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Abstract. In this paper, we introduce and study a new class of generalized nonlinear multi-valued
quasi-variational-like inclusions with H -monotone operators in Hilbert spaces. By using the
resolvent operator method associated with H -monotone operator due to Fang and Huang, we
construct a new iterative algorithm for solving this kind of nonlinear multi-valued variational
inclusions. We also prove the existence of solutions for the nonlinear multi-valued variational
inclusions and the convergence of iterative sequences generated by the algorithm. Our results
improve and generalize many known corresponding results.

1. Introduction

It is well known that variational inclusion is an important generalization of varia-
tional inequality, which has wide applications in the pure and applied sciences and has
been studied extensively by many authors (see, for example, [1, 2, 4-17,21-24, 27] and
the references therein).

In 2003, Fang and Huang [7] first introduced the notion of the H -monotonicity
in the context of solving some nonlinear inclusion systems in Hilbert space settings.
This notion does impact greatly the theory of maximal monotone mappings in terms
of applications to problems from several fields. Furthermore, Jin [13] and Verma
[24] used the generalized resolvent operator technique to studying a general class of
nonlinear variational inclusion problems involving H -monotone mappings in different
space settings. Very recently, Verma [24] considered a class of nonlinear variational
inclusion problems which generalize to the case of the relaxed monotone mappings in
Hilbert spaces, and studied the solvability of the nonlinear variational inclusions based
on the resolvent operator technique.

On the other hand, Hassouni and Moudafi [9] introduced and studied a class of
variational inclusions and developed a perturbed algorithm for finding approximate
solutions of the variational inclusions. Adly [1], Huang [10-12], Ding [4], and Ding and
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Luo [6] have obtained some important extensions of the results in [9] in various different
assumptions. We observe that all authors, in [1, 4, 9, 10], assume that the functionals
included in variational inclusions or generalized quasi-variational inclusions are proper
convex and lower semicontinuous. Recently, Ding [5], Salahuddin and Rais [22],
suggested and analyzed a kind of iterative schemes for solving generalized nonlinear
quasi-variational like inclusions with nonconvex functionals on Hilbert spaces. In
2004, Lan, Kim and Huang [15] introduced a new kind of generalized nonlinear quasi
variational inclusions involving non-monotone set-valued mappings with noncompact
values and constructed some new iterative algorithms for solving this class of generalized
nonlinear quasi variational inclusions in Hilbert spaces.

Inspired and motivated by the recent works [3, 5, 15, 24-26], we introduce and
study a new class of generalized nonlinear multi-valued quasi-variational-like inclusions
with H -monotone operators in Hilbert spaces. By using the resolvent operator method
associated with H -monotone operator due to Fang and Huang, we construct a new
iterative algorithm for solving this kind of nonlinear multi-valued variational inclusions.
We also prove the existence of solutions for the nonlinear multi-valued variational
inclusions and the convergence of iterative sequences generated by the algorithm. Our
results improve and generalize many known corresponding results.

2. Preliminaries

Throughout this paper, we suppose that E is a real Hilbert space with dual space
endowed with an norm || - || and an inner product {-,-) . Let 2£ denote the family of
all the nonempty subsets of E and C(E) be the family of all nonempty closed subsets
of E.

For a given element f € E, single- valued mappings p,g : E — E and N :
E x E — E, set-valued mappings T, Q : E — 2F and H -monotone mapping M (-, ?) :
E — 2F with g(E) (" DomM(-,t) #  for each fixed ¢ € E, we consider the following
problem:

Find x,u,w € E such that u € T(x),w € Q(x) and

f € N(p(x),u) + M(g(x),w). (2.1)

This problem is called a generalized nonlinear multi-valued quasi-variational-like in-
clusion involving H -monotone mapping.

Some examples of the problem (2.1):

(1) If M(-,1) = A@(-,t) forall r € E, where ¢ : EX E — RU {400} isa
proper functional such that for each fixed ¢t € E, ¢(-,#) : E — RU {400} is a lower
semicontinuous and subdifferentiable on E and A@(-,#) denotes the subdifferential of
¢(-, 1), then the problem (2.1) reduces to the problem of finding x, u,w € E such that
ueT(x),we Q(x) and

(f =N(px),u),y —gx))) = o(gx),w) —o(y,w), VyckE, (2.2)

which is called a generalized nonlinear multi-valued quasi-variational-like inclusion.
(2) f T,Q : E — E are single-valued mappings, then the problem (2.1) becomes
to the following generalized nonlinear variational inclusion:
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Find x € E such that

[ eNpK), T(X) +M(g(x), Qx)). (2.3)

The problem (2.3) was studied by Verma [24] when p = g = I, the identity mapping
and N(x,y) = S(x), M(x,z) = M(x) for all x,y,z € E, where S : E — E is a
single-valued and M : E — 2F is a H -monotone mapping.

(3) If M(x,y) = M(y) for all x,y € E, where M : E — 2F is a maximal
monotone mapping, then the problem (2.1) is equivalent to finding x € E,u € T(x)
such that g(x) € Dom(M) and

[ eN(px),u) +M(g(x)). (2.4)

This problem is called the generalized set-valued mixed variational inequality, which
was studied by Liu and Li [17] when f = 0. Furthermore, if f = 0 and p : E — 2F
is a set-valued mapping, then the problem (2.4) reduces to the variational inclusion
problem by Huang [10].

(4) If g=1 and N(u,v) = F(u) + Q(v) forall u,v € E, where F,Q: E — E
are two mappings, then the problem (2.4) reduces to the following nonlinear variational
inclusion problem:

[ E€Fp(x))+ Q) +M(x), (2.5)

which is called the generalized set-valued variational inclusion problem.

(5) If p =1 and Q = 0, then the problem (2.5) is equivalent to finding x € X
such that

f € F(x)+M(x).

This problem was introduced and studied by Jung and Morales [14] in Banach spaces.

(6) If M = 0¢ is the subdifferential of a proper convex lower semicontinuous
functional ¢ : E — RU {400}, N(u,v) =u—v forall u,v € E and TE — E isa
single-valued mapping, then the problem (2.4) reduces to finding x € E such that

(p(x) =T(x) —f,y —gx)) +¢(y) —0(gx)) =20, VyceE, (2.6)

which is called the variational inclusion problem in Hilbert spaces considered by Has-
souni and Moudafi [9].

(7)fT=0,g=1,f =0 and K is a nonempty closed convex subset of E,
then the problem (2.6) becomes to finding x € K such that

(P(x),y =x) +6(y) —9(x) 20, VxeK,
which was studied by Verma [26].

REMARK 2.1. For a suitable choice of f,N,¢,p,g,T,Q and M, a number of
classes of variational inequalities, complementarity problems and variational inclusions
can be obtained as special cases of the generalized nonlinear variational inclusions
(2.1)-(2.3) (see, for example, [5, 6, 15, 22, 24] and the references therein).

In the sequel, we give some concepts and lemmas.
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DEFINITION 2.1. Let H : E — E be an any mapping. A mapping g : E — E is
said to be
(i) r-strongly monotone, if there exists a constant r > 0 such that

(g(x) —g(),x =) =rlx—yl’, Vx,y€E;

(ii) c-strongly monotone with respect to H , if there exists a constant ¢ > 0 such
that

(8() —8(v). H(x) —H(y)) >c|lx—y|?, Vxy€E:
(iif) o -relaxed monotone, if there exists a constant o« > 0 such that

(g(x) —g(),x—y) = —a|x—y|*, Vx,y€E;

(iv) o -cocoercive with respect to H , if there exists a constant ¢ > 0 such that

(g(x) —g(y),H(x) — H(y)) > ollg(x) —gW)I* Vx,y€E;

(v) o-relaxed cocoercive with respect to H , if there exists a constant ¢ > 0 such
that

(e(x) —g(y), H(x) = H(y)) = —ole(x) —g0)I’, Vx,y € E;
(vi) (8, y)-relaxed cocoercive with respect to H, if there exist constants § > 0
and y > 0 such that

(g(x) —g(v),H(x) — H(y)) > —6|lg(x) — g + vllx =y, Vx,y€E;

(vii) P -Lipschitz continuous, if there exists a constant § > 0 such that

lex) —eWl < Bllx—yl, VYx,y€E.

REMARK 2.2. If H = I, then (iv) and (v) of Definition 2.1 reduce to the def-
initions of cocoerciveness and relaxed cocoerciveness, respectively. Further, (vi) of
Definition 2.1 collapses to (ii) of Definition 2.1 when 6 =0 and y = c.

EXAMPLE 2.1. ([24]) Let g : E — E be a nonexpansive mapping. Then I — g is

%-cocoercive and y -relaxed cocoercive for % > —v, where y > 0.

DEFINITION 2.2. A multi-valued operator A : E — 2F is said to be
(i) monotone if

(u—v,x—y) 20, Vx,y€E,ucAx),veA()
(if) maximal monotone if A is monotone and (I + pA)(E) = E forall p > 0.

DEFINITION 2.3. ([7, 8])Let H: E — E and M : E — 2% be any mappings
on a Hilbert space E. The map M is said to be H-monotone if M is monotone and
(H+ pM)(E) =E forall p > 0.

EXAMPLE 2.2. ([19]) Let H : E — E be m-strongly monotone and f : E — R
be locally Lipschitz such that df is o -relaxed monotone. Then Jf is H -monotone,
that is H + 0f is maximal monotone for m — ¢« > 0, where m, ot > 0.
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Note that, if H is strictly monotone and M is H -monotone, then M is maximal
monotone. Let the resolvent operator Ji ,, be defined by

Jom(x) = (H+pM)"'(x), VxeE. (2.7)

REMARK 2.3. If H = I, then the definition of /-monotone operators is that of
maximal monotone operators. In fact, the class of H-monotone operators has close
relation with that of maximal monotone operators.

EXAMPLE2.3. ([7]) Let H : E — E be astrictly monotone single-valued operator
and M : E — 2F an H -monotone operator. Then M is maximal monotone.

EXAMPLE 2.4. ([7]) Let M : E — 2f be a maximal monotone operator and
H : E — E be a bounded, cocoercive, hemi-continuous and monotone operator. Then
M is H-monotone.

The following example shows that a maximal monotone operator need not be
H -monotone for some H .

EXAMPLE 2.5. ([7]) Let E =R, M = I and H(x) = x* forall x € E. Then
it is easy to see that I is maximal monotone and the range of H + I is [*%7 +00).
Therefore, I is not H-monotone.

REMARK 2.4. When H = I, (2.7) reduces to the definition of the resolvent
operator of a maximal monotone operator (see [20]).

LEMMA 2.1. ([7]) Let H : E — E be a r-strongly monotone operator and
M : E — 2F be an H-monotone operator. Then the resolvent operator ]g,’M is

% -Lipschitz continuous, i.e.,
P o 1
HJH,M(X) - JH,M()’)H < ;HX*)’”a Vx,y € E.

DEFINITION 2.4. Let T : E — 2F be a multi-valued mapping. For all x,y € E,
the mapping N(-,-) : E x E — E is called to be

(i) t-Lipschitz continuous with respect to the first argument, if there exists a
constant T > 0 such that

[NCx, ) = N, )l < Tllx =yl Vx,y € E;

(ii) T is said to be ¢-H-Lipschitz continuous, if there exists a constant { > 0
such that

A

H(T(x), T(y)) < Clx=yll, Vx,y€E,
where H : 28 x 2F — (—00,+00) U {400} is the Hausdorff pseudo-metric, i.e.,

H(A, B) = max{sup inf | x — y||,supinf ||x — y||}, VA,B e 2F.
xeA YEB xEBYEA

Note that if the domain of H is restricted to closed bounded subsets, then H is the
Hausdorff metric.

In a similar way, we can define Lipschitz continuity of the mapping N(-,-) with
respect to the second argument.
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3. Main results

We first transfer the generalized nonlinear quasi-variational-like inclusion problem
(2.1) into a fixed point problem. From the definition of JZ M(-w) > it is easy to prove the

following Lemma.

LEMMA 3.1. The (x,u,w) is a solution of problem (2.1), if and only if it satisfies
the following relation

() = Ty H(8(x)) = p(N(p(x), 1) = f)], (3.1)
where Jpy .\ = (H+pM(-,w))~" and p > 0 is a constant.
REMARK 3.1. The equality (3.1) can be written as
x= (1= A)x+A{x = g(x) +Jp 4y [H(g(x)) = p(N(p(x),u) = )]},

where 0 < A < 1 is a parameter and p > 0 is a constant. This fixed point formulation
enables us to suggest the following iterative algorithm.

Algorithm 3.1. Let p,g : E - EN: EXE — E and T,Q : E — 2F be
nonlinear mappings. Suppose that M : E x E — 2F is a multi-valued mappings such
that for each fixed 7 € E, M(-,) is H-monotone with p(E) (| DomM(-,7) # (. For
any given xy € E, we choose uy € T(xg), wo € Q(xo) and let

x1 = (1= 2A)x0 + A{x0 = 8(x0) + Jj7 (. ) [H(8(x0)) — PN (p(x0), 100) = f)]} + Aeo.

Since up € T(xo) and wy € Q(xp), for any x; € E, by Nadler [18], there exist
u; € T(x1), w1 € Q(x1) such that

1)ﬁA(T(x0), T(x1)),
DH(Q(x0), O(x1)).
Let
X2 = (1= A)xi + Al = g(xr) + 0 [H(g (1)) — p(N(p(x1),ur) — £)] + Aer.
Continuing this way, we can obtain sequences {x,}, {u,}, {w,} satisfying
St = (1= A%+ 25— 8050) + g
[H(g(xn)) = P(N(p(xn), tn) = f)]} + e,

g € (%)t — 1| < (1 (n+ 1) )H(T (), T(xne1)), (32)
Wi € Q(xn), [[wn — Wy || < (14 (n+ 1)_1)ﬁ(M(xn)>M(xn+l))7
n=20,1,2,---,

where 0 < A < 1 and p > 0 are both constants, e, € E(n > 0) is an error to take
into account a possible inexact computation of the resolvent operator point.
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If T,Q are the same as of problem (2.3), then Algorithm 3.1 reduces to the
following algorithm:

Algorithm 3.2. For any given xo € E,ug € T(x),wo € Q(xo), we can obtain
iterative sequences {x,}, {u,} and {w,} as follows:

Xnt1 = (1fﬂ,)xn+},{x,,fg(xn)+.]f]7M< Q(xm[H(g(x,,))fp(N(p(xn), T(x,))—f)]}+Aen.

)

REMARK 3.2. If we choose suitable A, e,, N,f,T,Q,p,g and M, then Algo-
rithms 3.1 and 3.2 can be degenerated to a number of algorithms involving many known
algorithms which due to classes of variational inequalities, complementarity problems,
and variational inclusions (see, for example, [5, 6, 9, 15, 22]).

Now we prove the existence of a solution of problem (2.1) and the convergence of
Algorithm 3.1.

THEOREM 3.1. Let T,Q : E — C(E) be & - -Lipschitz continuous and ¢ -H -
Lipschitz continuous, respectively. Suppose that H : E — E is r-strongly monotone
and © -Lipschitz continuous, for each fixed w € E, M(-,w) : E — 2F be a H-
monotone mapping. Let p be T-Lipschitz continuous, g be o -strongly monotone and
B -Lipschitz continuous, and N : E X E — E be (y, ¢) -relaxed cocoercive with respect
to H in the first argument and Lipschitz continuous with respect to both arguments with
constants 8 > 0 and € > 0, respectively. If there exist constants p > 0 and u > 0
such that for each x,y,t € E,

198 110y () = T2y DI < ptllx =] (33)
and
k=+1-2a+p>+ul <1,
p< r(l—k)7 0t — €€ >0,
S
cB*—yt* —re€(1 —k)
o~ 5272 — 282 |
VIeB—y 2 —ref(1-k) - (8212 —€2E2)[0* B> —r* (1-k)*] 34)
< 5212 —2E2 )
eB* >y + rel (1 — k) + /(8272 — 2E2)[02B? — r2(1 — k)2,
ZHei—ei,lH K < oo, Vk €(0,1), lim e, =0,
i=1

then the iterative sequences {x,}, {u,} and {w,} generated by Algorithm 3.1 converge
strongly to x*,u* and w*, respectively, and (x*,u*, w*) is a solution of problem (2.1).
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Proof. From (3.2), we have
X1 =
(1= A3 AL — 8050) Ty (H(8C) — PN (), 02) — )]

+Aen — {(1 = A)xu—1 + A1 — g(xn—1)

I (HE0 1) — PN 1) n ) — )] +Re i}l (3.5)

< (U= llxn = xua | + Allxn = 201 = (8(x) — g(xa—1))

+ A5 bty (H (8 (6)) = PN (P () 1) = f )

gt (Hg(01) — PV (C-1)s 1) — )]+ A llen — enall

By Lemma 2.1 and condition (3.3), we can get

2y (H (8(x0)) = PN (%), 10n) — f))
~ ity H(&0=1)) = PN (P (1), tn—1) = 1))
< 8 (H(80)) — PN (p52), t0) — )
~ Tty H(E(xn=1)) = PN (P(xa—1), tn—1) = f))
+ ||J§’M(,’Wn>(H(g(x,,_1)) —PWN(PXa-1), ttn—1) —f)
Tty H(&0n-1)) = PN (P (K1), tn—1) — f

< H(g(e) ~ H(gln 1) ~ PIN(), ) ~ NpCou 1), )]
+ ufwn — wy—1]
< (&) — H(glxn 1)) — PN (32), ) —~ N(pa 1), )]

|
)
DI (3.6)

o
+ 7‘|N(P(xn71)a“n) = N(pa—1); un—1)|| + tl|wn — wa—1]|-

Since g is o -strongly monotone and [ -Lipschitz continuous, we have

[[xn — Xn—1 — (g(xn) — g(xn—l))”Z

= ||xa *xanHZ = 2(xn — Xu—1,8(Xn) — g(xu—1)) + llg(xn) — g(xnfl)Hz (3'7)
<(I-2a+ ﬁz)Hx,, *xnle2~

Since T is é—ﬁ—Lipschitz continuous, Q is § -ﬁ—Lipschitz continuous, H is o -
Lipschitz continuous, p is 7-Lipschitz continuous and N(,-) is (¥, ¢) -relaxed coco-
ercive with respect to H in the first argument and Lipschitz continuous with respect to
both arguments with constants § > 0 and ¢ > 0, respectively, now we obtain

||N(P(xn—l)>”n) - N(p(xn—l)v”‘n—l)H < E””ﬂ - ”‘n—IH
<e(l+n HA(T(x,), T(x,—1))  (3.8)
<eE(1+nYx, — xl,
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o = w1l < (14 =)L), 0050-1)) o)
<C+n o — x|
and
1H (&(xa))—H (g(xn—1))=PIN (P (xa), tn) = N(p(x—1), )]||?
= [|H(g(xa))—H (g(xn-1)) P+0* IN(p(xn), 1) =N (p(x0—1), ) ||*
- 2p<N(p(xn)7”n) _N(P(xn—l)>”n)>H(g(xn)) - H(g(xn—l))>

< 0?llg(xa) — 8 Con—1) > + P?82(lp(xa) — pau1)[I? (3.10)
—20[=¥[Ip(x2) — p(au1)|I* + cllg(x) — g(xu1)|]
= (0‘272pc)||g(xn)fg(xn,1)||2+(p252+2p)/)||p(xn)fp(xn,1)H2
< [(02 = 2pc)B? + (8% + 2p7) 7] |ty — 201 .
From (3.5)-(3.10), we have

Pt —ll < [1-A4+A(v/T—20 B2~/ (07— 2p0) B+ (0282 + 207 2
+ pe§r71(l+n71)+ug(l+n71))]||xnfx,,,1||+/l||e,1fen,1 | (3.11)

= sullXn — Xn—1]| + Allen — en—1ll,

where

sp =1 = A[1 = (ko + hu(p))],

ky = ~/1 —2a+ B>+ ul(l+nt),

ha(p) = pe&r™ (1 +n~") +r~'/(6% — 2pc) B2 + (0282 + 2py) 7
Letting s = 1 — A[l — (k + h(p))], where
k=+/1—20+ P +uc,
h(p) = per=! +r~'\/(0? = 2pc) B> + (p?8% + 2py) 7>

then we have

ky =k, ho(p) = h(p), sp—s, as n— o0.

From condition (3.4), we know that 0 < s < 1 and hence there exist ny > 0 and
so € (s, 1) such that s, < so forall n > ng. Therefore, by (3.11), we have

||xn+1 *an < SOHxn - xnle + Af”en - en71||a Vn Z ny. (312)

(3.12) implies that

n—no

ot = 5all < 557 g1 =3l + 2 3 5 gy, o,
j=1

where 1, = ||e, — e,—1|| forall n > ng. Hence, for any m > n > ng, we have
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m—1

||xm _xn” < Z HxiJrl —XiH

i=n

m—1 i—ngp

< Z% "X +1 — X |l +AZ ZS] li—(j— 1 (3.13)
i=n j=1

<Zs0 |21 — xnoH—&—lZ Z ]

i=n

Since Y"1, k™' < 00, Vk € (0, 1) and sy < 1, it follows from (3.13) that [|x,,—x,| —
i=1

0,as n — 00, and so {x,} isa Cauchy sequencein E. Thus, there exists x* € E such

that x, — x* as n — co.

Now we prove that u, — u* € T(x*) and w, — w* € Q(x*). In fact, it
follows from (3.8) and (3.9) that {u,} and {w,} are also Cauchy sequencesin E. Let
u, — u* and w, — w*, respectively. In the sequel, we will show that u* € T(x*) and
w* € Q(x*). Noting u, € T(x,), we have

du”, T(x")) = inf{[[u, —y| : y € T(x")}
< " — wn|| + d(un, T(x"))
<l — || + H(T(xa), T(x"))
< o — || + &lxn — x*|| — 0.

Hence d(u*,T(x*)) = 0 and therefore u* € T(x*). Similarly, we can prove that
w* € Q(x*). Since

Xn+1 = (1 - A)x,, +A[xn - g(xn) +JZ7M(.7W,1)(H(8(XH)) - p(N(p(x,,), ”n) *f))} + Aey,

we can obtain
§(6") = I8y (H(8(")) = p(N(p(x*), u) —£)).

By Lemma 3.1, (x*,u*,w*) is a solution of problem (2.1). This completes the
proof. [

From Theorem 3.1, we have the following results.

THEOREM 3.2. Let T,Q : E — E be & -Lipschitz continuous and ( -Lipschitz
continuous, respectively. Suppose that f,g,p,N and M are the same as in Theorem
3.1 and conditions (3.3) and (3.4) hold, then the iterative sequences {x,} generated
by Algorithm 3.2 converge strongly to the unique solution x* of problem (2.3).

Proof. By Theorem 3.1, the problem (2.3) has a solution x* € E and x, —
x*(n — o0), where {x,} is the iterative sequences generated by Algorithm 3.2. Now



GENERALIZED NONLINEAR MULTI-VALUED QUASI-VARIATIONAL-LIKE INCLUSIONS 399

we prove that x* is a unique solution of the problem (2.3). In fact, if x is also a solution
of the problem (2.3), then

8(0) = J0, 1 o0y (H(8(0)) — pN(p(x), T(x)) —1)).
It follows that
¥ = x| = " —x—(g(x*) =g (¥)) 5 ps(. o)) H (™)) =P (N (p(x*), T(x*)) £ )
— (o) H(E) = p(N(p(x), T(x)) —f))]|

1oy () = PN (), ) = £))
ooy (H () — pN(p(x). T(x)) — )]
1 ey (H(8() = pN(p(x), T(x)) —£))

)

oy HE®) = p(N(p(), T(x)) — 1))l
S VI =20+ B2 — x| + uf|Q(") — 0|

+%||H(g(X*))*H(g(X)) PIN(p(x"), T(x*)) = N(p(x), T(x"))]]|

i gHN(p(x), T(x*)) — N(p(x), T(x))||
< Ofx* —x,

where

=+1-2a+p*+ul+- \/ —2pc)B? + (p262+2py)rz+§.

It follows from (3.4) that 0 < 0 < 1 and so x* = x. This complete the proof. [

THEOREM 3.3. Let T,Q : E — C(E) be &-H-Lipschitz continuous and {-H-
Lipschitz continuous, respectively. Suppose that H : E — E is r-strongly monotone
and o -Lipschitz continuous, for each fixed w € E, M(-,w) : E — 2F be a H-
monotone mapping. Let p be T-Lipschitz continuous, g be o -strongly monotone and
B -Lipschitz continuous, and N : E x E — E be c-strongly monotone with respect to
H in the first argument and Lipschitz continuous with respect to both arguments with
constants 8 > 0 and € > 0, respectively. If there exist constants p > 0 and 4 > 0
such that for each x,y,t € E,

N I AN ] [ P (3.14)

=v1-20+p2+uf <1,

peé + /02 B2 — 2pcP? + p26272 < r(1 — k),

Z le; —ei1]| k' < o0, VK € (0,1), lim e, =0,

. n— 00
i=1

and

(3.15)
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then the iterative sequences {x,}, {u,} and {w,} generated by Algorithm 3.1 converge
strongly to x*,u* and w*, respectively, and (x*,u*, w*) is a solution of problem (2.1).

THEOREM 3.4. Let T,Q : E — E be & -Lipschitz continuous and ( -Lipschitz
continuous, respectively. Suppose that f,g,p,N and M are the same as in Theorem
3.3 and conditions (3.14) and (3.15) hold, then the iterative sequences {x,} generated
by Algorithm 3.2 converge strongly to the unique solution x* of problem (2.3).

REMARK 3.3. If we choose suitable f,N, T, O, p, g and M , then Theorems 3.1-3.4
can be degenerated to many known results of (generalized) variational inequalities as
special cases (see, for example, [5, 15, 24] and the references therein).

REMARK 3.4. We can construct a new perturbed iterative algorithm for solving
the generalized nonlinear variational inclusion (2.3) and prove the convergence and
stability of the iterative sequence generated by the perturbed iterative algorithm. For
more details, we refer to [10, 15] and the references therein.
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