B

1
2 )λ−1B

1
2 A

and the proof is complete. �

PROPOSITION 3.3. Let A ∈ Mn(C) be J -selfadjoint with non-negative eigenvalues
and I � JA, and An (n ∈ N) J -selfadjoint with positive eigenvalues. Suppose that

An → A

as n → ∞. Then for 0 < α < 1 ,

Aα
n → Aα

as n → ∞ .

Proof. Note that Cn is the algebraic direct sum of M := kerA and its J -
orthocomplement N as in the proof of Lemma 2.1. Since Aα

n , Aα on N are given
by the Dunford integral, the assertion on N is clear. Hence, it suffices to see that for
y ∈ kerA ∫ ∞

0
λα−1An(λ I + An)−1y dλ

tends to ∫ ∞

0
λα−1A(λ I + A)−1y dλ = 0

as n → ∞ . But this follows from Lebesgue’s dominated convergence theorem, and the
proof is complete. �

Here is a generalization of Furuta inequality:

THEOREM 3.4. (cf.,[5, Theorem]) Let A, B be J -selfadjoint matrices with non-
negative eigenvalues and I � JA� JB. For each r �0 ,

(A
r
2 ApA

r
2 )

1
q � J(A

r
2 BpA

r
2 )

1
q

holds for p�0, q�1 with (1 + r)q� p + r.
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Proof. Since a proof given here is just the same as that of [5, Theorem], we have a
brief sketch; the detail is left to the reader.

Thanks to Proposition 3.3, we may assume that A, B are invertible; if necessary,
by considering invertible

An := A +
1
n

I, Bn := B +
1
n

I,

and after having that

(A
r
2
n Ap

nA
r
2
n )

1
q � J(A

r
2
n Bp

nA
r
2
n )

1
q ,

then take n as n → ∞ to get the conclusion.
For 1�p�0 , by Theorem 2.4,

Ap � JBp

holds and the assertion in this case follows from Lemma 2.2.
Since the inequality for p�1, q =

p + r
1 + r

implies the inequality for p�1, q >
p + r
1 + r

because of Theorem2.4, it suffices to consider the case p�1, q =
p + r
1 + r

. For 0� r �1 ,
Lemmas 2.2, 2.3, and 3.2 yield that

A1+r = A
r
2 AA

r
2

� JA
r
2 BA

r
2

= A
r
2 B

p
2 (B− p

2 B−rB− p
2 )

p−1
p+r B

p
2 A

r
2

� JA
r
2 B

p
2 (B− p

2 A−rB− p
2 )

p−1
p+r B

p
2 A

r
2

= A
r
2 B

p
2 (B

p
2 A

r
2 A

r
2 B

p
2 )

1−p
p+r B

p
2 A

r
2

= (A
r
2 BpA

r
2 )

1+r
p+r .

Note that byLemma3.1 eigenvalues of B
p
2 ArB

p
2 are positive, so are those of B− p

2 A−rB− p
2 .

Let
A1 := A1+r, B1 := (A

r
2 BpA

r
2 )

1+r
p+r ,

then by the above calculation, A1 � JB1 and

A1+r1
1 � J(A

r1
2

1 Bp1
1 A

r1
2

1 )
1+r1
p1+r1

for p1 �1, 1� r1 �0.
Putting p1, r1 as

p1 =
p + r
1 + r

�1, r1 = 1

implies

A2(1+r) � J{A 1+r
2 (A

r
2 BpA

r
2 )A

1+r
2 } 2(1+r)

p+2r+1 = {Ar+ 1
2 BpAr+ 1

2 } 2(1+r)
p+2r+1 .

And taking r as 1 + s = 2(1 + r) yields that s ∈ [1, 3] and

A1+s � J{A s
2 BpA

s
2 } 1+s

p+s .
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Repeating this manner, we can get the conclusion. �

REMARK 3.5. In Theorem 3.4, the assumption that I � JA� JB can be replaced
by that

αI � JA� JB

for some α > 0.
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