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Abstract. We shall present a sharp triangle inequality and its reverse inequality with n elements
in aBanach space X , or equivalently we shall estimate the difference

∑n
j=1 ‖xj‖−‖∑n

j=1 xj‖ for
given x1, x2, . . . , xn in X , where equality attainedness will be characterized. Several applications
will be given.

1. Introduction

The triangle inequality is undoubtedly one of the most fundamental inequalities in
analysis. Several authors have been treating its generalizations and reverse inequalities,
etc. (see e.g., [10, 2, 9]). In this paper we shall present an inequality which is sharper
than the triangle inequality and its reverse inequality with n elements in a Banach space
X , or equivalently, we shall estimate the difference

∑n
j=1 ‖xj‖ − ‖∑n

j=1 xj‖ for given
x1, x2, . . . , xn in X (cf. H. Hudzik [4], L. Maligranda [6] for the two element case). As
a straightforward consequence it will be derived that for nonzero x1, x2, . . . , xn in X ,∥∥∑n

j=1 xj

∥∥ =
∑n

j=1 ‖xj‖ if and only if ‖∑n
j=1

xj
‖xj‖‖ = n . Each of these conditions

implies that the sharp triangle inequality and the reverse one attain equality at the same
time; the converse is true unless all the norms of x1, x2, . . . , xn are the same. These
inequalities will be powerful especially for treating geometric properties of Banach
spaces; indeed we shall discuss the uniform non �n

1 -ness of X as such an example. The
reverse triangle inequality with two elements immediately yields an inequality by J. L.
Massera and J. J. Schaeffer ([7]; see also Dunkl-Williams [3], [9, p. 516]).

The rest of this paper will be devoted to characterizing equality attainedness for
each of our inequalities under the condition that X is strictly convex. We shall also
obtain that in a strictly convex space X these inequalities attain equality at the same time
if and only if all the norms of x1, x2, . . . , xn are the same or x1

‖x1‖ = x2
‖x2‖ = · · · = xn

‖xn‖ .
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2. Sharp triangle inequality and its reverse

In a Banach space X the triangle inequality (with n elements) is sharpened as
follows, where we shall obtain its reverse inequality as well.

THEOREM 1. For all nonzero elements x1, x2, . . . , xn in a Banach space X∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥+

⎛
⎝n−

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
⎞
⎠ min

1�j�n
‖xj‖ �

n∑
j=1

‖xj‖ (1)

�
∥∥∥∥∥

n∑
j=1

xj

∥∥∥∥∥+
⎛
⎝n−

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
⎞
⎠max

1�j�n
‖xj‖. (2)

Proof. If ‖x1‖ = ‖x2‖ = · · · = ‖xn‖ , both inequalities (1) and (2) hold with
equality. Therefore we may assume this is not the case. Let us see the first inequality.
Let ‖xj0‖ = min{‖xj‖ : 1 � j � n} and J0 = {j : ‖xj‖ = ‖xj0‖, 1 � j � n} . Then for
any nonzero x1, · · · , xn ∈ X we have∥∥∥∥∥∥

n∑
j=1

xj

‖xj‖

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
j∈J0

xj

‖xj‖ +
∑
j∈Jc

0

xj

‖xj‖

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

j=1

xj

‖xj0‖
−
∑
j∈Jc

0

xj

‖xj0‖
+
∑
j∈Jc

0

xj

‖xj‖

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

j=1

xj

‖xj0‖
−
∑
j∈Jc

0

(
1

‖xj0‖
− 1

‖xj‖
)

xj

∥∥∥∥∥∥
�

∥∥∥∥∥∥
n∑

j=1

xj

‖xj0‖

∥∥∥∥∥∥−
∑
j∈Jc

0

(
1

‖xj0‖
− 1

‖xj‖
)
‖xj‖ (3)

=

∥∥∥∥∥∥
n∑

j=1

xj

‖xj0‖

∥∥∥∥∥∥−
n∑

j=1

(
1

‖xj0‖
− 1

‖xj‖
)
‖xj‖

=

∥∥∥∥∥∥
n∑

j=1

xj

‖xj0‖

∥∥∥∥∥∥−
⎛
⎝ n∑

j=1

‖xj‖
‖xj0‖

− n

⎞
⎠ ,

from which it follows that

n∑
j=1

‖xj‖
‖xj0‖

�
‖∑n

j=1 xj‖
‖xj0‖

+

⎛
⎝n −

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
⎞
⎠ .
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Hence we obtain
n∑

j=1

‖xj‖ � ‖
n∑

j=1

xj‖ +

⎛
⎝n −

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
⎞
⎠ ‖xj0‖,

or the inequality (1).
For the second inequality let ‖xj1‖ = max{‖xj‖ : 1 � j � n} and J1 = {j : ‖xj‖ =

‖xj1‖, 1 � j � n} . Then we have∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
j∈J1

xj

‖xj‖ +
∑
j∈Jc

1

xj

‖xj‖

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

j=1

xj

‖xj1‖
−
∑
j∈Jc

1

xj

‖xj1‖
+
∑
j∈Jc

1

xj

‖xj‖

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

j=1

xj

‖xj1‖
+
∑
j∈Jc

1

(
1

‖xj‖ − 1
‖xj1‖

)
xj

∥∥∥∥∥∥
�

∥∥∥∥∥∥
n∑

j=1

xj

‖xj1‖

∥∥∥∥∥∥+
∑
j∈Jc

1

(
1

‖xj‖ − 1
‖xj1‖

)
‖xj‖ (4)

=

∥∥∥∥∥∥
n∑

j=1

xj

‖xj1‖

∥∥∥∥∥∥+
n∑

j=1

(
1

‖xj‖ − 1
‖xj1‖

)
‖xj‖

=

∥∥∥∥∥∥
n∑

j=1

xj

‖xj1‖

∥∥∥∥∥∥+ n −
⎛
⎝ n∑

j=1

‖xj‖
‖xj1‖

⎞
⎠ ,

and hence
n∑

j=1

‖xj‖ �

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥+

⎛
⎝n −

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
⎞
⎠ ‖xj1‖.

Thus we have the conclusion.

Theorem 1 is reformulated as follows, which estimates the difference of the two
terms in the triangle inequality.

COROLLARY 1. For all nonzero elements x1, x2, . . . , xn in a Banach space X(
n −

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
)

min
1�j�n

‖xj‖ �
n∑

j=1

‖xj‖ −
∥∥∥∥∥

n∑
j=1

xj

∥∥∥∥∥
�
(

n −
∥∥∥∥∥∥

n∑
j=1

xj

‖xj‖

∥∥∥∥∥∥
)

max
1�j�n

‖xj‖.
(5)
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In particular for all nonzero elements x, y in X(
2 −

∥∥∥∥ x
‖x‖ +

y
‖y‖
∥∥∥∥
)

min{‖x‖, ‖y‖} � ‖x‖ + ‖y‖ − ‖x + y‖

�
(

2 −
∥∥∥∥ x
‖x‖ +

y
‖y‖
∥∥∥∥
)

max{‖x‖, ‖y‖}
(6)

(cf. Hudzik [4], Maligranda [6]).

From (6) an inequality by Massera and Schaeffer is derived ([7]; see also Dunkl-
Williams [3], [9, p. 516]):

COROLLARY 2. (J. L. Massera and J. J. Schaeffer [7]) For all nonzero elements
x, y in a Banach space X

‖x − y‖ � 1
2

max{‖x‖, ‖y‖}
∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ . (7)

Indeed, assume ‖x‖ � ‖y‖ . Then by the second inequality of (6)

‖x − y‖ + 2‖y‖ −
∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ ‖y‖ � ‖x‖ + ‖y‖.

Hence
‖x − y‖ −

∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ ‖y‖ � ‖x‖ − ‖y‖ � −‖x − y‖.

Therefore we have

2‖x − y‖ �
∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ ‖y‖,

as desired.
By Theorem 1 we immediately have the following.

COROLLARY 3. Let x1, x2, . . . , xn be arbitrary nonzero elements in a Banach space
X . Then the following are equivalent.

(i)
∥∥∑n

j=1 xj

∥∥ =
∑n

j=1 ‖xj‖ .

(ii)
∥∥∥∑n

j=1
xj

‖xj‖
∥∥∥ = n .

REMARK 1. The above condition (ii) , or equivalently (i) , assures equality at-
tainedness in the both inequalities (1) and (2) at the same time. The converse is true
unless all the norms of xj are the same. We shall treat the equality attainedness for
each inequality of (1) and (2) in the next section under the assumption that X is strictly
convex.

At the end of this section we mention a direct application of Theorem 1 to a
geometric property of Banach spaces. Recall that a Banach space X is called uniformly
non- �n

1 ([5]; see also [1]) provided there exists ε (0 < ε < 1) such that for any
x1, · · · , xn in the unit sphere of X there exists θ = (θj) of n signs ±1 for which∥∥∥∥∥

n∑
j=1

θjxj

∥∥∥∥∥ � n(1 − ε). (8)
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When n = 2 , X is called uniformly non-square ([5]; cf. [1]). By virtue of Theorem 1
we immediately have the following fact.

COROLLARY 4. For a Banach space X the following are equivalent.

(i) X is uniformly non- �n
1 .

(ii) There exists ε (0 < ε < 1) such that for any x1, · · · , xn in the unit ball of X
there exists θ = (θj) of n signs ±1 for which (8) holds true.

Indeed, assume that there exists ε (0 < ε < 1) such that for any x1, · · · , xn in
the unit sphere of X there exist θ = (θj) of n signs ±1 for which (8) is valid. Take
x1, · · · , xn from the unit ball of X . If ‖xj0‖ := min{‖x1, ‖ . . . , ‖xn‖} � 1/2 , we have

∥∥∥∥∥
n∑

j=1

θjxj

∥∥∥∥∥ �
∑
j�=j0

‖xj‖ + ‖xj0‖ � (n − 1) +
1
2

� n(1 − 1
2n

).

Let ‖xj0‖ � 1
2 . According to our assumption there exists n signs (θj) for which (8) is

valid for x1/‖x1‖, · · · , xn/‖xn‖ . Therefore by the first inequality of Theorem 1

∥∥∥∥∥
n∑

j=1

θjxj

∥∥∥∥∥ �
n∑

j=1

‖xj‖ −
(

n −
∥∥∥∥∥

n∑
j=1

θj
xj

‖xj‖

∥∥∥∥∥
)
‖xj0‖

� n − nε
2

= n
(
1 − ε

2

)
.

Consequently by letting ε0 = min{ ε
2 , 1

2n} we have the conclusion.

3. Equality attainedness in a strictly convex Banach space

In what follows we shall consider equality attainedness for each of our inequalities
in a strictly convex Banach space. The following lemma is quite powerful in our
subsequent discussions.

LEMMA 1. Let X be a strictly convex Banach space. Let x1, x2, . . . , xn be nonzero
elements in X . Then the following are equivalent.

(i)
∥∥∥∑n

j=1 αjxj

∥∥∥ =
∑n

j=1 αj‖xj‖ with any positive numbers α1,α2, . . . ,αn .

(ii)
∥∥∥∑n

j=1 αjxj

∥∥∥ =
∑n

j=1 αj‖xj‖ with some positive numbers α1,α2, . . . ,αn .

(iii) x1
‖x1‖ = x2

‖x2‖ = · · · = xn
‖xn‖ .
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Proof. We see the implications (ii) ⇒ (iii) ⇒ (i) . Assume that
∥∥∥∑n

j=1 αjxj

∥∥∥ =∑n
j=1 αj‖xj‖ with some positive α1,α2, . . . ,αn . Then for any 1 < k � n

‖α1x1 + αkxk‖ �

∥∥∥∥∥∥
n∑

j=1

αjxj

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
j�=1,k

αjxj

∥∥∥∥∥∥
�

∥∥∥∥∥∥
n∑

j=1

αjxj

∥∥∥∥∥∥−
∑
j�=1,k

αj‖xj‖

=
n∑

j=1

αj‖xj‖ −
∑
j�=1,k

αj‖xj‖

= α1‖x1‖ + αk‖xk‖,
whence ‖α1x1 + αkxk‖ = α1‖x1‖ + αk‖xk‖. As X is strictly convex, we have x1

‖x1‖ =
xk

‖xk‖ . Next assume (iii) and let x1
‖x1‖ = x2

‖x2‖ = · · · = xn
‖xn‖ = y . Then for any positive

numbers α1,α2, . . . ,αn we have∥∥∥∥∥
n∑

j=1

αjxj

∥∥∥∥∥ =

∥∥∥∥∥
n∑

j=1

αj‖xj‖y
∥∥∥∥∥ =

(
n∑

j=1

αj‖xj‖
)
‖y‖ =

n∑
j=1

αj‖xj‖,

or (i) . The rest implication (i) ⇒ (ii) is trivial.

REMARK 2. Let x1, x2, . . . , xn be nonzero elements in a general Banach space X .
If x1

‖x1‖ = x2
‖x2‖ = · · · = xn

‖xn‖ , then we have∑n
n=1 xj

‖∑n
n=1 xj‖ =

x1

‖x1‖ . (9)

Indeed, since
∑n

n=1 xj =
∑n

n=1 ‖xj‖ x1
‖x1‖ , we have ‖∑n

n=1 xj‖ =
∑n

n=1 ‖xj‖ and hence

(9). Therefore, if X is strictly convex and if ‖∑n
j=1 αjxj‖ =

∑n
j=1 αj‖xj‖ with some

positive numbers α1,α2, . . . ,αn , we have∑n
n=1 αjxj

‖∑n
n=1 αjxj‖ =

x1

‖x1‖ . (10)

THEOREM 2. Let X be a strictly convex Banach space and x1, x2, . . . , xn nonzero
elements in X . Let ‖xj0‖ = min{‖xj‖ : 1 � j � n} and ‖xj1‖ = max{‖xj‖ : 1 � j �
n} . Let J0 = {j : ‖xj‖ = ‖xj0‖, 1 � j � n} . Then∥∥∥∥∥

n∑
j=1

xj

∥∥∥∥∥+

(
n −

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
)

min
1�j�n

‖xj‖ =
n∑

j=1

‖xj‖ (11)

if and only if either
(a) ‖x1‖ = ‖x2‖ = · · · = ‖xn‖

or
(b) xj

‖xj‖ = xj1
‖xj1‖

for all j ∈ Jc
0 and

∑n
j=1

xj
‖xj‖ = ‖∑n

j=1
xj

‖xj‖‖
xj1

‖xj1‖
.
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Proof. We first note that, according to (3) in the proof of Theorem 1, the identity
(11) is equivalent to∥∥∥∥∥∥

n∑
j=1

xj

‖xj0‖
−
∑
j∈Jc

0

(
1

‖xj0‖
− 1
‖xj‖

)
xj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑

j=1

xj

‖xj0‖

∥∥∥∥∥∥−
∑
j∈Jc

0

(
1

‖xj0‖
− 1
‖xj‖

)
‖xj‖. (12)

Let (11) hold true and assume that the assertion (a) is not the case. Then Jc
0 �= ∅ . Put

y =
n∑

j=1

xj

‖xj0‖
and z =

∑
j∈Jc

0

(
1

‖xj0‖
− 1

‖xj‖
)

xj. (13)

Then

y − z =
n∑

j=1

xj

‖xj‖ (14)

(recall the proof of Theorem 1). By (12) we have

‖y‖ = ‖(y − z) + z‖
� ‖y − z‖ + ‖z‖
� ‖y − z‖ +

∑
j∈Jc

0

(
1

‖xj0‖
− 1

‖xj‖
)
‖xj‖ = ‖y‖,

from which it follows that

‖(y − z) + z‖ = ‖y − z‖ + ‖z‖ (15)

and

‖z‖ =

∥∥∥∥∥
∑
j∈Jc

0

(
1

‖xj0‖
− 1

‖xj‖
)

xj

∥∥∥∥∥ =
∑
j∈Jc

0

(
1

‖xj0‖
− 1

‖xj‖
)
‖xj‖. (16)

One should note here that (15) and (16) conversely imply (12) or the identity (11).
Now, by (16) and Lemma 1 we have

xj
‖xj‖ = xj1

‖xj1‖
for all j ∈ Jc

0 , or the first assertion

of (b) . If y − z =
∑n

j=1
xj

‖xj‖ = 0 , the latter assertion of (b) is trivial. So we assume

that this is not the case. Then by (15) and Lemma 1

y − z
‖y − z‖ =

z
‖z‖ (17)

(note that z �= 0 by (12)). Put αj = 1
‖xj0‖

− 1
‖xj‖ > 0 (j ∈ Jc

0) . Then by Remark 2

z
‖z‖ =

∑
j∈Jc

0
αjxj

‖∑j∈Jc
0
αjxj‖ =

xj1

‖xj1‖
. (18)

Combining (17) and (18) we obtain∑n
j=1

xj
‖xj‖

‖∑n
j=1

xj
‖xj‖‖

=
xj1

‖xj1‖
,
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as desired.
Conversely, if ‖xj0‖ = ‖xj1‖ , the identity (11) clearly holds true as mentioned

before. Therefore we assume the case (b) , that is,
xj

‖xj‖ =
xj1

‖xj1‖
for all j ∈ Jc

0 (19)

and
n∑

j=1

xj

‖xj‖ =

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
xj1

‖xj1‖
. (20)

We may merely show (15) and (16). Note first that z �= 0 . Indeed

z =
∑
j∈Jc

0

(
1

‖xj0‖
− 1

‖xj‖
)

xj =
∑
j∈Jc

0

(
1

‖xj0‖
− 1

‖xj‖
)
‖xj‖ xj1

‖xj1‖
�= 0.

By (19) and Lemma 1 we have (16). Hence (18) is valid by Remark 2, which, combined
with (20), yields that

y − z =
n∑

j=1

xj

‖xj‖ = ‖y − z‖ z
‖z‖ .

Consequently we obtain ‖(y − z) + z‖ = ‖y − z‖ + ‖z‖ , or (15). Thus we have the
identity (11), which completes the proof.

THEOREM 3. Let X be a strictly convex Banach space and x1, x2, . . . , xn nonzero
elements in X . Let ‖xj0‖ = min{‖xj‖ : 1 � j � n} and ‖xj1‖ = max{‖xj‖ : 1 � j �
n} . Let J1 = {j : ‖xj‖ = ‖xj1‖ , 1 � j � n} . Then

n∑
j=1

‖xj‖ =

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥+

(
n −

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
)

max
1�j�n

‖xj‖ (21)

if and only if either
(a) ‖x1‖ = ‖x2‖ = · · · = ‖xn‖

or
(b) xj

‖xj‖ = xj0
‖xj0‖

for all j ∈ Jc
1 and

∑n
j=1 xj = ‖∑n

j=1 xj‖ xj0
‖xj0‖

.

Proof. According to (4) in the proof of Theorem 1 the identity (21) is equivalent
to∥∥∥∥∥∥

n∑
j=1

xj

‖xj1‖
+
∑
j∈Jc

1

(
1

‖xj‖−
1

‖xj1‖
)

xj

∥∥∥∥∥∥=

∥∥∥∥∥∥
n∑

j=1

xj

‖xj1‖

∥∥∥∥∥∥+
∑
j∈Jc

1

(
1

‖xj‖−
1

‖xj1‖
)
‖xj‖. (22)

Assume that (21) is true and (a) is not the case. Then Jc
1 �= ∅ . Let first

∑n
j=1 xj = 0 .

Then by (22) ∥∥∥∥∥∥
∑
j∈Jc

1

(
1

‖xj‖ − 1
‖xj1‖

)
xj

∥∥∥∥∥∥ =
∑
j∈Jc

1

(
1

‖xj‖ − 1
‖xj1‖

)
‖xj‖. (23)
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Therefore by Lemma 1 we have
xj

‖xj‖ = xj0
‖xj0‖

for all j ∈ Jc
1 . The latter assertion of (b)

is trivial. Let
∑n

j=1 xj �= 0 . Then by (22) and Lemma 1

∑n
n=1 xj

‖∑n
n=1 xj‖ =

xj

‖xj‖ =
xj0

‖xj0‖
for all j ∈ Jc

1. (24)

Thus we obtain (b) .
Conversely, in the case (a) the identity (21) is trivial. We assume (b) . Let first∑n

j=1 xj = 0 . By the first assertion of (b) we have∥∥∥∥∥∥
∑
j∈Jc

1

(
1

‖xj‖ − 1
‖xj1‖

)
xj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
j∈Jc

1

(
1

‖xj‖ − 1
‖xj1‖

)
‖xj‖ xj0

‖xj0‖

∥∥∥∥∥∥
=
∑
j∈Jc

1

(
1

‖xj‖ − 1
‖xj1‖

)
‖xj‖,

or (23), which is none other than the identity (22). In case of
∑n

j=1 xj �= 0 , we have
(24) and hence (22) by Lemma 1. This completes the proof.

Finally we mention the case where both of the inequalities (1) and (2) attain
equality at the same time under the condition that X is strictly convex.

THEOREM 4. Let X be a strictly convex Banach space and x1, x2, . . . , xn nonzero
elements in X . Then the equalities

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥+
(

n −
∥∥∥∥∥∥

n∑
j=1

xj

‖xj‖

∥∥∥∥∥∥
)

min
1�j�n

‖xj‖=
n∑

j=1

‖xj‖

=

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥+
(

n−
∥∥∥∥∥∥

n∑
j=1

xj

‖xj‖

∥∥∥∥∥∥
)

max
1�j�n

‖xj‖

(25)
hold if and only if

(a) ‖x1‖ = ‖x2‖ = · · · = ‖xn‖
or

(b)
x1

‖x1‖ =
x2

‖x2‖ = · · · =
xn

‖xn‖ .

Proof. Assume that the identities (25) hold and (a) is not valid. Then∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥ = n (26)

and hence we have (b) by Lemma 1. Conversely, in case of (a) , (25) is trivial. Assume
(b) . Then by Lemma 1 we have (26), which implies (25).
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REMARK 3. Let X be a strictly convex Banach space. Take nonzero x and y in
X with ‖x‖ = ‖y‖ which are not colinear, that is, x �= αy for any α > 0 . Then
‖x + y‖ < ‖x‖ + ‖y‖ , whereas in the inequality (1) with two elements equality holds
with these x and y . This asserts that the equality condition of the sharp triangle
inequality is different from that of the triangle inequality.
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