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Abstract. In this paper, some existence theorems for the generalized vector quasi-variational-like
inequalities without monotonicity are obtained.

1. Introduction

TheVectorVariational Inequality (for short, VVI) in a finite dimensionalEuclidean
space has been introduced in [1] and applications have been given. Chen and Cheng
[2] studied the VVI in infinite dimensional space and applied it to Vector Optimization
Problem (for short, VOP). Since then, many authors [3-11] have intensively studied
the VVI on different assumptions in infinite-dimensional spaces. Lee et al. [12, 13],
Lin et al. [14], Konnov and Yao [15], Daniilidis and Hadiisavvas [16], Yang and Yao
[17], and Oettli and Schlager [18] studied the generalized vector variational inequality
and obtained some existence results. Chen et al. [19] and Lee et al. [20] introduced
and studied the generalized vector quasi-variational inequality and established some
existence theorems. Ansari [21, 22], Ding [23, 24] and Luo [25] studied the generalized
vector variational-like inequalities. Ding [26] introduced and study a class of gener-
alized vector quasi-variational-like inequality problem (in short, GVQVLIP), which
generalizes and unifies generalized vector quasi-variational inequalities, generalized
vector variational-like inequalities as well as various extensions of the classic varia-
tional inequalities in the literature. By employing the scalarization technique, Ding [26]
established several existence results for (GVQVLIP) involving C+ -η -monotone and
weakly C+ -η -monotone set-valued mappings.

In this paper, we shall use different method with that in [26] and present the
existence of a solution for (GVQVLIP) without any monotone conditions.
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2. Preliminaries

Let Y be a real Hausdorff topological vector space and X be a nonempty convex
subset in a real locally convexHausdorff topological vector space E . we denote L(E, Y)
the space of all continuous linear operators from E into Y and by 〈 u, y〉 the evaluation
of u ∈ L(E, Y) at y ∈ E . Let σ be the family of all bounded subsets of X whose
union is total in E , i.e., the linear hull of ∪{S : S ∈ σ} is dense in X . Let β be a
neighbourhood base of 0 in Y . When S runs through σ , V through β , the family

M(S, V) = {l ∈ L(E, Y) : ∪x∈S〈 l, x〉 ⊂ V}
is a neighbourhood base of 0 in L(E, Y) at x ∈ E (see [27, pp. 79–80]). By the
Corollary of Schaefer [27, pp. 80], L(E, Y) becomes a locally convex topological vector
space under σ -topology, where Y is assumed a locally convex topological space.

Let intA and Co A denote the interior and convex hull of a set A , respectively.
Let C : X → 2Y be a set-valued mapping such that C(x) is a closed pointed and convex
cone with intC(x) �= ∅ for each x ∈ X . Let η : X × X → E be a single-valued
mapping, D : X → 2X and T : X → 2L(E,Y) be two set-valued mappings, Ding [26]
introduced a generalized vector quasi-variational-like inequality problem (GVQVLIP),
which is to find x̄ in X such that x̄ ∈ D(x̄) , and

∀y ∈ D(x̄), ∃v̂ ∈ T(x̄) : 〈 v̂,η(y, x̄)〉 /∈ − intC(x̄). (1)

Then the point x̄ is said to be a solution of the (GVQVLIP).
It is easy to see that x̄ is a solution of the (GVQVLIP) is equivalent to x̄ in X

satisfying x̄ ∈ D(x̄) , and

∀y ∈ D(x̄), 〈T(x̄),η(y, x̄)〉 �⊆ − intC(x̄). (2)

Where 〈T(x̄),η(y, x̄)〉 = ∪v∈T(x̄)〈 v,η(y, x̄)〉 .
The following problems are the special cases of the (GVQVLIP).
(i) For all x ∈ X , if D(x) ≡ X , then the (GVQVLIP) reduces to the generalized

vector variational-like inequality problem (in short, GVVLIP) which is to find x̄ in X
such that there exists an v̂ ∈ T(x̄) satisfying

〈 v̂,η(y, x̄)〉 /∈ − intC(x̄), ∀y ∈ X. (3)

This problem was studied in [21-25].
(ii) If T is a single-valued mapping and η(y, x) = y − g(x), ∀x, y ∈ X , where

g : X → E is a single-valued mapping, then the (GVQVLIP) reduces to finding x̄ in X
such that x̄ ∈ D(x̄) , satisfying

〈T(x̄), y − g(x̄)〉 /∈ − intC(x̄), ∀y ∈ D(x̄). (4)

This is a new problem. If for all x ∈ X , if D(x) ≡ X , then the problem (4) reduces to
finding x̄ in X such that

〈T(x̄), y − g(x̄)〉 /∈ − intC(x̄), ∀y ∈ X. (5)

The problem (5) was considered by Siddiqi et al. [28].
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(iii) If η(y, x) = y − x , ∀x, y ∈ X , then the (GVQVLIP) reduces to finding x̄ in
X such that x̄ ∈ D(x̄) , and

∀y ∈ D(x̄), ∃v̂ ∈ T(x̄) : 〈 v̂, y − x〉 /∈ − intC(x̄). (6)

Problem (6) is called the generalized vector quasi-variational inequality problem
(GVQVIP) which is new. When C(x) = C , ∀x ∈ X is a constant cone, problem
(6) was studied by Chen and Li [19] and Lee et al. [20].

(iv) If D(x) ≡ X , ∀x ∈ X and η(y, x) = y− x , ∀x, y ∈ X , then the (GVQVLIP)
reduces to find x̄ in X such that

∀y ∈ X, ∃v̂ ∈ T(x̄) : 〈 v̂,η(y, x̄)〉 /∈ − intC(x̄). (7)

Problem (7) and its special cases are called the generalized vector variational inequality
(GVVIP) which was introduced and studied in [12-18].

(v) If T is single-valued function, then the (GVQVLIP) reduces to find x̄ in X
such that x̄ ∈ D(x̄) , and

〈T(x̄),η(y, x̄)〉 /∈ − intC(x̄), ∀y ∈ D(x̄). (8)

When D(x) ≡ X , ∀x ∈ X , problem (8) and its special cases were studied by many
authors, see [1-11].

(vi) If Y = R and C(x) = [0,∞), ∀x ∈ X , then L(E, Y) = E∗ , where E∗ is the
dual space of E , and the (GVQVLIP) reduces to find x̄ in X such that x̄ ∈ D(x̄) , and

∀y ∈ D(x̄), ∃v̂ ∈ T(x̄) : 〈 v̂,η(y, x̄)〉 � 0. (9)

Problem (9) includes many classes of scalar type generalized quasi-variational
inequality and generalized quasi-variational-like inequality problems as special cases,
see [29-35].

In order to prove the main results, we need the following definitions and lemmas.

DEFINITION 2.1 [23] Let E, Y be two real topological vector spaces, X be a
nonempty and convex subset of E , C : X → 2Y be a set-valued mapping such that
C(x) is a closed pointed and convex cone for each x ∈ X . Let η : X × X → E be
a single-valued mapping. T : X → 2L(E,Y) is said to satisfy the generalized L -η -
condition iff for any finite set {y1, y2, ..., yn} in X , x̄ =

∑n
j=1 αjyj with αj � 0 and∑n

j=1 αj = 1 , there exists v̄ ∈ T(x̄) , such that

〈
v̄,

n∑
j=1

αjη(yj, x̄)
〉

/∈ − intC(x̄).

REMARK 2.1. If η(y, x) is affine in the first argument and ∀x ∈ X , ∃v ∈ T(x) ,
such that

〈 v̄,η(x, x)〉 /∈ − intC(x),

Then T satisfy the generalized L -η -condition.
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If η(y, x) = y − x , ∀x, y ∈ X , then we have that

〈
v̄,

n∑
j=1

αj(yj − x̄)
〉

= 〈 v̄, x̄ − x̄)〉 = 0 /∈ − intC(x̄), ∀v ∈ T(x̄).

And hence T satisfy the generalized L -η -condition trivially.

DEFINITION 2.2 [36] Let X and Y be two topological spaces and T : X → 2Y be
a set-valued mapping. Then

(1) T is said to be upper semicontinuous if, for any x0 ∈ X and for each open set
U in Y containing T(x0) , there is a nerghborhood V of x0 in X such that T(x) ⊆ U ,
for all x ∈ V .

(2) T is said to have open lower sections if the set T−1(y) = {x ∈ X : y ∈ T(x)}
is open in X for each y ∈ Y .

(3) T is said to be closed, if the set {(x, y) ∈ X × Y : y ∈ T(x)} is closed in
X × Y .

LEMMA 2.1. (see [37] ) Let X be a paracompact Hausdorff space and Y be a
linear topological space. Suppose T : X → 2Y is a set-valued mapping such that

(i) for each x ∈ X , T(x) is nonempty,
(ii) for each x ∈ X , T(x) is convex, and
(iii) T has open lower sections.
Then there exists a continuous function f : X → Y such that f (x) ∈ T(x) for all

x ∈ X .

LEMMA 2.2. (see [36] ) Let X and Y be topological spaces. If T : X → 2Y is a
upper semicontinuous set-valued mapping with closed values, then T is closed.

LEMMA 2.3. (see [38] ) Let X and Y be topological spaces and T : X → 2Y is
a upper semicontinuous set-valued mapping with compact values. Suppose {xα} is a
net in X such that xα → x0 . If yα ∈ T(xα) for each α , then there is a y0 ∈ T(x0)
and a subset {yβ} of {yα} such that yβ → y0 .

LEMMA 2.4. (see [37] ) Let X and Y be two topological spaces. Suppose T :
X → 2Y and K : X → 2Y are set-valued mappings having open lower sections, then

(i) the set-valued mapping F : X → 2Y defined by, for each x ∈ X , F(x) =
Co(T(x)) has open lower sections.

(ii) the set-valued mapping θ : X → 2Y defined by, for each x ∈ X , θ(x) =
T(x) ∩ K(x) has open lower sections.

LEMMA 2.5. (see [40] ) Let E be a locally convex topological linear space and X
be a compact convex subset in E . Suppose T : X → 2X is a set-valued mapping such
that

(i) for each x ∈ X , T(x) is nonempty,
(ii) for each x ∈ X , T(x) is convex and closed,
(iii) T is upper semicontinuous.
Then there exists a x̄ ∈ X such that x̄ ∈ T(x̄) .
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3. Existence results

In this section, we shall present some existence result of the (GVQVLIP) without
any monotone conditions.

THEOREM 3.1. Let Y be a real Hausdorff topological vector space, X be a
nonempty, compact, convex and metrizable set in a real locally convex Hausdorff
topological vector space E , and L(E, Y) be equipped with the σ -topology. Let
D : X → 2X be an upper semicontinuous set-valued mapping with nonempty convex
closed values and open lower sections, C : X → 2Y be a set-valued mapping such
that C(x) is a closed pointed and convex cone with int C(x) �= ∅ for each x ∈ X ,
and the set-valued mapping M = Y\(− int C) : X → 2Y be upper semicontinuous
on X . Let T : X → 2L(E,Y) be upper semicontinous on X with compact values and
η : X × X −→ E be continuous with respect to the second argument, such that T
satisfies the generalized L -η -condition. Then, the (GVQVLIP) has a solution x̄ ∈ X .

Proof. Define a set-valued mapping P : X → 2X by

P(x) = {y ∈ X : 〈T(x),η(y, x)〉 ⊆ − intC(x)}
= {y ∈ X : 〈 v,η(y, x)〉 ∈ − intC(x), ∀v ∈ T(x)}, ∀x ∈ X.

Thus, to show the conclusion of the theorem, it is equivalent to showing that there exists
x̄ ∈ X such that x̄ ∈ D(x̄) and D(x̄) ∩ P(x̄) = ∅ .

We first prove that x /∈ Co(P(x)) for all x ∈ X . To see this, suppose, by way
of contradiction, that there exists some point x̄ ∈ X such that x̄ ∈ Co(P(x̄)) . Then
there exists finite points y1, y2, ..., yn in X , and αj � 0 with

∑n
j=1 αj = 1 such that

x̄ =
∑n

j=1 αjyj and yj ∈ P(x̄) for all j = 1, 2, ..., n . That is,

〈 v,η(yj, x̄)〉 ∈ − intC(x̄), ∀v ∈ T(x) and j = 1, 2, ..., n.

Since int C(x̄) is convex, we obtain

〈 v,
n∑

j=1

αjη(yj, x̄)〉 ∈ − intC(x̄), ∀v ∈ T(x),

which contradicts the fact that T satisfies the generalized L -η -condition. Therefore
x /∈ Co(P(x)) for all x ∈ X .

Now we prove that the set

P−1(y) = {x ∈ X : 〈T(x),η(y, x)〉 ⊆ − intC(x)}
= {x ∈ X : 〈 v,η(y, x)〉 ∈ − intC(x), ∀v ∈ T(x)}

is open for each y ∈ X . That is, P has open lower sections in X . Consider the
set-valued mapping S : X → 2Y defined by

S(y) = {x ∈ X : 〈T(x),η(y, x)〉 /∈ − intC(x)}
= {x ∈ X : ∃ v ∈ T(x)
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such that 〈 v,η(y, x)〉 /∈ − intC(x)} .
We only need to prove that S(y) is closed for all y ∈ X . In fact, consider a net

xt ∈ S(y) such that xt → x ∈ X . Since xt ∈ S(y) , there exists st ∈ T(xt) such that

〈 st,η(y, xt)〉 /∈ − intC(xt).

From the upper semicontinuity and compact values of T and Lemma 2.3, it suffices to
find a subset {stj} which converges to some s ∈ T(x) . By Lemma 1 in [23, pp. 114],
we know that 〈 .〉 is continuous, and hence

〈 stj ,η(y, xtj)〉 → 〈 s,η(y, x)〉 .

By Lemma 2.2 and upper semicontinuity of M , we have 〈 s,η(y, x)〉 /∈ − intC(x) ,
and hence x ∈ S(y) , S(y) is closed. Therefore, P has open lower sections in X .

Also define another set-valuedmapping, G : X → 2X by G(x) = D(x)∩Co(P(x)) ,
∀x ∈ X . Let the set W = {x ∈ X : G(x) �= ∅} . Since D and P has open lower
sections in X , and by Lemma 2.4, we know that Co(P) and G also has open lower
sections in X . Hence, W = ∪y∈XG−1(y) is an open set in X . Then, the set-valued
mapping G |W : W → 2X has open lower sections in W , and for all x ∈ W , G(x) is
nonempty and convex. Also, since X is a metrizable space, W is paracompact [39,
P.831]. Hence, by Lemma 2.1, there is a continuous function f : W → X such that
f (x) ∈ G(x) ⊂ D(x) for all x ∈ W . Define Q : X → 2X by

Q(x) =
{

f (x) if x ∈ W,
D(x) if x /∈ W.

Now, we prove that Q is upper semicontinuous. In fact, for each open set V in X , the
set

{x ∈ X : Q(x) ⊂ V} = {x ∈ W : f (x) ∈ V} ∪ {x ∈ X \ W : D(x) ⊂ V}
⊂ {x ∈ W : f (x) ∈ V} ∪ {x ∈ X : D(x) ⊂ V}.

On the other hand, when x ∈ W , and f (x) ∈ V , we have Q(x) = f (x) ∈ V .
when x ∈ X and D(x) ⊂ V , since f (x) ∈ D(x) if x ∈ W , we know that Q(x) ⊂ V
and so

{x ∈ W : f (x) ∈ V} ∪ {x ∈ X : D(x) ⊂ V} ⊂ {x ∈ X : Q(x) ⊂ V}.
Therefore,

{x ∈ X : Q(x) ⊂ V} = {x ∈ W : f (x) ∈ V} ∪ {x ∈ X : D(x) ⊂ V}.
Since f is continuous and D is upper semicontinuous, the sets {x ∈ W : f (x) ∈ V}
and {x ∈ X : D(x) ⊂ V} are open. It follows that {x ∈ X : Q(x) ⊂ V} is open and
so the mapping Q : X → 2X is upper semicontinuous. Since for each x ∈ X , Q(x)
is convex, closed, and nonempty, by Lemma 2.5, there is x̄ ∈ X such that x̄ ∈ Q(x̄) .
Note that x̄ /∈ W . Otherwise, x̄ = f (x̄) ∈ P(x̄) ⊆ Co(P(x̄) , which contradicts to
x /∈ Co(P(x) for all x ∈ X .
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Thus x̄ ∈ D(x̄) and G(x̄) = ∅ . That is, x̄ ∈ D(x̄) and D(x̄) ∩ Co(P(x̄)) = ∅ ,
which implies x̄ ∈ D(x̄) and D(x̄)∩P(x̄) = ∅ . Consequently, there exists x̄ ∈ X , such
that x̄ ∈ D(x̄) , and ∀y ∈ D(x̄) , ∃v ∈ T(x̄) satisfying 〈 v,η(y, x̄)〉 /∈ − intC(x̄) . That
is, the (GVQVLIP) has a solution x̄ ∈ X .

By Theorem 3.1 and Remark 2.1, we have

COROLLARY 3.2. Let Y be a real Hausdorff topological vector space, X be
a nonempty, compact, convex and metrizable set in a real locally convex Hausdorff
topological vector space E , and L(E, Y) be equipped with the σ -topology. Let
D : X → 2X be an upper semicontinuous set-valued mapping with nonempty convex
closed values and open lower sections, C : X → 2Y be a set-valued mapping such
that C(x) is a closed pointed and convex cone with int C(x) �= ∅ for each x ∈ X ,
and the set-valued mapping M = Y\(− int C) : X → 2Y be upper semicontinuous
on X . Let T : X → 2L(E,Y) be upper semicontinous on X with compact values and
η : X × X −→ E be continuous with respect to the second argument and affine with
respect to the first argument such that ∀x ∈ X , ∃v ∈ T(x) , satisfying

〈 v̄,η(x, x)〉 /∈ − intC(x),

Then, the (GVQVLIP) has a solution x̄ ∈ X .

REMARK 3.1. Let D(x) = X , by Corollary 3.2, we recover Theorem 1 in [25]
from the (GVVLIP) cases to the (GVQVLIP) cases with additional condition that X is
metrizable, so Theorem 3.1 and Corollary 3.2 are generalizations of Theorem 1 in [25].
It is also easy to see that Theorem 3.1 and Corollary 3.2, respectively, are generalization
of Theorem 1 and Corollary 1 in [23]. Consequently, Theorem 3.1 and Corollary 3.2
are also generalizations of Theorem 2.1 in [7].

THEOREM 3.3. Let Y be a Hausdorff topological vector space, X be a nonempty,
compact, convex and metrizable set in a locally convex Hausdorff topological vector
space E , and L(E, Y) be equipped with the σ -topology. Let D : X → 2X be an
upper semicontinuous set-valued mapping with nonempty convex closed values and
open lower sections, C : X → 2Y be a set-valued mapping such that C(x) is a closed
pointed and convex cone with int C(x) �= ∅ for each x ∈ X , and the set-valued mapping
M = Y\(− intC) : X → 2Y be upper semicontinuous on X . Let T : X → 2L(E,Y) be
upper semicontinous on X with compact values and η : X×X −→ E be continuouswith
respect to the second argument. Suppose that there exists a mapping h : X × X → Y ,
such that:

(i) ∀x, y ∈ X , ∃v ∈ T(x) , such that

h(x, y) − 〈 v,η(y, x)〉 ∈ − intC(x);

(ii) for any finite set {y1, y2, ..., yn} ⊆ X and x̄ =
∑n

j=1 αjyj with αj � 0 and∑n
j=1 αj = 1 , there is a j ∈ {1, 2, ..., n} , such that h(x̄, yj) /∈ − intC(x̄) . Then, the

(GVQVLIP) has a solution x̄ ∈ X .
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Proof. Define two set-valued mappings P : X → 2X , P1 : X → 2X by

P(x) = {y ∈ X : 〈 v,η(y, x)〉 ∈ − intC(x), ∀v ∈ T(x)}, ∀x ∈ X.

P1(x) = {y ∈ X : h(x, y) ∈ − intC(x)}, ∀x ∈ X.

We first prove that x /∈ Co(P1(x)) for all x ∈ X . To see this, suppose, by way
of contradiction, that there exists some point x̄ ∈ X such that x̄ ∈ Co(P1(x̄)) . Then
there exists finite points y1, y2, ..., yn in X , and αj � 0 with

∑n
j=1 αj = 1 such that

x̄ =
∑n

j=1 αjyj and yj ∈ P1(x̄) for all j = 1, 2, ..., n . That is,

h(x̄, yj) ∈ − intC(x̄), j = 1, 2, ..., n.

This contradicts to the condition (ii) . Therefore x /∈ Co(P1(x)) for all x ∈ X .
The condition (i) implies that P1(x) ⊇ P(x) for all x ∈ X . Hence, x /∈

Co(P(x)) , ∀x ∈ X .
The rest of the proof is the same as in the proof of Theorem 3.1.

COROLLARY 3.4. Let Y be a real Hausdorff topological vector space, X be
a nonempty, compact, convex and metrizable set in a real locally convex Hausdorff
topological vector space E , and L(E, Y) be equipped with the σ -topology. Let
D : X → 2X be an upper semicontinuous set-valued mapping with nonempty convex
closed values and open lower sections, C : X → 2Y be a set-valued mapping such that
C(x) is a closed pointed and convex cone with intC(x) �= ∅ for each x ∈ X , and the
set-valued mapping M = Y\(− intC) : X → 2Y be upper semicontinuous on X . Let
T : X → L(E, Y) be continuous on X and η : X×X −→ E be continuous with respect
to the second argument. Suppose that there exists a mapping h : X×X → Y , such that:

(i) ∀x, y ∈ X , h(x, y) − 〈T(x),η(y, x)〉 ∈ − intC(x) ;
(ii) the set {y ∈ X : h(x, y) ∈ − intC(x)} is convex for all x ∈ X ;
(iii) h(x, x) /∈ − intC(x), ∀x ∈ X .
Then, there exists x̄ ∈ X , such that x̄ ∈ D(x̄) and 〈T(x̄),η(y, x̄)〉 /∈ − intC(x̄) ,

∀y ∈ D(x̄) .

Proof. Following the same argument of the proof of Corollary 3 in [23], by the
condition (ii) and (iii) , we know that the condition (ii) of Theorem 3.3 holds. By
Theorem 3.3, we know that the conclusion is correct.

REMARK 3.2. Theorem 3.3 and Corollary 3.4, respectively, generalize the The-
orem 2 and Corollary 3 in [23] and Theorem 2.2 in [7] with additional conditions of
compactness and metrizablity of X .
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