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(communicated by S. Saitoh)

Abstract. In this paper we establish a generalization of the Dunkl-Williams inequality for finitely
many elements in a normed linear space. Asa consequence, we get some recently obtained results
on the generalized triangle inequality and its reverse inequality. The case of equality for elements
of a strictly convex normed linear space is also considered.

1. Introduction

The well-known Dunkl-Williams inequality [1] states that for any two nonzero
elements x,y in a normed linear space

Over the years, various refinements of the Dunkl-Williams inequality have been given,
for example, see [4] or [3]. The refinement established by L. Maligranda in [3], that is,

is the sharpest one. P. R. Mercer [5] has recently obtained the reverse inequality of (2)
X ___H [l = Il = [l = [l 3)

by showing that
’HXI Iyl mind x[], [ly[|}

for any pair of nonzero elements x and y in a normed linear space.

In this paper we generalize the inequalities (2) and (3) for an arbitrary number of
finitely many nonzero elements of a normed linear space. We also characterize the case
of equality for elements of a strictly convex normed linear space.

Alx =y

e (1)
HXH IyHH [l + {11

HXH [yl

)

“ [l = Yl -+ Hixll = [Il
max{|lx[[, [lyl[}
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2. The results

THEOREM 2.1.
of X. Then we have

n n
il < {7 (|
—— | < min — X;
> ol < cim, {r (|2
and
" X;
]
TN X;
— ||| ‘ e n}{llel <HZ ’

Proof. Letusﬁx ied{l,...,

n

Let X be a normed linear space and xy, . . .
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, X, nonzero elements

+ Z sl = sl } @

- - i)

n}. Then we compute

Xj Xi XJ'
2 Tl = I er T
= Je{tnh\{i}
= Xj Xj ‘
prg p— Jr _J
< lxill Z el il
je{Lomnh\ {1} Je{Lomn\ (i}
1 1
- Zu TR SN (e
Ml et ' /
1 1 )
lelel Z(lezl il )™
< + (v
Z |sz|’ Z |xz\| |x;\| g
~ X [l ‘
;”xiu\ >l
1 - -
= — x|+ 7= > il — [lxll]
[ ]:Zl o I ]:Zl !

(-

il

From this it follows that

n
Xj

2 Ty

z1(P%

i

3 Il - ||xi||).
=1

3 gl - |x,-||)},
=1

which is the inequality (4). We proceed in a similar way to obtain the inequality (5).

As in the first part of the proof, for a fixed i € {1 e

|x]H

-lEw-%

,n} we have

1 1

ERY

el

il
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Thus, we get
n x
i % ()
j_zlmn‘/ anln 2\ Tl ~ ol
> Z i 1 Il
> & |~ 2 Tl e |1
"l
]
- - 1
> gl [
1 n
- —H S = Sl — el
ll| 259~ Tl &
1 n n
- W(H e ||xf||).
! j=1 j=1
Therefore,

n

> >

1
‘ > max {—(
il |||l

- ilnmn ~ sl .

j=1 ||xJH j=1
which completes the proof. [
REMARK 2.2. Note that in the case when n = 2 by putting x; := x and x; := —y

in Theorem 2.1 we get the inequalities (2) and (3) obtained by L. Maligranda and P. R.
Merecer, respectively.

In [2] M. Kato, K. S. Saito and T. Tamura sharpened the triangle inequality in
normed linear spaces. More precisely, in Theorem 1 of [2] they estimated the difference
Z;l:l il — I Z _,%j|l, where xi,...,x, are nonzero elements of a normed linear
space. Let us say here that, in order to obtain our result, we followed their model of
proof, but made some modifications to it. Now, their result can also be derived from
our Theorem 2.1, as shown in the following corollary.

COROLLARY 2.3. Let X be a normed linear space and xi,...,x, nonzero
elements of X. Then we have
( H ||xj||

o+ (|57

n

> Il <

j=1

n

) sl ©)

) min sl )

and

Z Il =
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n}. Using (4) from Theorem 2.1 we

\+§j|mw—um)
=1

n

‘+nWH§:hm>

=1

n

il = gl

Proof. Let |x;|| = max{[jxj|| :j=1,...,
obtain
n X l n
|| < _< X
>l < (|3
1 n
= X;
|in< ZI: ’
j=
Hence,
n X n
[l ’Z|x—] < ’ ij
=1 j=1
Then it follows that

n n
Sl < |3y +(n
=1 =1

and (6) is proved.

n

n
D)+

j=1

D||

~ Il ]II

To prove the inequality (7) let us denote ||x¢|| = min{||x;|| : j=1,...,n}. By (5)

it holds
o
“ mail® ma( 2%
o
g (%
Hence, .,
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n
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from which we get
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> Il >
j=1
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This completes the proof. [

n
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REMARK 2.4. Ttis evident from the proof of Corollary 2.3 that, in the case ||x;|| =
max{||xj|| : j = 1,...,n}, the inequality (6) is equivalent to

(>
< — Xj
“ |mﬂ\na| Z;J
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while, in the case ||x;|| = min{||x;|| : j = 1,...,n}, the inequality (7) is equivalent to

Fw%ﬂéjgwwwo o)

Note that for n = 2 the best estimations in the inequalities (4) and (5) are
achieved when i € {1,2} is chosen such that |x;|| = max{|lxj]| : j = 1,2} and
|lx;|| = min{||x;|| : j = 1,2}, respectively. Thus, the inequalities (4) and (5) are
precisely the inequalities (6) and (7) obtained by M. Kato, K. S. Saito and T. Tamura
in [2].

However, in the case when n > 2, we can find nonzero vectors xj,...,x, € X
such that the inequality (4) is the sharpest for some i € {1,...,n} for which |x;|| #
max{||x;|| :j=1,...,n}. Also, the best estimation in the inequality (5) can be obtained
for some i € {1,...,n} such that ||x;|| # min{||x;|| : j = 1,...,n}. This shows that
our inequalities (4) and (5) give better estimations than the inequalities (6) and (7)
obtained by M. Kato, K. S. Saito and T. Tamura. We ilustrate this in the following
example.

H \MH

EXAMPLE 2.5. (a) Let X be an inner-product space whose dimension is greater
than one. Let x1,x, be two orthogonal unit elements of X. Let us put x3 := —x; — x,.
Then, obviously |x3]| = /2. One can easily verify that the right hand side in the
inequality (8) is equal to v/2 — 1 when i € {1,2} and v2(v2 — 1) when i = 3.
Hence, the sharpest estimation in (4) is obtained for i € {1,2}, but ||x;|| = ||x|| =
1 V3 = max{ | |, ]l ]

(b) Let X be a normed linear space. Let us take x1,x3 € X such that ||x;|| = 1
and |jx3]] = 0.8. Let us put x, := —x;. An easy computation shows that the right
hand side in the inequality (9) is equal to 0.6 when i € {1,2} and 0.5 when i = 3.
Therefore, the sharpest estimation in (5) is obtained for i € {1,2}, but ||x1]| = ||x2| =
17 0.8 = min{||xi [, [lxal], [ls ]}

The case of equality in (6) and (7) was studied by M. Kato, K. S. Saito and T.
Tamura [2] for elements of a strictly convex Banach space X. Their consideration is
based on the characterization of strictly convex normed linear spaces given in [2, Lemma
1] (see also [2, Remark 2]). We note here that Lemma 1 of [2] and its Remark 2 are also
valid without assumption that X is complete.

In what follows we shall consider the case of equality in (4) and (5) when X is a

strictly convex normed linear space. For our proofs we use Lemma 1 and Remark 2 of
2].

THEOREM 2.6. Let X be a strictly convex normed linear space and xi, ..., X,
nonzero elements of X such that ||xi|| = -+ = ||x4|| does not hold. Then there is
ie{l,. n} such that the following two statements are mutually equivalent.

>

ml
~ Wl &

H +2Mw—m0
5
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(ii) There exists v € X satisfying sgn(||x;]| — HXJ”)I;_JH =vforallje{l,...,n}
J

n

2%

J=1

n
such that ||x;|| # ||xi|| and ij =
=1

V.

Proof. Denote J = {j € {1,...,n} : |[x]| # [|xi[|}. Letus put x; = sgn([|x:|| —

lx;|)x;, j € J. Since
sgn( ! ! )
lxill - [l

sgn([lxill = [lxl),

1 1

lall Tl

1 1
[l [l

1

Tl Tl

> (rr- )=

j=1

we can write
1 1

el {1l

X (10)

(i) = (ii) From the proof of the inequality (4) we can see that (i) holds precisely
when

TRoE DI Y
Il (11)
Hzlxtl (llel el ||xz|| kel ||;H Y
Using (10) we can write (11) as
> 23| - HZ Rt \ 1 Il (12)
=l <= i ijll x| 7l Tl JH

First, let us consider the case when ZJ": X% = 0. By (12) we have

Zl 1
:.
JjE

1 1],
=l sl

7l gl T

-

=
Al
sgn(||lx;|| — ||xjH)HX 7 =v forall j e {1,...,n} such that ||xj|| # ||x;||. Obviously,
Y% = 5 xlv.

It remains to consider the case )7, x; # 0. Using (12) and Lemma 1 of [2] we
deduce that there exists v € X such that

Then by Lemma 1 of [2] there is v € X such that = v forall j € J, that is,

i .
= =v, jel. (13)
Il
D%
=1

Hence, (ii) is proved.
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(ii) = (i) Suppose first that >°7 | x; = 0. By the assumption we have H?’-H =v,
$O !
Y 1o
7l gl szH ||JH K
1 1
=3 | = |
j%: el gl

which is the equality (12). This proves (7).

Let us suppose now that Z;’:I xj # 0. By the assumption we have (13). Then,
according to Lemma 1 of [2], the equality (12) also holds. This implies (i) and the
theorem is proved. [

COROLLARY 2.7. Let X be a strictly convex normed linear space and xy, . .., X,
nonzero elements of X. Then the following two statements are mutually equivalent.

o[>, >+ sl ) -

2]
(@) |xi|| = -+ = x|l or there extst i€ {l,....,n} and v € X satisfying
n
sgn(||xi]| — ||xj||)”ij:” =v forall j € {1,...,n} such that ||x;|| # |xi|| and ij =
n j=1
Z)Cj V.
=1
Proof. If ||x1|| = --- = ||x,|| we are done. So, suppose that this is not the case.

Then our corollary follows immediately from Theorem 2.6 and the inequality (4) of
Theorem 2.1. [

THEOREM 2.8. Let X be a strictly convex normed linear space and xi, ..., X,
nonzero elements of X such that ||xi|| = -+ = ||x4|| does not hold. Then there is
ief{l,. n} such that thefollowing two statements are mutually equivalent.

o |-
IIXJH A

(i) There exists v € X satisfying sgn( |x]|| i)

Proof. Letusdenote J = {j € {1,...,n}:|xj]| # ||xi|}. Put

>

Jj=1

me,n - sl

‘—vforallje{l,...,n}

‘X]

such that | # |1l and Z ol H
J

HxJII

n

Z" X; 3 1 1
YT MY T (IIinI [l )xJ
j=1 j=1 J
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Let us denote x; = sgn(|x;|| — [|xi[|)x;, j € J. Since
1 1 1 1 ( 1 1 >
- = - Sgn -
el gl ill [l bl gl
1 1
= |7 — | sendlll = [l
il sl !
we can also write
1 1],
7= — = —— X!
2l ~ Tl

(i) = (ii) Passing the proof of the inequality (5) we deduce that (i) holds if and
only if the following two conditions are satisfied:

(14)
HXJH ‘ H ||xz|| ‘ HZ (lezl ||XJ|)
and
~ /(1 1 ) ~| 1
— = )5l = 2 T (BB (15)
J; <||xz'| xill /™ ; bl ||x;|| K
Note that (15) can be written as
1 1], 1
e el = S (16)
]; bl Nl ]%: kel ||XJH K
Therefore, by Lemma 1 of [2] there exists v € X such that
5 = (17)
= v’ J )
[bal
that is, sgn(||xj|| — [Jx])) mr Hx 7 =v forall je {1,...,n} such that ||x;|| # ||x]|.
Note that (14) is equivalent to ||y — z|| = Hy|| IIzll, i-e.,
10 =2) +2ll = [ly =zl + llz]|- (18)
From (16) it follows that z # 0, as J ;é 0 and x] ;é 0 for all j € J. If
y—z= ZJ" . ”x” = 0 we are done, since ZJ | HX]\ = ZJ | ” ” lv. So, assume that
y —z # 0. Then by (18) and Lemma 1 of [2] we get
y—1z z
= (19)
Iy =zl Izl
Using (16), (17) and Remark 2 of [2] we have
>\t il
AL
Z jeJ
= = = (20)
Il 1 1

/

[l [l
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From this and (19) we conclude that

Z HxJII

’

as desired. H ||xj\| ’
(if) = (i) Note that (i) « ((14) and (15)), (14)  (18) and (15) < (16).

Thus, to prove (i) we must show that (16) and (18) hold. Since =y forall j€J,

S
[
(16) follows from Lemma 1 of [2]. Now, by using Remark 2 of [2] we get I = v. By
the assumption we have y —z = ||y — z||v. Thus, y =z + ||y — z|lv = |lzllv + ||y — z||v
from which it follows that |ly[| = ||z|| + ||y — z||, which is the equality (18). This
completes the proof. [

COROLLARY 2.9. Let X be a strictly convex normed linear space and xi, . . ., X,
nonzero elements of X. Then the following two statements are mutually equivalent.

o |-t - 1) }

S =
el

(i) HJx:llH = -+« = ||x,|| or there exlst ie{l,....,n} and v € X satisfying
en(llll = llxll) iy = v forall j € {1,....n} such that |[x;[| # ||xil| and Z ol
-
- 2
Proof. If ||x1|| = -+ = ||x.|| we are done. If this is not the case, our corollary

follows from Theorem 2.8 and the inequality (5) of Theorem 2.1. [

Finally, as immediate consequences of Theorem 2.6 and Theorem 2.8, we state the
results obtained in [2] which determine when the equalities in (6) and (7) hold.

COROLLARY 2.10. Let X be a strictly convex normed linear space and xy, . . ., X,
nonzero elements of X. Then the following two statements are mutually equivalent.

o Stw = o]+ (| Sy

2 2T
(if) ||x1|| = -+ = ||xu|| or there exists v € X satisfying Hi_]ll = v for all
J
n
je{l,...,n} such that |x;| # I{I}ax |lxk|| and Zx] ij V.
j=1 j=1
Proof. If ||x1]| = --- = ||xu|| we are done. So, suppose that this is not the case.

Let us choose i € {1,...,n} such that ||x;|| = max{|x;|| : j =1,...,n}. Then (i)
is equivalent to (i) of Theorem 2.6, while (ii) is equivalent to (if) of Theorem 2.6.
Therefore, corollary follows from Theorem 2.6. [
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COROLLARY 2.11. Let X be a strictly convex normed linear space and xi, . . ., X,

nonzero elements of X. Then the following two statements are mutually equivalent.
n
X
an,u =[]+ (- [ ) i, o
2 2 Tl ) et
(if) ||x1|| = -+ = ||xn| or there exists v € X satisfying ;—’l = v for all
J
jeA{l,...,n} suchthat |x;| # mln ||xk|| and Z I ” H | H ’
Xj Xj
Proof. If ||x1|| = --- = ||x,|| we are done. So, suppose that this is not the case.

Let us choose i € {1,...,n} such that ||x;|| = min{||x;|| : j = 1,...,n}. Then (i)
is equivalent to (i) of Theorem 2.8, while (ii) is equivalent to (if) of Theorem 2.8.
Therefore, corollary follows from Theorem 2.8. [
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