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Abstract. In this paper we study some relations between (ρ, θ) - η -B-vexity and (ρ, θ) -η -B-
vex sets in a real Banach space X . In particular we also establish some of the relations between
(ρ, θ) - η -B-invexity and (ρ, θ) -η -preinvexity in a real Banach space X.

1. Introduction

Bector et al.[1] considered a class of functions called B-vex functions by gener-
alizing the convexity definition of these functions. These functions are quite similar
to the strong pseudo convex functions introduced by Bector [2] and the (α, λ ) -convex
functins given by Castagnoli et al.[4]. Hanson [5] introduced the class of invex functions.
Hanson’s paper gave a new direction of research giving rise to a great deal of additional
results. This notion of η -invexitywas originally introduced by Hanson [5], who showed
that for a nonlinear programming problem whose objective and constrained functions
are η -invex (all with respect to the same η ), the Karush-Kuhn-Tucker necessary op-
timality conditions are also sufficient. Later, Kaul et al.[7] named them η -convex and
defined η -pseudo-convex and η -quasi-convex functions. They established the rela-
tions between convex, pseudo-convex and quasi-convex functions. Ben-Israel et al.[3]
and Hanson et al.[6] introduced a class of functions which are called preinvex by Weir
et al.[9] as a generalization of convexity.

In this paper we study some of the properties of (ρ, θ) -η -B -vex functions and
extend the class of (ρ, θ) -η -B -vex functions to (ρ, θ) -η -pseudo-B -vex and (ρ, θ) -
η -quasi-B -vex functions. We also establish some relations between (ρ, θ) -η -B -
vexity, (ρ, θ) -η -B -invexity and (ρ, θ) -η -preinvexity.

2. Notations and preliminaries

Let X be a real Banach space and D be a non empty open convex subset of X .
We define the following concepts which we need in sequel.
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DEFINITION 2.1. A numerical function f : D ⊆ X → R is said to be (ρ, θ) -B -vex
at y ∈ D if there exists a function b(x, y, λ ) : D × D × [0, 1] → R+ , θ : D × D → X
and ρ ∈ R such that f (λx + (1 − λ )y) � λb(x, y, λ )f (x) + (1 − λb(x, y, λ ))f (y) +
ρ‖θ(x, y)‖2 for 0 � λ � 1 and ∀ x ∈ X. f is said to be (ρ, θ) -B -vex on D if it is
(ρ, θ) -B -vex at each y ∈ D.

DEFINITION 2.2. Given S ⊆ D × R, S is said to be (ρ, θ) -B -vex set if (x,α)
and (y, β) ∈ S imply that (λx + (1 − λ )y, λbα + (1 − λb)β + ρ‖θ(x, y)‖2) ∈ S,
0 � λ � 1. The epigraph E(f ) is defined by

E(f ) = {(x,α) | x ∈ D,α ∈ R, f (x) � α}.

DEFINITION 2.3. Let y ∈ D . The set D is said to be (ρ, θ) -η -invex at y with
respect to η if for each x ∈ D ,

y + λη(x, y) + ρ‖θ(x, y)‖2 ∈ D, 0 � λ � 1.

D is said to be (ρ, θ) -η -invex set with respect to η if D is invex at each y ∈ D with
respect to same η.

DEFINITION 2.4. A numerical function f : D ⊆ X → R defined on a non empty
subset D of X which is invex at y ∈ D is said to be (ρ, θ) -η -B -preinvex with respect
to η at y ∈ D if there exists b : D × D × [0, 1] → R+ such that
f (y + λη(x, y)) � λb(x, y, λ )f (x) + (1 − λb(x, y, λ ))f (y) + ρ‖θ(x, y)‖2 ∀ x ∈ D,
0 � λ � 1. f is said to be (ρ, θ) -η -B -preinvex with respect to η on D if it is
(ρ, θ) -η -B -preinvex at each y ∈ D with respect to same η.

DEFINITION 2.5. The function f : D ⊆ X → R is said to be (ρ, θ) -η -B -invex
with respect to η at y ∈ D if there exists b : D × D → R+ such that

b(x, y)[f (x) − f (y)] � (∇f (y),η(x, y)) + ρ‖θ(x, y)‖2∀ x ∈ X.

f is said to be (ρ, θ) -η -B -invex with respect to η on D if it is (ρ, θ) -η -B -invex at
each y ∈ D with respect to same η.

DEFINITION 2.6. The function f : D ⊆ X → R is said to be (ρ, θ) -η -prequasi-
invex at y ∈ D with respect to η if D is invex with respect to η , θ : D × D → X ,
ρ ∈ R and for each x ∈ D,

f (x) � f (y) ⇒ f (y + λη(x, y)) � (1 − λ )f (y) + λ f (x) + ρ‖θ(x, y)‖2, 0 � λ � 1.

We say that f is (ρ, θ) -η -prequasi-invex on D with respect to η if D is invex with
respect to η and prequasi-invex at each y ∈ D with respect to same η.

DEFINITION 2.7. Suppose that S ⊆ X × R. We say that S is (ρ, θ) -η -B -invex
set with respect to η, b1, b2 if (x,α) , (y, β) ∈ S imply (y + λη(x, y), b1α + b2β +
ρ‖θ(x, y)‖2) ∈ S for 0 � λ � 1, b1 + b2 = 1.



GENERALIZED (ρ, θ) -η -B-VEXITY AND GENERALIZED (ρ, θ) - η -B-PREINVEXITY 439

3. Generalized (ρ, θ) -B -vexity

In this section we study the relationship between (ρ, θ) -B -vexity function and
(ρ, θ) -B -vexity set. Also we study the relation between (ρ, θ) -η -B -preinvexity and
(ρ, θ) -η -B -invex set.

THEOREM 3.1. A numerical function f defined on a convex set D is (ρ, θ) - B -vex
if and only if E(f ) is a (ρ, θ) - B -vex set in X × R.

Proof. Assume that f is (ρ, θ) -B -vex on D. Let (x,α) and (y, β) ∈ E(f ) . It
follows that,

f (x) � α, f (y) � β .

Since f is (ρ, θ) -B -vex on D, for λ ∈ [0, 1], we have

f (λx + (1 − λ )y) � λbf (x) + (1 − λb)f (y) + ρ‖θ(x, y)‖2

� λbα + (1 − λb)β + ρ‖θ(x, y)‖2.

Thus

(λx + (1 − λ )y, λbα + (1 − λb)β + ρ‖θ(x, y)‖2) ∈ E(f ) for λ ∈ [0, 1].

Conversely, suppose E(f ) is a (ρ, θ) -B -vex set. Let x, y ∈ D. Then

(x, f (x)) ∈ E(f ) and (y, f (y)) ∈ E(f ).

Therefore, for λ ∈ [0, 1],

(λx + (1 − λ )y, λbf (x) + (1 − λb)f (y) + ρ‖θ(x, y)‖2) ∈ E(f ).

Hence

f (λx + (1 − λ )y) � λbf (x) + (1 − λb)f (y) + ρ‖θ(x, y)‖2 for λ ∈ [0, 1].

So f is (ρ, θ) -B -vex function on D. �

THEOREM 3.2. Suppose (Si)i∈I is a family of (ρ, θ) - B -vex sets in D × R. Then
their intersection ∩i∈ISi is also a (ρ, θ) - B -vex set.

Proof. Given that (Si)i∈I is a family of (ρ, θ) -B -vex set. To show that ∩i∈ISi is
a (ρ, θ) -B -vex set. Let (x,α) and (y, β) ∈ ∩i∈ISi. Since Si is a (ρ, θ) -B -vex set,
for each i ∈ I,

(λx + (1 − λ )y, λbf (x) + (1 − λb)f (y) + ρ‖θ(x, y)‖2) ∈ Si ∀ i ∈ I

⇒ (λx + (1 − λ )y, λbf (x) + (1 − λb)f (y) + ρ‖θ(x, y)‖2) ∈ ∩i∈ISi.

Hence ∩i∈ISi is a (ρ, θ) -B -vex set. �

THEOREM 3.3. Assume that (f i)i∈I is a family of numerical functions which are
(ρ, θ) - B -vex and bounded above on a convex set D. Then the numerical function
f (x) = supi∈I f (xi) is a (ρ, θ) - B -vex function on D.



440 N. BEHERA, C. NAHAK AND S. NANDA

Proof. Suppose each (f i)i∈I is a (ρ, θ) -B - vex function on D then its epigraph

E(f i) = {(x,α) : x ∈ X,α ∈ R, f i(x) � α}
is a (ρ, θ) -B -vex set in D × R. So their intersection

∩i∈IE(f i) = { (x,α) : x ∈ X,α ∈ R, f i(x) � α ∀ i ∈ I}
= { (x,α) : x ∈ X,α ∈ R, f (x) � α}

is also a (ρ, θ) -B -vex set by the Theorem 3.2. It follows that this intersection is the
epigraph of f . Hence f is a (ρ, θ) -B -vex function on D . �

It is noted that
(a) Every differentiable B -vex function f is (ρ, θ) -pseudo- B̄ -vex function,

where
b̄(x, y) = lim

λ→0+
b(x, y, λ ).

But the converse is not necessarily true. We show this by an example.

EXAMPLE 3.1. Define f : (−1, 1) → R by

f (x) = x + x3.

Define θ : D × D → R by

θ(x, y) =
{ √

x − y if x > y,
0 if x � y

and ρ = -1. Define b : D × D × [0, 1] → R+ by

b(x, y, λ ) =
{

1 − λ if x � y,
0 x < y.

Then

b̄(x, y) =
{

1 if x � y,
0 x < y.

First we have to show that f is (ρ, θ) -pseudo- B̄ -vex function, i.e. to show that

(∇f (y), x − y) + ρ‖θ(x, y)‖2 � 0 ⇒ b̄(x, y)f (x) � b̄(x, y)f (y).

Then

(∇f (y), x − y) + ρ‖θ(x, y)‖2 = (1 + 3y2, x − y) − (x − y) = (x − y)3y2 � 0 ∀ x , y.

It follows that b̄(x, y)(f (x) − f (y)) = b̄(x, y)[(x − y) + (x3 − y3)] � 0 ∀ x, y. Taking
x = −1

4 , y = −1
2 , λ = 1

2 . Then

f (λx + (1 − λy)) > λb(x, y, λ )f (x) + (1 − λb(x, y, λ ))f (y).

Hence f is not B -vex function.

(b) Every pseudo-convex function is (ρ, θ) -pseudo-B -vex function but the con-
verse is not necessarily true when b(x, y) = 0 for some x, y ∈ D.
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EXAMPLE 3.2. Define f : (−1, 1) → R by

f (x) = x3.

Define θ : D × D → R by

θ(x, y) =
{ √

y − x if y > x,
0 if x � y.

Taking ρ = −1 . Define b : D × D → R+ by

b(x, y) =
{

1 if xy �= 0,
0 xy = 0.

We have to show that f is (ρ, θ) -pseudo-B -vex function, i.e. to show that

(∇f (y), x − y) + ρ‖θ(x, y)‖2 � 0 ⇒ b(x, y)f (x) � b(x, y)f (y).

Then (∇f (y), x − y) + ρ‖θ(x, y)‖2 = 3y2(x − y) � 0 ∀ x , y.
It follows that b(x, y)(f (x) − f (y)) = (x − y) + (x3 − y3) � 0 ∀ x, y.
We show that f is not pseudo-convex function. (∇f (y), x − y) � 0 but f (x) <

f (y) at x = −1
3 , y = 0.

Hence f is not pseudo-convex function.

(c) Every invex function f with respect to η is (ρ, θ) -η -B -invex with respect
to the same η, where b(x, y) = 1. If b(x, y) �= 1, then there exist functions which are
(ρ, θ) -η -B -invex with respect to η but not invex with respect to same η.

EXAMPLE 3.3. Define f : (0, π
2 ) → R by

f (x) = sin x.

Define θ : D × D → R by

θ(x, y) =
{ √

x − y if x � y,
0 if x < y.

Taking ρ = −1 . Define b : D × D → R+ by

b(x, y) =
{

2 if x � y ,
0 if x < y.

Define η : D × D → R by
η(x, y) = x − y.

First we show that f is (ρ, θ) -η -B -invex, i.e. to show that

b(x, y)(f (x) − f (y)) � (∇f (y),η(x, y)) + ρ‖θ(x, y)‖2.

Then

b(x, y)(sin x − sin y) − (cos y, x − y) + (x − y)

= 2b(x, y) sin(
x − y

2
) cos(

x + y
2

) − (x − y)(cos y − 1) � 0 ∀ x, y.
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Hence f is (ρ, θ) -η -B -invex but f is not invex with respect to η because

(∇f (y),η(x, y)) > f (x) − f (y)

at x = π
4 and y = π

6 .

(d) Every pseudo-invex function f with respect to η is (ρ, θ) -η -pseudo-B -
invex function with respect to same η but the converse is not necessarily true when
b(x, y) = 0 for some x, y ∈ D.

EXAMPLE 3.4. Define f : (0, π
2 ) → R by

f (x) = cos x.

Define θ : D × D → R by

θ(x, y) =
{ √

y − x if y > x,
0 if y � x.

Taking ρ = −1 . Define b : D × D → R+ by

b(x, y) =
{

0 if x � y ,
xy if x < y.

Define η : D × D → R by
η(x, y) = y − x.

First we show that f is (ρ, θ) -η -pseudo-B -invex, i.e. to show that

(∇f (y),η(x, y)) + ρ‖θ(x, y)‖2 � 0 ⇒ b(x, y)f (x) � b(x, y)f (y).

Now

(∇f (y),η(x, y)) + ρ‖θ(x, y)‖2 = (− sin y)(y − x) − (y − x)
= −(y − x)(sin y + 1) � 0 ∀ x, y.

Then b(x, y)(f (x) − f (y)) � 0 ∀ x, y. Hence f is (ρ, θ) -η -pseudo-B -invex with
respect to η but f is not pseudo-invexwith respect to η because (∇f (y),η(x, y)) � 0
but f (x) < f (y) at x = π

3 , y = π
6 .

(e) Every quasi-invex function f with respect to η is (ρ, θ) -η -quasi-B -invex
function with respect to same η but the converse is not necessarily true.

EXAMPLE 3.5. Define f : (0, π
2 ) → R by

f (x) = sin x.

Define θ : D × D → R by

θ(x, y) =
{ √

y − x if y > x,
0 if y � x.
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Taking ρ = −1 . Define b : D × D → R+ by

b(x, y) =
{

0 if x � y ,
xy if x < y.

Define η : D × D → R by
η(x, y) = y − x.

First we show that f is (ρ, θ) -η -quasi-B -invex, i.e. to show that

b(x, y)(f (x) − f (y)) � 0 ⇒ (∇f (y),η(x, y)) + ρ‖θ(x, y)‖2 � 0.

Now

b(x, y)(f (x) − f (y)) = b(x, y)(sin x − sin y)

= 2b(x, y) sin(
x − y

2
) cos(

x + y
2

) � 0 ∀ x, y.

Then

(∇f (y),η(x, y)) + ρ‖θ(x, y)‖2 = (cos y, y − x) − (y − x)
= (y − x)(cos y − 1) � 0 ∀ x, y.

Hence f is (ρ, θ) -η -quasi-B -invex with respect to η but f is not quasi-invex with
respect to η because

f (x) � f (y) but (∇f (y),η(x, y)) > 0

at x = π
6 , y = π

3 .

(f ) Every differentiable B -vex function is (ρ, θ) -η - B̄ -invex with respect to η
where

b̄(x, y) = lim
λ→0+

b(x, y, λ ).

But the converse is not necessarily true.

EXAMPLE 3.6. Define f : (0, π
2 ) → R by

f (x) = sin x.

Define θ : D × D → R by

θ(x, y) =
{√

x − y if x > y,
0 if x � y.

Taking ρ = −1 . Define b : D × D × [0, 1] → R+ by

b(x, y, λ ) =
{

1 if x � y,
λ x < y.

Then

b̄(x, y) =
{

1 if x � y,
0 x < y.

Define η : D × D → R by
η(x, y) = x − y.
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First we have to show that f is (ρ, θ) - B̄ -invex function, i.e. to show that

b̄(x, y)(f (x) − f (y)) � (∇f (y), x − y) + ρ‖θ(x, y)‖2.

Then

b̄(x, y)(sin x − sin y) − (cos y, y − x) + (x − y)

= 2 sin(
x − y

2
) cos(

x + y
2

) − (x − y)(cos y − 1) � 0 ∀ x, y.

Thus f is (ρ, θ) - B̄ -invex function but f is not B -vex function since

f (λx + (1 − λy)) > λb(x, y, λ )f (x) + (1 − λb(x, y, λ )f (y))

at x = π
3 , y = π

6 and λ = 1
2 .

(g) Every B -invex function f with respect to η is (ρ, θ) -η -quasi-B -invex
function with respect to same η but the converse is not necessarily true.

EXAMPLE 3.7. Define f : (0, π
2 ) → R by

f (x) = sin x.

Define θ : D × D → R by

θ(x, y) =
{ √

y − x if y > x,
0 if y � x.

Taking ρ = −1 . Define b : D × D → R+ by

b(x, y) =
{

0 if x � y ,
xy if x < y.

Define η : D × D → R by
η(x, y) = y − x.

First we show that f is (ρ, θ) -η -quasi-B -invex, i.e. to show that

b(x, y)(f (x) − f (y)) � 0 ⇒ (∇f (y),η(x, y)) + ρ‖θ(x, y)‖2 � 0.

Now

b(x, y)(f (x) − f (y)) = b(x, y)(sin x − sin y)

= 2b(x, y) sin(
x − y

2
) cos(

x + y
2

) � 0 ∀ x, y.

Then

(∇f (y),η(x, y)) + ρ‖θ(x, y)‖2 = (cos y, y − x) − (y − x)
= (y − x)(cos y − 1) � 0 ∀ x, y.
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Hence f is (ρ, θ) -η -quasi-B -invex with respect to η but f is not B -invex with
respect to η because

b(x, y)(f (x) − f (y)) < (∇f (y),η(x, y))

at x = π
6 , y = π

3

Some Properties of (ρ, θ) -η -B -preinvex functions:

PROPOSITION 3.1. Suppose that f is (ρ, θ) -η - B -preinvex (strictly) on D with
respect to η, b1, b2, then f is (ρ, θ) -η -prequasi-invex (strictly) on D with respect
to same η.

Proof. Given that

f (y + λη(x, y)) � b1f (x) + b2f (y) + ρ‖θ(x, y)‖2(<), b1 + b2 = 1, ∀ x, y ∈ D. (1)

To show that,

f (x) � f (y) ⇒ f (y + λη(x, y)) � f (y) + ρ‖θ(x, y)‖2(<).

Since f (x) � f (y), from (1), we have

f (y + λη(x, y)) � f (y) + ρ‖θ(x, y)‖2(since b1 + b2 = 1).

Hence f is (ρ, θ) -η -prequasi-invex (strictly) on D with respect to η. �
Now we will study the characterization of (ρ, θ) -η -B -preinvex functions in terms

of (ρ, θ) -η -B -invex set.

THEOREM 3.4. A numerical function f defined on an invex set D ⊆ X is (ρ, θ) -
η - B -preinvex with respect to η, b1, b2 if and only if E(f ) is (ρ, θ) -η - B -invex set
with respect to η, b1, b2.

Proof. Assume that f is (ρ, θ) -η -B -preinvex on D with respect to η, b1, b2.
Let (x,α) and (y, β) ∈ E(f ). Then

f (x) � α and f (y) � β .

By hypothesis of f on D, we have , for 0 � λ � 1

f (y + λη(x, y)) � b1f (x) + b2f (y) + ρ‖θ(x, y)‖2

� b1α + b2β + ρ‖θ(x, y)‖2

⇒ (y + λη(x, y), b1α + b2β + ρ‖θ(x, y)‖2) ∈ E(f ), 0 � λ � 1.

Thus E(f ) is (ρ, θ) -η -B -invex set with respect to η, b1, b2.
Conversely, suppose E(f ) is (ρ, θ) -η -B -invex set with respect to η, b1, b2, and let
x, y ∈ D, then

(x, f (x)) ∈ E(f ), (y, f (y)) ∈ E(f )
⇒ (y + λη(x, y), b1f (x) + b2f (y) + ρ‖θ(x, y)‖2) ∈ E(f )

0 � λ � 1, b1 + b2 = 1

⇒ f (y + λη(x, y)) � b1f (x) + b2f (y) + ρ‖θ(x, y)‖2.

Hence f is (ρ, θ) -η -B -preinvex with respect to η, b1, b2. �
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