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ON THE SOLUTION OF VARIATIONAL INEQUALITY

PROBLEMS BY USING CUTTING PLANE METHODS

STEFAN M. STEFANOV

Abstract. In this paper, variational inequality problems (VIPs) defined by generalized monotone
and pseudomonotone single-valued and multivalued mappings are considered. Some properties
of generalized monotone and pseudomonotone mappings are established. The idea of cutting
plane methods, developed originally for solving discrete optimization problems (in particular,
integer linear programming problems), is applied for solving the considered VIPs.
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