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Abstract. Different ways of characterizing antieigen and antisingularvalues are considered. Sev-
eralmatrix inequalities, their generalizations and applications to problems inmultivariate statistics
are given. A new concept of homologous canonical correlations is introduced and applied to a
problem in genetics.

1. Introduction

1.1. Notations

We use the following notations. For real p -vectors x and y , the inner (scalar)
product is denoted by (x, y) = x′y , where x′ is the transpose of x . The norm of x is
denoted by ||x|| = [(x, x)]1/2 . The angle between x and y , denoted by [x, y] , is defined
as

[x, y] = cos−1
(
x′y/||x|| ||y||) . (1.1)

Let A be a positive definite (pd) matrix. A p -vector x such that Ax = λx
is called an eigenvector associated with the eigenvalue λ . There are p eigenvalues
λ1 � λ2 � . . . � λp > 0 with the corresponding eigenvectors x1, . . . , xp which can be
chosen to be orthonormal, i.e., ||xi|| = 1 ∀ i and x′ixj = 0 ∀ i �= j .

1.2. Characterization of eigenvalues and eigenvectors

The following are some of the necessary and sufficient conditions for x to be an
eigenvector of A .

(i) cos[x, Ax] = 1 or [x, Ax] = 0 . (1.2)

(ii) x′Ax − (x′A−1x)−1 = 0 with ||x|| = 1 . (1.3)

(iii) cos[y, Ax] = 0 ∀ y⊥x. (1.4)
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1.3. Departure from conditions (1.2) − (1.4)

In statistical and computational problems, we are interested in finding vectors x
which show maximum departure from the conditions given in Section 1.2.

For instance, we may seek x for which the angle [x, Ax] is a maximum giving the
largest departure from (1.2). From an inequality due to Kantorovich [20],

min
x

cos[x, Ax] =
[
2
√
λ1λp/(λ1 + λp)

]
= μ � 1 (1.5)

which is attained at

x∗ =

√
λp√

λ1 + λp
x1 ±

√
λ1√

λ1 + λp
xp (1.6)

where x1 and xp are the first and last eigenvectors of A . Gustafson [14] names x∗ as an
antieigenvector and μ as an antieigenvalue,which we will refer to as G -antieigenvector
and G -antieigenvalue in honor of Gustafson. The angle θ = [x∗, Ax∗] is termed by
Gustafson as the maximum turning angle or the operator angle. In a series of papers,
Gustafson [15, 2, 3, 26] and Gustafson and D. Rao [19] made valuable contributions to
the new area of operator trigonometry. Khattree [25, 26, 27] made some extensions of
these results.

Shisha and Mond [31] derived the result

max
||x||=1

[
x′Ax − (x′A−1x)−1

]
=
(√

λ1 −
√
λp

)2

= η (1.7)

which provides the maximum departure from (1.3). The maximum is attained at

x∗ =

[ √
λ1√

λ1 +
√
λp

]1/2

x1 ±
[ √

λp√
λ1 +

√
λp

]1/2

xp. (1.8)

We will refer to η and x′ , defined in (1.7) and (1.8), as SM-antieigenvalue and
SM-antieigenvector, respectively.

Wielandt [40] showed that

max
x⊥y

x′Ay
||x|| ||Ay|| =

λ1 − λp

λ1 + λp
= (1 − μ2)1/2 (1.9)

where μ is G -antieigenvalue and the maximum is attained at

x∗ =
√
λ1x1 −

√
λpxp√

λ1 + λp

y∗ =

√
λpx1 +

√
λ1xp√

λ1 + λp

where x∗ is G -antieigenvector.
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1.4. Some generalizations

A generalization of (1.5) is as follows. Let X be a p × r matrix of rank r . The
cosines of the angles between the vector spaces generated by the column vectors of X
and those of AX are square roots of the eigenvalues of

R = (X′X)−1/2X′AX(X′A2X)−1X′AX(X′X)−1/2 (1.10)

which reduces to identitymatrix I of order r when the columns of X are eigenvectors of
A . Two measures of departure of R from I are the product and sum of the eigenvalues
of (1.10). The minimum values of these measures and their applications are considered
in Section 2.2.

Another characterization of a matrix X of any set of eigenvectors of A is

X′AX − (X′A−1X
)−1

= 0 (1.11)

and a measure of departure from (1.11) is

trace
(
X′AX − (X′A−1X)−1

)
, with X′X = I . (1.12)

The maximum value of (1.12) is obtained in Section 4.3.
A general problem of interest is the extension of the concepts of antieigenvalues

and antieigenvectors of a matrix A to eigenvalues and eigenvectors of a matrix B
with respect to a positive definite matrix A arising from the determinantal equation
|B − λA| = 0 . This leads to minimization of a function of the type

(x′Cx)2/(x′Ax)(x′Bx) (1.13)

which is considered in Section 6.
Some problems in statistics require optimization of expressions like

(x′Ay)2/(x′Ax)(y′Ay) (1.14)

and functions of

(X′AX)−1/2X′AY(YAY ′)−1Y ′AX(X′AX)−1/2 (1.15)

where X and Y are matrices. These are considered in Section 3.2.
Notation. Throughout this paper S(X) , where X is a p × r matrix, represents a

subspace of Rp spanned by the columnvectors of X . The eigenvalues of a p×p positive
definite (pd) matrix A are represented by λ1 � λ2 � . . . � λp and the corresponding
eigenvectors by x1, . . . , xp .

In this paper, we give a general review of recent work on antieigenvalues and
antieigenvectors and applications to statistics. In addition, the concepts of antisingular
values and antisingular vectors are introduced.
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2. Kantorovich inequality and generalizations

2.1. Antieigenvalues and antieigenvectors

Let A be a p × p positive definite (pd) matrix. Then the cosine of the angle θ
between a vector x and Ax is

cosθ =
x′Ax√

(x′x)(x′A2x)
(2.1)

which has the value unity if x is an eigenvector of A , i.e., Ax = λx for some λ .
We raise the question: For what vector x , cos θ takes the minimum value or the
angle of separation between x and Ax is a maximum. The answer is provided by the
Kantorovich inequality

1 � x′Ax√
(x′x)(x′A2x)

′
� 2

√
λ1λp

λ1 + λp
= μ1 (2.2)

and the minimum value is attained at

x =

√
λpx1 ±

√
λ1xp√

λ1 + λp
= (u1, u2). (2.3)

The pair of vectors in (2.3) represented by (u1, u2) , are called the first antieigen-
vectors and μ1 in (2.2), the first antieigenvalue of A . The terminology was introduced
by Gustafson [14]. The angle θ1 = cos−1 μ1 is called the angle the operator of A .

Now, we define

μ2 = min
x⊥x1,xpa

x′Ax√
(x′x)(x′A2x)

(2.4)

as the second antieigenvalue of A and the associated vectors (u3, u4) , as the second
antieigenvectors of A . Expressing x = a2x2 + . . . + ap−1xp−1

x′Ax√
(x′x)(x′A2x)

=
λ2a2

2 + . . . + λp−1a2
p−1√

(
∑

a2
i )(
∑

λ 2
i a2

i )
and applying Kantorovich inequality we find

μ2 =
2
√
λ2λp−1

λ2 + λp−1

and

(u3, u4) =

√
λp−1x2 ±

√
λ2xp−1√

λ2 + λp
. (2.5)

We seek now the minimum of (2.1) subject to the condition x ⊥ x1, x2, xp−1, xp

which yields the third antieigenvalue μ3 and the antieigenvectors (u4, u5) , and so on.
Thus we have

μ1 � μ2 � . . . � μr, r = [p/2], μi = 2
√
λiλp−i+1/(λi + λp−i+1) (2.6)

the ordered antieigenvalues and the corresponding antieigenvectors (u1, u2), . . . ,
(u2r−1, u2r) . When p is odd, the antieigenvalue of order (p + 1)/2 is unity with
the corresponding antieigenvector x(p+1)/2 .
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2.2. Antieigensubspace

Consider the subspace S(X) spanned by the columns of a matrix X of order p× r
and rank r � p . The squared cosines of the angles between the subspaces S(X) and
S(AX) are eigenvalues of

(X′X)−1/2X′AX(X′A2X)−1X′AX(X′X)−1/2 (2.7)

which reduces to Ir (identitymatrix of order r )when S(X) is spanned by r eigenvectors
of A .

Making the transformation Y = A1/2X , the expression (2.7) can be written in a
familiar form

(Y ′A−1Y)−1/2Y ′Y(Y ′AY)−1Y ′Y(Y ′A−1Y)−1/2. (2.8)

A measure of departure of (2.8) from Ir is the determinant of (2.8)

|Y ′Y|2/|Y ′A−1Y||Y ′AY| (2.9)

which is less than unity. We seek the minimum of (2.9). There are a number of proofs
showing that

|Y ′Y|2
|Y ′A−1Y||Y ′AY| � μ1μ2 . . .μr (2.10)

where μ1, . . . ,μr are defined in (2.6) and the minimum is attained if S(X) is spanned
by the first r antieigenvectors√

λp−i+1√
λi + λp−i+1

xi +
√
λi√

λi + λp−i+1
xp−i+1 (2.11)

i = 1, . . . , r . [Bloomfield and Watson [28], Knott [28]].

2.3. A statistical application: Efficiency of least squares estimator

2.3.1. A linear model with one covariate

Consider the linear model with one covariate

y = xβ + ε, C(ε, ε) = σ2A (2.12)

where y, x and ε are p -vectors, β is the regression coefficient and C(u, v) represents
the covariance of random variables u and v . Least squares estimator of β (assuming
A = Ip) is

β̃ = (x′x)−1x′y with V(β̃) = σ2x′Ax/(x′x)2 .

The minimum variance linear estimator of β is

β̂ = (x′A−1x)−1x′A−1y with V(β̂) = σ2(x′A−1x)−1 .

The efficiency of β̃ compared to that of β̂ is

V(β̂)
V(β̃)

=
(x′x)2

(x′Ax)(x′A−1x)
� 4λ1λp

(λ1 + λp)2 = μ2
1 (2.13)
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so that the efficiency is above μ2
1 for any covariate, using the result (2.2).

Another measure of efficiency is the squared correlation of β̃ and β̂ , which is the
same as V(β̂)/V(β̃) with the minimum value μ2

1 .

2.3.2. A linear model with s covariates

Consider the linear model

y = Xβ + ε, C(ε, ε) = σ2A

where y and ε are p -vectors, X is a p × s matrix of rank s and β is an s -vector of
unknown parameters. The least squares estimator of β is

β̃ = (X′X)−1X′y with C(β̃ , β̃) = σ2(X′X)−1X′AX(X′X)−1 . (2.14)

The minimum covariance linear estimator of β is

β̂ = (X′A−1X)−1X′A−1y with C(β̂ , β̂) = σ2(X′A−1X)−1 . (2.15)

(i) A measure of relative efficiency is

|C(β̂ , β̂)|
|C(β̃ , β̃)| =

|X′X|2
|X′AX||X′A−1X| � (μ1 . . .μs)2 (2.16)

using the result (2.10).
(ii) Another way of measuring efficiency is to consider the product of the squared

canonical correlations between β̃ and β̃ , which are the eigenvalues of[
C(β̂ , β̂)

]−1/2
C(β̂ , β̃)

[
C(β̃ , β̃)

]−1
C(β̃ , β̂)

[
C(β̂ , β̂)

]−1/2
. (2.17)

Substituting

C(β̂ , β̃) = σ2(X′A−1X)−1 = C(β̂ , β̂)

C(β̃ , β̃) = σ2(X′X)−1X′AX(X′X)−1

the expression (2.17) becomes

(X′A−1X)−1/2X′X(X′AX)−1X′X(X′A−1X)−1/2 (2.18)

and the product of the eigenvalues of (2.18) is

|X′X|2
|X′A−1X||X′AX|

which is the same as (2.16) and hence has the same lower limit.
(iii) Another way of looking at the problem is to find the condition for β̃ and β̂

to be equal. Using the expressions (2.14) and (2.15)

β̃ − β̂ =
[
(X′X)−1X′ − (X′A−1X)−1X′A−1

]
y.
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The difference will be zero for all y if

(X′X)−1X′ = (X′A−1X)−1X′A−1

⇒X′A = (X′X)(X′A−1X)−1X′ ⇒ X′AZ = 0
(2.19)

where S(Z) is the orthogonal complement of S(X) . Conversely if X′AZ = 0 , then
(β̃ − β̂) = 0 .

Note 1. The condition X′AZ = 0 in (2.19) implies that A has the structure

A = XUX′ + ZVZ′ (2.20)

for some matrices U and V . The result (2.20) was established in Rao [31].
Note 2. The condition for equality of β̃ and β̂ can also be derived from Theorem

(i) proved in Rao ([32], p. 317) that β̃ is a minimum covariance estimator iff it has
zero covariance with the linear functions Z′y which have zero expectation. Now

C(β̃ , Z′y) = (X′X)−1X′AZ = 0 ⇒ X′AZ = 0. (2.21)

Note 3. The condition

X′AZ = 0 ⇒ PXA2PX − (PXAPX)2 = 0 (2.22)

which provides another measure of efficiency

max
X

trace
[
PXA2PX − (PXAPX)2

]
=

1
4

∑
1

(λi − λp−i+1)
2 (2.23)

derived by Bloomfield and Watson [28]. [See Bartman and Bloomfield [23] for related
work].

The condition (2.22) can also be written as

X′A2X = X′AX(X′X)−1X′AX

⇒(X′A2X)−1/2X′AX(X′X)−1X′AX(X′A2X)−1/2 = I
(2.24)

which provides measures of efficiency

|X′AX|2/|X′X||X′A2X| (2.25)

and
trace

[
(XA2X)−1/2X′AX(X′X)−1X′AX(X′A2X)−1/2

]
. (2.26)

3. Wielandt inequality and applications

Proof of Wielandt inequality.
Consider two p -vectors x, y such that x′y = 0 (i.e., x and y are orthogonal and

the problem:

max
x⊥y

(x′Ay)2

(x′x)(y′A2y)
(3.1)
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i.e., minimizing the angle between x and Ay . Making the transformation

u = A−1/2x, v = A1/2y

the problem reduces to
max
u⊥va

(u′Av)2

(u′Au)(v′Av)
. (3.2)

The following is known as Wielandt inequality

(u′Av)2

(u′Au)(v′Av)
�
(
λ1 − λp

λ1 + λp

)2

= 1 − μ2
1 (3.3)

under the condition u′v = 0 . [See the references, Wielandt [40], Alpargu [9] and Davis
and Schneider [9]]. A simple proof of (3.3) is as follows.

Let U be a matrix of order p × (p − 1) such that u′U = 0 . Then v = Ua for
some (p − 1) -vector a . Then (3.2) becomes

(u′AUa)2

(u′Au)(a′U′AUa)
. (3.4)

By Cauchy-Schwarz inequality

(3.4) � u′AU(U′AU)−1U′Au
u′Au

. (3.5)

Using the result (Rao [32], p. 77, example 32)

AU(U′AU)−1U′A = A − u(u′A−1u)−1u′.

(3.5) becomes
1 − (u′u)2

(u′Au)(u′A−1u)
� 1 − μ2

1 =
(λ1 − λp)2

(λ1 + λp)2
(3.6)

which proves (3.3).

3.1. Generalization of Wielandt inequality

Let us consider the subspaces S(X) and S(Y) spanned by the columns of X of
order p × r and of Y of order p × s respectively, such that X′Y = 0 . What are X
and Y such that S(X) and S(AY) are as close as possible? The squared cosines of the
angles, ρ2

1, . . . , ρ2
m[m = min(r, s)] between S(X) and S(AY) are the eigenvalues of

(X′X)−1/2X′AY(Y ′A2Y)−1Y ′AX(X′X)−1/2 (3.7)

which, after suitable transformation can be written as

Φ(X, Y) = (X′AX)−1/2X′AY(Y ′AY)−1Y ′AX(X′AX)−1/2. (3.8)

Let

G(X) = (X′AX)−1/2X′X(X′A−1X)−1X′X(X′AX)−1/2

P(X, Z) = (X′AX)−1/2X′A1/2Z(Z′Z)−1Z′A1/2X(X′AX)−1/2
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where S(Z) is the orthogonal compliment of S(A−1/2X) and S(A1/2Y) . Using the
identity

I = A−1/2X(X′A−1X)−1X′A−1/2 + A1/2Y(Y ′AY)−1Y ′A1/2 + Z(Z′Z)−1Z′.

Φ(X, Y) in (3.8) can be written as

I − G(X) − P(X, Z) (3.9)

and
I −Φ(X, Y) = G(X) + P(X, Z) � G(X) (3.10)

since P(X, Z) is nnd. Denoting the squared cosines of angles between S(X) and S(AY)
by ρ2

1, . . . , ρ2
m, [m = min(r, s)] ,

|I −Φ(X, Y)| =
m∏

i=1

(1 − ρ2
i ) = |G(X) + P(X, Z)|

� |G(X)| �
m∏

i=1

4λiλp−i+1

(λi + λp−i+1)2
=

m∏
i=1

μ2
i

(3.11)

using (2.10). Also

|Φ(X, Y)| =
m∏

i=1

ρ2
i = |I − G(X) − P(X, Z)|

� |I − G(X)| �
m∏

i=1

(λi − λp−m+i)2

(λi + λp−m+i)2
.

(3.12)

The results (3.11) and (3.12) are given in Khatri [22], Khatri and Rao [23] and
Khatri and Rao [24]. For related work when X is a vector, reference may be made to
Eaton [39].

3.2. Statistical application: Sphericity tests

Wielandt’s inequality (3.3) is used for constructing some test criteria in multivariate
analysis. Let x be a p -vector variable with mean μ and variance covariance matrix
Σ = E[(x − μ)(x − μ)′] . We want to test the hypothesis H0 against H1 ,

H0 :Σ = σ2Ip (Ip is identity matrix),
H1 :Σ is arbitrary.

Test 1. If Σ = σ2Ip , then k′1Ak2 = 0 for any two orthogonal vectors k1 and k2

(i.e., k′1k2 = 0 ). This condition can be used to construct the test criterion

C1 = max
k1⊥k2

(k′1Ak2)2

(k′1Ak1)(k′2Ak2)
(3.13)

where A is an estimate of Σ based on a sample, and k1 and k2 are normalized vectors.
Using Wielandt inequality (3.3), the test criterion is

C1 =
(λ1 − λp)2

(λ1 + λp)2
= 1 − μ2

1 (3.14)
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where λ1 and λp are the largest and smallest eigenvalues of A . A large value of C1

or a small value of μ1 indicates departure from H0 .

Test 2. Let K1 be a p × q matrix of rank q and K2 be a p × (p − q) matrix of
rank (p − q) such that K′

1K2 = 0 (null matrix). Also let q � p − q .
Consider random variables u = K′

1x and v = K′
2x . If the covariance matrix of x

is σ2I , then K′
1x and K′

2x are uncorrelated. If A is the estimated covariance matrix
of x based on a sample of observations on x , then the estimated squared canonical
correlations between K′

1x and K′
2x are the eigenvalues of

(K′
1AK1)−1/2K′

1AK2(K′
2AK2)−1K′

2AK1(K′
1AK1)−1/2

= I − (K′
1AK1)−1/2(K′

1A
−1K1)−1(K′

1AK1)−1/2 = Φ(K1).

Then

|Φ(K1)| = ρ̂1 . . . ρ̂2
q

|I −Φ(K1)| = (1 − ρ̂2
1) . . . (1 − ρ̂2

q) = |(K′
1A

−1K1)(K′
1AK1)|−1

where ρ̂2
1, . . . , ρ̂2

q are the estimated squared canonical correlations. We may choose the
test statistic as

C2 = max
K1

|K′
1A

−1K1||K′
1AK1| =

q∏
i=1

(λi + λp−i+1)2

4λiλp−i+1
. (3.15)

A large value of C2 indicates rejection of H0 .

Test 3. Another possible test criterion is

C3 = max
K1

Φ(K1) = max
K1

q∏
i=1

ρ2
i

=
q∏

i=1

(λi − λn−q+i)2

(λi + λn−q+i)2
.

(3.17)

A large value of C3 indicates departure from the hypothesis H0 of sphericity. For
a discussion of these tests reference may be made to Venebles [39].

4. Shisha-Mond inequality and generalizations

4.1. (SM)-antieigenvalues and antieigenvectors

An eigenvector x of a pd matrix A can be characterized in many ways other than
that the angle between x and Ax is zero. An interesting characterization is

x′Ax = (x′A−1x)−1, x′x = 1. (4.1)

By Cauchy-Schwarz inequality,

(x′Ax)(x′A−1x) � 1

so that
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d = x′Ax − (x′A−1x)−1 � 0 (4.2)
with equality holding when x is an eigenvector of A . Shisha and Mond [31] have shown
that [see also Styan [38]],

max
|x|=1

[
x′Ax − (x′A−1x)−1

]
=
(√

λ1 −
√
λp

)2

= ν1 (4.3)

so that (4.2) has an upper bound and is attained when x is

(z1 or z2) =
[√

λ1/(
√
λ1 +

√
λp)
]1/2

x1 ±
[√

λp/(
√
λ1 +

√
λp)
]1/2

xp. (4.4)

We call ν1 as the first (SM)-antieigenvalue and z1 or z2 as the first (SM)-
antieigenvector.

4.2. Higher order (SM)-antieigenvalues and antieigenvectors

As in Section 2.1, we seek

max
x⊥z1,z2

x′x=1

[
x′Ax − (x′A−1x)−1

]
.

Using the same type of argument as in Section 2.1 we find

max
x′x=1

x⊥z1,z2

[
x′Ax − (x′A−1x)−1

]
=
(√

λ2 −
√
λp−1

)2

= ν2 (4.5)

and the maximum is attained at x equal to

(z3 or z4) =
[√

λ2/(
√
λ2+

√
λp−1)

]1/2

x2 ±
√
λp−1/

[
(
√
λ2+

√
λp−1)

]1/2

xp−1.

(4.6)
We this build up the series

(ν1; z1, z2), (ν2; z3, z4), . . . , (νr; z2r−1, z2r) (4.7)

where r = [p/2] and νi =
(√

λi −
√
λp−i+1

)2
.

4.3. Generalized Shisha-Mond inequality

Let X be a matrix of order p × r such that X′X = Ir . For any given X ,

X′AX − (X′A−1X)−1 is nnd (4.8)

and is a null matrix if and only if S(X) is spanned by r eigenvectors of A . Now
consider(

X′A1/2 − (X′A−1X)−1X′A−1/2
)(

A1/2X − A−1/2X(X′A−1X)−1
)

= X′AX − (X′A−1X)−1 = 0 ⇒ A1/2X − A−1/2X(X′A−1X)−1 = 0

⇒ AX = XB, B = (X′A−1X)−1.
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Using the spectral decomposition of B = QΔQ′ ,

AX = XB ⇒ AX = XQΔQ′ ⇒ AXQ = XQΔ (4.9)

i.e., XQ is a matrix whose columns are eigenvectors of A . This implies that S(X) is
spanned by a set of eigenvectors of A and the if part if proved. The only if part follows
easily.

A measure of departure from X′AX − (X′A−1X)−1 is

traceX′X=I

[
X′AX − (X′A−1X)−1

]
. (4.10)

It is shown in Rao [33] that

(4.10) � ν1 + . . . + νm (4.11)

where νi is the i -th (SM) antieigenvalue of A as defined in (4.7) and m = min(r, p−r) .
In Drury, Liu, Lu, Puntanen and Styan [26], the inequality (4.11) is referred to as Rao
inequality.

An interesting result arising out of (4.10) is the inequality

trace
[
A11 − (A11)−1

]
= trace

(
A12A

−1
22 A21

)
�

m∑
1

(√
λi −

√
λp−i+1

)2

where Aij and Aij are the parts of

A =
(

A11 A12

A21 A22

)
, A−1 =

(
A11 A12

A21 A22

)
.

5. Some related inequalities

5.1. Antisingularvalues and vectors

Let A be a matrix of order p × p with the singular value decomposition (SVD)

A = δ1x1y
′
1 + . . . + δpxpy

′
p (5.1)

where δ1 � δ2 � . . . � δp > 0 are singularvalues of A , xi and yi such that
x′ixi = y′iyi = 1 , i = 1, . . . , p are left and right singularvectors. A natural extension of
Kantorovich inequality is (with x′x = 1 = y′y ),

(x′Ay)(x′A−1y) � (δ1 + δp)2

4δ1δp
= ω1 (5.2)

and the maximum is attained at

x = (u1 or u2 ) =
1√
2
(x1 ± xp), y = (v1 or v2 ) =

1√
2
(v1 ± vp). (5.3)

We call ω1 as the first antisingularvalue with (u1, u2), (v1, v2) as antisingularvec-
tors.
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As in Section 2.1, we can show that

max
|x|=|y|=1

x⊥u1u2 y⊥v1,v2

(x′Ay)(y′A−1x) =
(δ2 + δp−1)2

4δ2δp−1
= ω2 (5.4)

and the maximum is attained at

x = (u3 or u4 ) =
1√
2
(x2 ± xp−1), y = (v3 or v4 ) =

1√
2
(y2 ± yp−1). (5.5)

Thus we obtain the sequence of antisingularvalues and singularvectors

(ω1; u1, u2, v1, v2), (ω2; u3, u4, v3, v4), . . . , (ωr; u2r−1, u2r, v2r−1, v2r) (5.6)

where r =
[p
2

]
, and ωi = (δi + δp−i+1)

2
/4δiδp−i+1 .

5.2. A generalization

Let X and Y be p × r and p × s matrices of ranks r and s respectively with
r � s and X′X = Ir, Y ′Y = Is and A be a nonsingular matrix with the SVD

A = δ1x1y
′
1 + . . . + δpxpy

′
p. (5.7)

The following inequalities have been proved in Khatri and Rao [23, 24].

(i) |X′AYY ′A−1X| �
min(r,n−s)∏

i=1

ωi (5.8)

(ii) trace(X′AYY ′A−1X) �
r∑

i=1

ωi if p � r + s

�
(

p−s∑
i=1

ωi

)
+ (r + s − p) if p < r + s

(5.9)

where
ωi = (δi + δp−i+1)2/4δiδp−i+1.

The result (5.8) generalizes an inequality due to Strang [37].
Other inequalities proved by Khatri and Rao [23, 24] are as follows. let B and C

be symmetric nonsingular matrices such that BC = CB and BC−1 is pd, X be p × r
matrix of rank r and λ1 � · · · λp be the eigenvalues of BC−1 . Then

(i)
|X′B2X||X′C2X|

|X′BCX|2 �
m∏

i=1

(λi + λp−i+1)2

4λiλp−i+1
(5.10)

(ii) trace
(
X′B2X(X′BCX)−1X′C2X(X′BCX)−1

)
�

m∑
i=1

(λi + λp−i+1)2

4λiλp−i+1
+ (p − m)

(5.11)
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where m = min(r, p − r) . The result (5.10) generalizes the inequality of Greub and
Rheinboldt [13] proved for the special case of r = 1 .

The inequalities (5.8)-(5.11) are referred to as Khatri-Rao inequalities in Drury,
Liu, Lu, Puntanen and Styan [26].

6. Antieigenvalues of A with respect to B

Let λ1, . . . , λp be the eigenvalues of an nnd p × p matrix A with respect to a pd
matrix B , i.e., solutions of the matrix equation

|A − λB| = 0. (6.1)

Corresponding to a root λi , there is an eigenvector xi such that

Axi = λiBxi.

The cosine of the angle between Axi and Bxi , cos(Axi, Bxi) = 1 . We define the
first antieigenvalue of A with respect to B as

min
x

[cos(Ax, Bx)] = min
x

x′ABx√
(x′A2x)(x′B2x)

= min
y

(y′Cy)√
(y′y)(y′CC′y)

, C = B−1A.

(6.2)

Case 1. C is symmetric.
The ratio (6.2) reduces to

y′Cy√
(y′y)(y′C2y)

and the minimum value is, by Kantorovich inequality,

μ1 =
2
√
λ1λp

λ1 + λp
.

Case 2. C is not symmetric.
There is no closed form solution. The vector y at which (6.2) takes a stationary

value is a solution of the equation

(C + C′)y = αy + βCC′y

α =
y′(C + C′)y

y′y
, β =

y′(C + C′)y
y′CC′y

(6.3)

which can be written in another form

(C + C′)y = α(I + νCC′)y
ν = y′y/y′CC′y

(6.4)

and also as
(C + C′)y = β(CC′ + νI)y

ν = y′CC′y/y′y.
(6.5)
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In (6.5), ν ∈ [νp, ν1] , where ν1 and νp are the largest and smallest eigenvalues of
CC′ . For any given ν , we have from first equation in (6.5) p roots and corresponding
eigenvectors

βi(ν), yi(ν), i = 1, . . . , p (6.6)

which are continuous functions of ν (Kato [29]). Define the function

gi(ν) =
y′i(ν)CC′yi(ν)

y′i(ν)yi(ν)
− ν, i = 1, . . . , p. (6.7)

We have to pick up those values of (i, ν) for which gi(ν) = 0 . Let νi be the
value at which gi(νi) = 0 . Compute

βi(νi) =
y′i(νi)(C + C′)yi(νi)

y′i(νi)(CC′ + νiI)yi(νi)
. (6.8)

The stationary values of the function

cos2 θ = (y′Cy)2/(y′y)(y′CC′y)

are provided by
β2

i νi, i = 1, . . . , p (6.9)

from which the minimum or maximum value can be chosen.

7. Homologous canonical correlations (HCC)

Let u and v be p -vector random variables with the joint covariance matrix(
A C
C′ B

)
. (7.1)

For instance u may be p measurements on a parent and v the corresponding
measurements taken on an offspring. In the theory of canonical correlations, linear
functions a′u and b′v , where a and b are different, are sought to maximize the
correlation between a′u and b′v . We raise the question: for what linear function of
the measurements the parent offspring correlation is a maximum. We consider linear
functions x′u and x′v and compute their correlation coefficient

ρ =
x′Cx√

(x′Ax)(x′Bx)
. (7.2)

The values of (7.2) at stationary points have been termed as homologous canonical
correlations by Rao and Rao [34].

To obtain the stationary values of (7.2), we equate the derivative of (7.2) with
respect to x to zero (Rao [32], p. 72). This yields the equations

λAx + μBx = 2Cx

λx′Ax = x′Cx
(7.3)
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introducing two additional constants λ and μ , which is equivalent to the equations

λ (A + νB)x = 2Cx

x′Ax = νx′Bx
(7.4)

introducing two additional variables λ and ν .
Since A and B are pd matrices, there exists a nonsingular transformation S such

that A = SΔS′ and B = SS′ where Δ is a diagonal matrix [Rao [32], p. 41]. Then
writing y = Sx, W = S−1C(S−1)′ , the equations (7.4) assume the simpler form

λ (Δ + νI)y = 2Cy

y′Δy = νy′y.
(7.5)

If δ1, . . . , δp are the diagonal elements of Δ and y1, . . . , yp are the components of y ,
we obtain the equations for y1, . . . , yp from (7.5) as

2y′y
[
(e′iCy)y1 − (e′1Cy)yi

]
= y1yi(δi − δ1)y′Cy, i = 1, . . . , p (7.6)

where ei is the elementary vector with unity as the i -th component and zeros elsewhere.
In (7.6). we have (p − 1) quartic equations in (p − 1) ratios (x2/x1), . . . , (xp/x1) .
The solution of these equations poses a complicated computational problem except in
the case of p = 2 when we have one quartic equation as observed by Kouvaritakis and
Cameron [29].

Rao and Rao [34] discuss a general computational method for obtaining the sta-
tionary values of (7.2) using the equation (7.4)

2Cx = λ (A + νB)x
x′Ax = νx′Bx.

(7.7)

Observe that νε[νp, ν1] where ν1 � . . . � νp are the eigenvalues of A with
respect to B , i.e., the roots of |A − νB| = 0 . For any given νε[νp, ν1] , the first
equation in (7.7) provides p eigenvalues

λ1(ν) � . . . � λp(ν) (7.8)

of 2C with respect to (A + νB) and p associated eigenvectors

x1(ν), . . . , xp(ν). (7.9)

The pair (ν, xi(ν)) will be a solution of (7.7) if and only if

ν = x′i(ν)Axi(ν)/x′i(ν)Bui(ν). (7.10)

The method is illustrated with an example in Rao and Rao [34]. It would be of
interest to find a suitable algorithm to solve the equations (7.7).

The special case of (7.2) with C = I (which reduces to the product of two Rayleigh
quotients) originally arose in attempts to design control systems with minimum norm
feedback matrices (Kouvaritakis andCameron [29], Cameron and Kouvaritakis [29]) and
also in the study of the stability of multivariable nonlinear feedback systems (Cameron
[38]).
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8. Nonhomologous canonical correlations (NHCC)

Let us consider the covariance matrix (7.1) of the parent offspring measurements
(u, v) and the correlation between two different linear functions x′u and y′v

ρ =
x′Cy√

(x′Ax)(y′By)
. (8.1)

It is well known (Rao, [32]), that the stationary values of (8.1) are the singular
values of

A−1/2CB−1/2 = PΔQ′

where Δ is the diagonal matrix of stationary values ρ1 � . . . � ρp of (8.1), which we
call nonhomologous canonical correlations (NHCC). The vectors corresponding to ρi

are
xi = A−1/2pi, yi = B−1/2qi

where pi is the i -th column of P and qi is the i -th column of Q .

An open problem. Under what conditions on the covariance matrix (7.1), P = Q ?
From genetic considerations, we expect P and Q to be the same. Using the

example of the correlation matrix between the measurements, head length, head width,
frontal width and stature, of father and son given in Rao and Rao [34], the following
homologous and nonhomologous canonical correlations are computed.

NHCC : 0.6077 0.3730 0.2335 0.0862
HCC : 0.5874 0.3564 0.1675 -0.0949

By construction NHCC’s are larger than HCC’s. However, there seems to be
good agreement. A suitable statistical test has to be developed to test the equality of
homologous and nonhomologous canonical correlations.

9. Additional remarks

Ando ([2, 3, 4]) extended the Kantorovich and Shisha-Mond inequalities to a
“compression” ΦC(A) of a unital positive map Φ(A) from p × p matrices to r × r
matrices. The map Φ between C -algebras is said to be unital positive if it is unit-
preserving and positivity-preserving, respectively. For a pd matrix A , he showed that

∣∣{ΦC(A)}−1ΦC(A2){ΦC(A)}−1
∣∣ =

|ΦC(A2)|
|ΦC(A)|2

�
m∏

i=1

(λi + λp−i+1)2

4λiλp−i+1

(9.1)

trace
(
ΦC(A) − {ΦC(A−1)}−1

)
�

m∑
i=1

(√
λi −

√
λp−i+1

)2

(9.2)
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where m = min(r, n − r) . He also established a series of majorization results:

{ξi}m
i=1 ≺w

{
1
4
(λi − λp−i+1)2

}m

i=1

(9.3)

where ξ1, . . . , ξm are the eigenvalues of X′A2X − (X′AX)2 , and

{logηi}m
i=1 ≺w

{
log

[
(λi + λp−i+1)2

4λiλp−i+1

]}m

i=1

(9.4)

where ηi are eigenvalues of

{ΦC(A)}−1 ΦC(A2) {ΦC(A)}−1
. (9.5)

Ando mentions that Bloomfield-Watson-Knott, Khatri-Rao and Rao inequalities
are three “most essential” results for deriving his majorization results.
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correlations, Sankhyā, 49, (B) (1987), 113–125.
[35] C. R. RAO, M. B. RAO, Matrix Algebra and its Applications to Statistics and Econometrics, World

Scientific, Singapore.
[36] O. SHISHA, B. MOND, Bounds on difference of means, In Inequalities: Proceedings of a Symposium held

at Wright–Patterson Air Force Base, Ohio, August 19–27, 1965, Academic Press, New York, (1967),
293–308.

[37] W. G. STRANG, On Kantorovich inequality, Proc. Amer. Math. Soc., 11, (1960), 468.
[38] G. P. H. STYAN, On some inequalities associated with ordinary least squares and the Kantorovich

inequality, In Festschrift for Eino Haikala on his Seventieth birthday, Univ. of Tampere, (1983), 158–
166.

[39] W. VENABLES, Some implications of the union intersection principle for tests of sphericity, J. Multivariate
Anal., 6, (1976), 185–190.

[40] H. WIELANDT, Inclusion theorems for eigenvalues, In Simultaneous Linear Equations and the De-
termination of Eigenvalues (Eds. L.J. Paige and O. Taussky), National Bureau of Standards Applied
Mathematics Series, Vol 29, (1953), 75–78.

(Received January 11, 2006) Statistics Department
Joab Thomas Building

Pennsylvania State University
University Park, PA 16802

USA

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


