
Mathematical
Inequalities

& Applications
Volume 10, Number 3 (2007), 499–516

ON THE LOG–CONVEXITY OF

TWO–PARAMETER HOMOGENEOUS FUNCTIONS

ZHEN-HANG YANG

(communicated by Z. Páles)

Abstract. Suppose f (x, y) is a positive homogeneous function defined on U( �R+ × R+) ,

then call
(

f (ap ,bp)
f (aq ,bq)

) 1
p−q

two-parameter homogeneous function and denote by Hf (a, b; p, q) .

If f (x, y) is third differentiable, then the log-convexity with respect to parameters p and q of
Hf (p, q) depend on the sign of J = (x− y)(xI)x , where I = (ln f )xy . As applications a group
of chains of inequalities for homogeneous means are established, which generalize, strengthen
and unify Tong-po Ling ’s and Stolarsky’s inequalities, and a reversed chain of inequalities for
exponential mean (identic mean) is derived, which contains a reversed Stolarsky’s inequality.
Several estimations of lower and upper bounds of extended mean are presented.

1. Introduction and main results

The so-called extended mean values between two unequal positive numbers a and
b were defined first by K. B. Stolarsky in [14] as

E(a, b; p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q
p

ap − bp

aq − bq

) 1
p−q

p �= q, pq �= 0(
1
p

ap − bp

ln a − ln b

) 1
p

p �= 0, q = 0(
1
q

aq − bq

ln a − ln b

) 1
q

p = 0, q �= 0

exp

(
ap ln a − bp ln b

ap − bp
− 1

p

)
p = q �= 0

√
ab p = q = 0

. (1.1)

As the generalized power-mean, C. Gini obtained a similar two-parameter type
mean in [3]. That is:

G(a, b; p, q) =

⎧⎪⎪⎨
⎪⎪⎩
(

ap + bp

aq + bq

) 1
p−q

p �= q

exp(
ap ln a + bp ln b

ap + bp
) p = q.

(1.2)
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Observe the above two-parameter type means, we find that their forms are both(
f (ap, bp)
f (aq, bq)

) 1
p−q

, where f (x, y) =
x − y

ln x − ln y
(x, y > 0, x �= y) , A(x, y) =

x + y
2

(x, y >

0) . Obviously, they are both homogeneous functions of x and y . Consequently, we
have the following definition.

DEFINITION 1. Assume f : U(�R+ × R+) → R+ is an n -order homogeneous
function for variables x and y , and is continuous and first order partial derivatives exist,
(a, b) ∈ R+ × R+ with a �= b , (p, q) ∈ R × R .

If (1, 1) /∈ U , then define that

Hf (a, b; p, q) =
(

f (ap,bp)
f (aq,bq)

) 1
p−q

(p �= q, pq �= 0), (1.3)

Hf (a, b; p, p) = lim
q→p

Hf (a, b; p, q) (1.4)

= exp
(

apf x(ap,bp) ln a+bpf y(ap,bp) ln b
f (ap ,bp)

)
(p = q �= 0), (1.5)

f x(x, y) and f y(x, y) denote partial derivative with respect to 1st and 2nd variable of
f (x, y) respectively.

If (1, 1) ∈ U , then define further

Hf (a, b; p, 0) =
(

f (ap, bp)
f (1, 1)

) 1
p

(p �= 0, q = 0), (1.6)

Hf (a, b; 0, q) =
(

f (aq, bq)
f (1, 1)

) 1
q

(p = 0, q �= 0), (1.7)

Hf (a, b; 0, 0) = lim
p→0

Hf (a, b; p, 0) = a
fx(1,1)
f (1,1) b

fy(1,1)
f (1,1) (p = q = 0). (1.8)

From Lemma 1, Hf (a, b; p, q) is still a homogeneous function of positive numbers
a and b . We call it a homogeneous function of positive numbers a and b with two
parameters p and q , in short, we call it two-parameter homogeneous functions.

The following properties of Hf (p, q) are obvious by some simple calculations:

Property 1 . Hf (a, b; p, q) are symmetric with respect to p, q i.e.

Hf (a, b; p, q) = Hf (a, b; q, p). (1.9)

Property 2 . Define that

Gf (x, y) := exp

(
xf x(x, y) ln x + yf y(x, y) ln y

f (x, y)

)
, (1.10)

then

Hf (a, b; p, p) = G
1
p
f (ap, bp). (1.11)

Property 3 . Set T(t) = ln f (at, bt) , then

T ′(t) =
atf x(at, bt) ln a + btf y(at, bt) ln b

f (at, bt)
= ln G

1
t
f (at, bt), (1.12)
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where t �= 0 if (1, 1) /∈ U .

Property 4 . If T ′(t) is continuous on [p, q] , then

lnHf (p, q) =
1

p − q

∫ p

q
T ′(t)dt =

1
p − q

∫ p

q
lnGf ,tdt. (1.13)

Property 5 . If f (x, y) = f (y, x) for all (x, y) ∈ U , then

Hf (t,−t) = Gn, (1.14)
T(t) − T(−t) = 2nt ln G, (1.15)

where G =
√

ab if (1, 1) /∈ U.

In the case of not being confused, we set

Hf = Hf (p, q) = Hf (a, b; p, q) =
(

f (p)
f (q)

) 1
p−q

,

Gf ,p = Gf ,p(a, b) = G
1
p
f (ap, bp) = Hf (p, p).

By Definition 1, we have HL(a, b; p, q) = E(a, b; p, q) and HA(a, b; p, q) =
G(a, b; p, q) , which show that the conception of two-parameter homogeneous function
greatly develope the extension of the conception of extended mean and Gini mean.
Nevertheless, the two-parameter homogeneous function is not a mean in general, e.g.
for the case f (x, y) = |x − y|(x, y > 0, x �= y) (see case 4 in section 4).

As special cases of the two-parameter homogeneous functions, the extended mean
and Gini mean have been researched by various authors in [19, 18, 16, 14, 13, 12, 11,
10, 7, 6, 4, 3, 9]. It is worth mentioning that Qi Feng studied the log-convexity for the
parameters of the extended mean in [10], and pointed out the two-parameters mean is
a log-concave function with respect to either parameter p or q on interval (0, +∞)
and is a log-convex function on interval (−∞, 0) . This is a very interesting and useful
result.

The aim of this paper is to investigate the log-convexity with respect to the param-
eters of the two-parameter homogeneous functions, and get the following results:

THEOREM 1. Let f (x, y) be a positive n -order homogenous function defined on
U(�R+ × R+) and be third order differentiable. If

J = (x − y)(xI)x < (>)0, where I = (ln f )xy, (1.16)

then Hf (p, q) is strictly log-convex (log-concave) with respect to either p or q on
(0, +∞) , and log-concave (log-convex) on (−∞, 0).

REMARK 1. This is a generalization of Qi Feng’s result on the log-convexity of
extended mean values (see [10]).

COROLLARY 1. The conditions are the same as Theorem 1 ’s. If (1.16) holds, then
Hf (p, 1− p) is strictly decreasing (increasing) in p on (0, 1

2 ) , increasing (decreasing)
on ( 1

2 , 1) .
If f (x, y) is symmetric with respect to x and y further, then the above monotone

interval can be extended from (0, 1
2 ) to (−∞, 0) and (0, 1

2 ) , and ( 1
2 , 1) to ( 1

2 , 1) and
(1, +∞) , respectively.
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COROLLARY 2. The conditions are the same as Theorem 1 ’s. If (1.16) holds,
then for p, q ∈ (0, +∞) with p �= q , there is

Gf , p+q
2

< (>)Hf (p, q) < (>)
√

Gf ,pGf ,q. (1.17)

For p, q ∈ (−∞, 0) with p �= q , the inequality (1.17) is reversed.
If f (x, y) is defined on R+×R+ and is symmetric with respect to x and y further,

then substituting p + q > 0 for p, q ∈ (0, +∞) and p + q < 0 for p, q ∈ (−∞, 0) ,
(1.17) is also true, respectively.

2. Lemmas

To prove Theorem 1, Corollary 1 and 2, we need the following lemmas, in which
Lemma 1 and 2 are from section 3 in [20].

LEMMA 1. Let f (x, y) , g(x, y) be n , m -order homogenous functions over Ω
respectively. Then f · g , f /g , (g �= 0) are n + m, n−m-order homogenous functions
over Ω respectively.

If for a certain p with (xp, yp) ∈ Ω , and f p(x, y) exists, then f (xp, yp) , f p(x, y)
are both np -order homogeneous functions over Ω .

LEMMA 2. Let f (x, y) be an n -order homogeneous function over Ω and f x ,
f y both exist. Then f x , f y are both n − 1 -order homogeneous functions over Ω .
Furthermore we have

xf x + yf y = nf . (2.1)
Particularly, when n = 1 and f (x, y) is first order differentiable over Ω , then

xf x + yf y = f , (2.2)
xf xx + yf xy = 0, (2.3)
xf xy + yf yy = 0. (2.4)

LEMMA 3. Let f (x, y) be a positive n -order homogenous function defined on
U(�R+ × R+) and be second order differentiable. Then

T ′′(t) = −xyI(ln b − ln a)2, where I = (ln f )xy, (2.5)

where x = at, y = bt.

Proof. Since f (x, y) is a positive n -order homogeneous function, from equation
(2.1), we obtain

x(ln f )x + y(ln f )y = n or x(ln f )x = n − y(ln f )y. (2.6)

By Property 2, there is

T ′(t) =
atf x(at, bt) ln a + btf y(at, bt) ln b

f (at, bt)

=
xf x(x, y) ln a + yf y(x, y) ln b

f (x, y)
= x(ln f )x ln a + y(ln f )y ln b

= n ln a + y(ln f )y(ln b − ln a).

(2.7)
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Notice that y(ln f )y is a 0 -order homogeneous function, so

x (y(ln f )y)x + y (y(ln f )y)y = 0, or y (y(ln f )y)y = −x (y(ln f )y)x .

Hence

T ′′(t) = (ln b − ln a)
(

∂y(ln f )y

∂x
dx
dt

+
∂y(ln f )y

∂y
dy
dt

)

= (ln b − ln a)
(
(y(ln f )y)x at ln a + y (y(ln f )y)y bt ln b

)
= (ln b − ln a)

(
x (y(ln f )y)x ln a − x (y(ln f )y)x ln b

)
= −(ln b − ln a)2x (y(ln f )y)x

= −xy(ln f )xy(ln b − ln a)2

= −xyI(ln b − ln a)2.

The proof is completed. �

LEMMA 4. Let f (x, y) be a positive n -order homogenous function defined on
U(�R+ × R+) and be third order differentiable. Then

T ′′′(t) = −Ct−3J, (2.8)

where J = (x − y)(x I )x,t �= 0, C = xy(x − y)−1(ln x − ln y)3 > 0.

Proof. From Lemma 1 and 2, we understand that I = (ln f )xy = (f f xy − f xf y)/f 2

is a −2 -order homogeneous function of x and y , thus xyI is a 0 -order homogeneous
function. By (2.1), we get

x(xyI)x + y(xyI)y = 0, or y(xyI)y = −x(xyI)x. (2.9)

By Lemma 3 and notice x = at, y = bt , and then

T ′′′(t) =
dT ′′(t)

dt
=

d
(−xyI(ln b − ln a)2

)
dt

= −(ln b − ln a)2

(
∂(xyI)

∂x
dx
dt

+
∂(xyI)

∂y
dy
dt

)
= −(ln b − ln a)2 (at ln a · (xyI)x + bt ln b · (xyI)y)

= −(ln b − ln a)2 ((x(xyI)x ln a + y ln b(xyI)y ln b))

= −(ln b − ln a)2 (x(xyI)x) (ln a − ln b)

= (ln b − ln a)3xy(xI)x

= xy
(ln b − ln a)3

x − y
((x − y)(xI)x)

= −xy
(ln x − ln y)3

t3(x − y)
((x − y)(xI)x)

= −Ct−3J. �
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LEMMA 5. The conditions of this Lemma are the same as Lemma 3 , and f (x, y)
is symmetric with respect to x and y , then the following equations hold:

T ′(t) + T ′(−t) = 2n lnG, (2.10)
T ′′(−t) = T ′′(t). (2.11)

Proof. By direct calculating first and second derivative to variable t in two sides of
equation (1.15) respectively, the equations (2.10) and (2.11) are derived immediately.

The proof is completed. �

REMARK 2. If (1, 1) ∈ U , i.e. T ′(0) exists, then T ′(0) = n lnG , thus the (2.10)
can be rewritten as

T ′(t) + T ′(−t) = 2T ′(0). (2.12)

The following lemma is from Péter Czinder and Zsolt Páles [2], which are applied
in Stolarsky and Gini means. In fact it will be also applied in the two-parameter
homogeneous functions in section 4.

LEMMA 6. Let f : J → R be symmetric with respect to an element m ∈ J .
Furthermore, suppose that f is convex over the interval J ∩ (−∞, m] and concave
over J ∩ [m, +∞) . Then, for any interval [p, q] ⊂ J

f (
p + q

2
) � (�)

1
p − q

∫ p

q
f (t)dt � (�)

f (p) + f (q)
2

(2.13)

holds if p+q
2 � (�)m.

In (2.13) the reversed inequalities are valid if f is concave over the interval
J ∩ [−∞, m) and convex over J ∩ [m, +∞).

3. Proofs of main results

Next we will prove Theorem 1 and Corollaries 1-2.

Proof of Theorem 1 . It needs only to prove the convexity of lnHf for p .

1) when p �= q , lnHf =
T(p) − T(q)

p − q
,

∂ lnHf

∂p
=

(p − q)T ′(p) − T(p) + T(q)
(p − q)2

=
g(p, q)

(p − q)2
, (3.1)

∂g(p, q)
∂p

= (p − q)T ′′(p) (3.2)

∂2 lnHf

∂p2
=

(p − q)gp(p, q) − 2g(p, q)
(p − q)3

=
k(p, q)

(p − q)3
, (3.3)

∂k(p, q)
∂p

= (p − q)2T ′′′(p). (3.4)
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Notice k(q, q) = 0 , Obviously, if T ′′′(p) > 0 , then

∂2 lnHf

∂p2
=

k(p, q)
(p − q)3

> 0,

i.e. lnHf is convex in p . If T ′′′(p) < 0 , then it is reversed.
From Lemma 4, when J = (x − y)(xI)x < 0 , if p ∈ (0, +∞), then T ′′′(p) =

−Cp−3J > 0 . While p ∈ (−∞, 0) , then T ′′′(p) = −Cp−3J < 0 .
In the same way, when J = (x − y)(xI)x > 0 , if p ∈ (0, +∞), then T ′′′(p) =

−Cp−3J < 0 . While p ∈ (−∞, 0) , then T ′′′(p) = −Cp−3J > 0 .
2) when p = q , from (1.12) we have

lnHf = T ′(p), (3.5)

and then
∂2 lnHf

∂p2
= T ′′′(p) = −Cp−3J. (3.6)

The result in part 2) can be proved in the same way as part 1), of which details
are omitted.

Combining 1) with 2), we complete the proof of this Theorem immediately. �

Proof of Corollary 1.1 . It proves only the case of J = (x − y)(xI)x < 0 .
1) For p ∈ ( 1

2 , 1).Assume p1, p2 ∈ ( 1
2 , 1) with p1 < p2 , set

α =
p2 − p1

2p2 − 1
, β =

p2 + p1 − 1
2p2 − 1

,

then α , β > 0 , α + β = 1 and αp2 + β(1− p2) = 1− p1 . By Theorem 1, Hf (p, q)
is log-convex in p on (0, +∞) , and then

Hf (p2, 1 − p2) =
(

f (p2)
f (1−p2)

) 1
2p2−1

=
(

f (p2)
f (p1)

) 1
2p2−1

(
f (1−p2)

f (p1)

) −1
2p2−1

= (Hf (p2, p1))
p2−p1
2p2−1 (Hf (1 − p2, p1))

p2+p1−1
2p2−1

= Hα
f (p2, p1)Hβ

f (1 − p2, p1)

> Hf (αp2 + β(1 − p2), p1)
= Hf (1 − p1, p1),

i.e. Hf (p, 1 − p) is strictly increasing in p on ( 1
2 , 1).

If p ∈ (0, 1
2 ), Assume p1, p2 ∈ ( 1

2 , 1) with p1 < p2 , then 1− p2, 1− p1 ∈ ( 1
2 , 1)

and 1 − p2 < 1 − p1 , so there is

Hf (1 − p1, 1 − (1 − p1)) >Hf (1 − p2, 1 − (1 − p2)), (3.7)

i.e. Hf (p2, 1− p2) < Hf (p1, 1− p1) . It shows that Hf (p, 1− p) is strictly decreasing
in p on (0, 1

2 ) .
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2) If p ∈ (1, +∞) and f (x, y) is symmetric with respect to x and y . Set

α =
p2 − p1

p2 − p1 + 1
, β =

1
p2 − p1 + 1

with 1 < p1 < p2, (3.8)

then α , β > 0 , α + β = 1 and

αp2 + β(p1−1) = p2−1, (3.9)
α(p1 − 1) + βp2 = p1. (3.10)

By the log-convexity of Hf (p, q) in p on (0, +∞) , we have⎧⎨
⎩

Hα
f (p2, 1 − p2)Hβ

f (p1 − 1, 1 − p2) > Hf (p2−1, 1 − p2);

Hα
f (p1 − 1,−p1)Hβ

f (p2,−p1) > Hf (p1,−p1).
(3.11)

Notice that

Hf (p1 − 1, 1 − p2) =
(

f (p1−1)
f (1−p2)

) 1
p2+p1−2

= G
2n(p1−1)
p2+p1−2

(
f (1−p1)
f (1−p2)

) 1
p2+p1−2

,

Hf (p2−1, 1 − p2) = Hf (p1,−p1) = Gn,

Hf (p1 − 1,−p1) = G2nH−1
f (p1, 1 − p1),

Hf (p2,−p1) =
(

f (p2)
f (−p1)

) 1
p2+p1 = G

2np1
p2+p1

(
f (p2)
f (p1)

) 1
p2+p1

,

and then (3.11) is equivalent to⎧⎪⎪⎨
⎪⎪⎩

Hα
f (p2, 1 − p2)G

2βn(p1−1)
p2+p1−2

(
f (1−p1)
f (1−p2)

) β
p2+p1−2

> Gn,

G2αnH−α
f (p1, 1 − p1)G

2nβp1
p2+p1

(
f (p2)
f (p1)

) β
p2+p1

> Gn.

(3.12)

Taking the p2+p1−2
β -th , p2+p1

β -th power of the two sides in the above two inequali-
ties, respectively, then⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Hα(p2+p1−2)

f (p2, 1 − p2)G2βn(p1−1)
(

f (1 − p1)
f (1 − p2)

)β

> Gn(p2+p1−2),

G2αn(p2+p1)H−α(p2+p1)
f (p1, 1 − p1)G2nβp1

(
f (p2)
f (p1)

)β

> Gn(p2+p1).

(3.13)

Let the left sides of two inequalities in 3.13 multiply each other, the right sides do
also, we have

Hα(p2+p1−2)
f (p2, 1 − p2)H−α(p2+p1)

f (p1, 1 − p1)
(

f (1−p1)
f (1−p2)

f (p2)
f (p1)

)β
> G2n(p2+p1−1)G−2βn(2p1−1)−2αn(p2+p1),

(3.14)
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in which the left side is equal to

Hα(p2+p1−2)
f (p2, 1 − p2)H−α(p2+p1)

f (p1, 1 − p1)
(

f (1−p1)
f (p1)

f (p2)
f (1−p2)

)β
= Hα(p2+p1−2)+β(2p2−1)

f (p2, 1 − p2)H−α(p2+p1)+β(1−2p1)
f (p1, 1 − p1)

= Hp2+p1−1
f (p2, 1 − p2)H−(p2+p1−1)

f (p1, 1 − p1),

the right side is equal to 1 , because

2n(p2 + p1 − 1) − 2βn(2p1 − 1) − 2αn(p2 + p1)

= 2n(p2 + p1 − 1) − 2n(2p1 − 1) + 2n(p2 + p1)(p2 − p1)
p2 − p1 + 1

= 2n[(p2 + p1 − 1) − (2p1 − 1) + (p2 + p1)(p2 − p1)
p2 − p1 + 1

= 2n

(
(p2 + p1 − 1) − p2

2 − (p2
1 − 2p1 + 1)

p2 − p1 + 1

)
= 0.

Consequently, there is

Hp2+p1−1
f (p2, 1 − p2)H−(p2+p1−1)

f (p1, 1 − p1) > 1

from (3.14), which is equivalent to Hf (p2, 1−p2) > Hf (p1, 1−p1) for p2+p1−1 > 0 ,
i.e. Hf (p, 1 − p) is strictly increasing in p on (1, +∞) if f (x, y) is symmetric with
respect to x and y.

If p ∈ (−∞, 0). Assume p1, p2 ∈ (−∞, 0) with p1 < p2 , then 1 − p2, 1 −
p1 ∈ (1, +∞) with 1−p2 < 1−p1 , so the inequality (3.7) is valid, i.e. Hf (p1, 1−p1) >
Hf (p2, 1−p2) , which shows that Hf (p, 1−p) is strictly decreasing in p on (−∞, 0) .

Combining 1) with 2) , the proof is completed. �

Proof of Corollary 1.2 . It proves only in the case of J = (x − y)(xI)x < 0 .
1) By Lemma 4, lnGf ,t is strictly convexin t on (0, +∞) , and strictly concave

on (−∞, 0) . So when p, q ∈ (0, +∞) , by using the well-known Hermite-Hadamard
inequality, we have

lnGf , p+q
2

<
1

p − q

∫ p

q
lnGf ,tdt <

ln Gf ,p + lnGf ,q

2
, (3.15)

i.e. inequality ( 1.17) holds. When p, q ∈ (−∞, 0) , (3.15) is reversed, and inequality
(1.17) is also reverse with it.

2) If f (x, y) is defined on R+ × R+ and symmetric with respect to x and y
further, there is (2.12), meanwhile T ′(t) is strictly log-convex in t on (0, +∞) and
log-concave on (−∞, 0) . Using Lemma 6, we can understand the second part of
Corollary (2) is valid. �



508 ZHEN-HANG YANG

4. Some conclusions concerning L, A, E and D

By Theorem 1, the log-convexity of Hf depends on the sign of J = (x− y)(xI)x ,
which implies that the judgement for log-convexity comes down to a computation of J
finally. In this section we will combine Theorem 1 with Corollary 1 and 2 to present
some conclusions about log-convexity of Hf by some straightforward computations,
where f (x, y) = L(x, y) , A(x, y) , E(x, y) and D(x, y) .

Case 1. For f (x, y) = L(x, y) =
x − y

ln x − ln y
(x, y > 0, x �= y) , then

HL(a, b; p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q
p

ap − bp

aq − bq

) 1
p−q

, p �= q, pq �= 0,

GL,p(a, b), p = q �= 0,

L
1
p (ap, bp), p �= 0, q = 0,

L
1
q (aq, bq), p = 0, q �= 0,

G(a, b), p = q = 0,

(4.1)

where GL,p(a, b) = E
1
p (ap, bp) := Ep(a, b) , E(a, b) = e−1

(
aa

bb

) 1
a−b

, G(a, b) =
√

ab .

I= (ln f )xy =
1

(x − y)2
− 1

xy(ln x − ln y)2
,

J = (x − y)(xI)x = (x − y)
(
− x + y

(x − y)3
+

2
xy(ln x − ln y)3

)

=
2

xy(x − y)2

(
L3(x, y) − x + y

2
(
√

xy)2
)

.

By the well-known inequality L(x, y) >

(
x + y

2

) 1
3 (√

xy
) 2

3 (see[7]), we get J >

0 .

REMARK 3. That E(a, b) = e−1

(
aa

bb

) 1
a−b

(a, b > 0 with a �= b) is called

exponential mean of unequal positive numbers a and b (see[17]), and is also called
identic mean and denoted by I(a, b) . For avoiding confusion, we adopt our terms and
notations in what follows.

Case 2. For f (x, y) = A(x, y) =
x + y

2
(x, y > 0) , then

HA(a, b; p, q) =

⎧⎨
⎩
(

ap + bp

aq + bq

) 1
p−q

, p �= q,

GA,p(a, b), p = q,

(4.2)
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where GA,p(a, b) = Z
1
p (ap, bp) := Zp(a, b), Z(a, b) = a

a
a+b b

b
a+b .

I = (ln f )xy = − 1
(x + y)2

,

J = (x − y)(xI)x =
(x − y)2

(x + y)3
> 0.

REMARK 4. That Z(a, b) = a
a

a+b b
b

a+b is a mean value of positive numbers a and
b , and is called power-exponential mean temporarily.

Case 3. For f (x, y) = E(x, y) = e−1

(
xx

yy

) 1
x−y

(x, y > 0, x �= y) , then

HE(a, b; p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
E(ap, bp)
E(aq, bq)

) 1
p−q

, p �= q, pq �= 0,

GE,p(a, b), p = q �= 0,

E
1
p (ap, bp), p �= 0, q = 0,

E
1
q (aq, bq), p = 0, q �= 0,

G(a, b), p = q = 0,

(4.3)

where GE,p(a, b) = Y
1
p (ap, bp) := Yp(a, b), Y(a, b) = Ee1−G2

L2 .

I = (ln f )xy =
1

(x − y)3
(2(x − y) − (x + y)(ln x − ln y)) ,

J = (x − y)(xI)x =
−3(x2 − y2) + (x2 + 4xy + y2)(ln x − ln y)

(x − y)3

= −6(ln x − ln y)
(x − y)3

⎛
⎜⎜⎝ x2 − y2

ln x2 − ln y2
−

x2 + y2

2
+ 2xy

3

⎞
⎟⎟⎠ .

By the well-known inequality L(x, y) <

x + y
2

+ 2
√

xy

3
(see[1]), we get J > 0 .

REMARK 5. That Y(a, b) = Ee1−G2

L2 is also a mean value of positive numbers a
and b , and is called exponent-geometric mean temporarily.

Case 4. For f (x, y) = D(x, y) = |x − y|(x, y > 0, x �= y) , then

HD(a, b; p, q) =

⎧⎪⎨
⎪⎩

|a
p − bp

aq − bq
|

1
p−q

, p �= q, pq �= 0,

GD,p(a, b), p = q �= 0,

(4.4)
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where GD,p(a, b) = e
1
p E

1
p (ap, bp) := e

1
p Ep(a, b) .

I = (ln f )xy =
1

(x − y)2
,

J = (x − y)(xI)x = − x + y
(x − y)2

< 0.

Applying Theorem 1, Corollary 1 mechanically and 2, meanwhile note that
L(x, y) , A(x, y) , E(x, y) and D(x, y) is symmetric with respect to x and y , and

f (1, 1) : = lim
x→1

f (x, 1) =
{

1 if f = L, A, E;
0 if f = D,

and then

Hf (0, 1):= lim
p→0

Hf (p, 1 − p) =
{

f (a, b) if f = L, A, E;
do not exist if f = D,

Hf (1, 0):= lim
p→1

Hf (p, 1 − p) =
{

f (a, b) if f = L, A, E;
do not exist if f = D,

we immediately obtain the following conclusions.

Conclusion 1. For f (x, y) = L(x, y) , A(x, y) and E(x, y) ,
1) Hf (p, q) are strictly log-concave with respect to either p or q on (0, +∞) ,

and strictly log-convex on (−∞, 0).
2) Hf (p, 1 − p) are strictly increasing in p on (−∞, 1

2 ) , and strictly decreasing
on ( 1

2 , +∞) .
3) If p + q > 0 , then

Gf , p+q
2

> Hf (p, q) >
√

Gf ,pGf ,q. (4.5)

(4.5) is reversed if p + q < 0.

Conclusion 2. 1) HD(p, q) is strictly log-convex with respect to either p or
q on (0, +∞) , and strictly log-concave on (−∞, 0).

2) HD(p, 1 − p) is strictly decreasing in p on (−∞, 0) or (0, 1
2 ) , and strictly

increasing on ( 1
2 , 1) or (1, +∞) .

3) If p, q > 0 , there is

GD,
p+q

2
< HD(p, q) <

√
GD,pGD,q. (4.6)

(4.6) is reversed if p, q < 0 .

5. The refinements of some classical inequalities and new inequalities

By applying the above conclusions we will present a series of new inequalities
concerning logarithm mean, exponential mean (identic mean), power-exponentialmean
and exponential-geometrymean, meanwhile propose estimations of the upper and lower
bounds of extended mean.



ON THE LOG-CONVEXITY OF TWO-PARAMETER HOMOGENEOUS FUNCTIONS 511

EXAMPLE 1. A group of chains of inequalities for homogeneous mean. By part 2)
of Conclusion 1, Hf (p, 1 − p) is strictly monotone decreasing in p on ( 1

2 , +∞) for
f = L, A and E , so there are

Hf (2,−1) < Hf ( 3
2 ,− 1

2 ) < Hf ( 4
3 ,− 1

3 ) < Hf (1, 0) < Hf ( 4
5 ,

1
5 )

< Hf ( 3
4 ,

1
4 ) < Hf ( 2

3 ,
1
3 ) < Hf ( 3

5 ,
2
5 ) < Hf ( 1

2 ,
1
2 ),

(5.1)

i.e. (
f (a2,b2)

f (a−1,b−1)

) 1
3

<

(
f (a

3
2 ,b

3
2 )

f (a−
1
2 ,b−

1
2 )

) 1
2

<

(
f (a

4
3 ,b

4
3 )

f (a−
1
3 ,b−

1
3 )

) 3
5

< f (a,b)
f (1,1)

<

(
f (a

4
5 ,b

4
5 )

f (a
1
5 ,b

1
5 )

) 5
3

<

(
f (a

3
4 ,b

3
4 )

f (a
1
4 ,b

1
4 )

)2

<

(
f (a

2
3 ,b

2
3 )

f (a
1
3 ,b

1
3 )

)3

<

(
f (a

3
5 ,b

3
5 )

f (a
2
5 ,b

2
5 )

)5

< a

√
af x(

√
a,
√

b)
f (
√

a,
√

b) b

√
bf y(

√
a,
√

b)
f (
√

a,
√

b)

(5.2)

1) For f (x, y) = L(x, y) , notice f (1, 1) = 1 , we get

(
−(b2−a2)

2(b−1−a−1)

) 1
3

<

(
− 1

2 (b
3
2 −a

3
2 )

3
2 (b−

1
2 −a−

1
2 )

) 1
2

<

(
− 1

3 (b
4
3 −a

4
3 )

4
3 (b−

1
3

− a−
1
3 )
) 3

5

< L(a, b) <

(
1
5 (b

4
5 −a

4
5 )

4
5 (b

1
5 −a

1
5 )

) 5
3

<

(
1
4 (b

3
4 −a

3
4 )

3
4 (b

1
4 −a

1
4 )

)2

<

(
1
3 (b

2
3 −a

2
3 )

2
3 (b

1
3 −a

1
3 )

)3

<

(
2
5 (b

3
5 −a

3
5 )

3
5 (b

2
5 −a

2
5 )

)5

< E2(
√

a,
√

b),

(5.3)

i.e (
ab(b+a)

2

) 1
3

<
(√

ab (b+
√

ba+a)
3

) 1
2

<

(
(ab)

1
3

(b
1
3 +a

1
3 )(b

2
3 +a

2
3 )

4

) 3
5

< L(a, b) <

(
(b

1
5 +a

1
5 )(b

2
5 +a

2
5 )

4

) 5
3

<

(
b

1
2 +a

1
4 b

1
4 +a

1
2 )

3

)2

<

(
b

1
3 +a

1
3

2

)3

<

(
2(b

2
5 +b

1
5 a

1
5 +a

2
5 )

3(b
1
5 +a

1
5 )

)5

< E2(
√

a,
√

b).

(5.4)

Inequality’s chain (5.4) may be concisely denoted by

G
2
3 A

1
3 <

√
GH < G

2
5 A

1
5
1
3
A

2
5
2
3

< L < A
1
3
1
5
A

2
3
2
5

< H 1
2

< A 1
3

< H2
2
5
A−1

1
5

< E 1
2
,

(5.5)
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where Ap =
(

ap + bp

2

) 1
p

, Ep = E
1
p (ap, bp) , Hp =

(
ap + (

√
ab)

p
+ bp

3

) 1
p

, H = H1 .

That L < A 1
3

is well-known Tong-Po Ling’s inequality (see [8]), and L < H 1
2
was

found by Gao Jia and Jinde Cao in [5]. Now the chain of inequalities (5.5) not only
presents a new proof of Ling’s and Gao’s inequalities, but also strengthen them. In
addition, that L > G

2
3 A

1
3 established by E. B. Leach and M. C. Sholander (see[7]) is

strengthened to

L > G
2
5 A

1
5
1
3
A

2
5
2
3

>
√

GH.

2) For f (x, y) = A(x, y) , notice f (1, 1) = 1 , likewise we get

G
2
3 A

2
3
2 A− 1

3 < G
1
2 A

3
4
3
2
A
− 1

4
1
2

< G
2
5 A

4
5
4
3
A
− 1

5
1
3

< A < A
4
3
4
5
A
− 1

3
1
5

< A
3
2
3
4
A
− 1

2
1
4

< A2
2
3
A−1

1
3

< A3
3
5
A−2

2
5

< Z 1
2
,

(5.6)

where Ap = (
ap + bp

2
)

1
p , Zp = Z

1
p (ap, bp) .

3) For f (x, y) = E(x, y) , notice f (1, 1) = 1 ,
E(a2, b2)
E(a, b)

= Z(a, b) , likewise we

get

G
2
3 Z

1
3
1 < G

1
2 E

3
4
3
2
E
− 1

4
1
2

< G
2
5 Z

1
5
1
3
Z

2
5
2
3

< E < Z
1
3
1
5
Z

2
3
2
5

< E
3
2
3
4
E
− 1

2
1
4

< Z 1
3

< E3
3
5
E−2

2
5

< Y 1
2
,

(5.7)

where Zp = Z
1
p (ap, bp) , Ep = E

1
p (ap, bp) , Yp = Y

1
p (ap, bp) .

REMARK 6. Being similar to
L(a2, b2)
L(a, b)

= A(a, b) , that
E(a2, b2)
E(a, b)

= Z(a, b) is a

new identical equation for mean. In fact,

E(a, b)Z(a, b) = e−1

(
bb

aa

) 1
b−a

b
b

b+a a
a

b+a

= e−1b
b

b+a + b
b−a a

a
b+a− a

b−a

= e−1b
2b2

b2−a2 a
−2a2

b2−a2 = e−1

(
(b2)b2

(a2)a2

) 1
b2−a2

= E(a2, b2).

REMARK 7. It is easy to verify that

X2
p(a, b) = Xp

2
(a2, b2) (5.8)
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are valid for X = A.H, E, Z . Put

X1 = X, (5.9)

then (5.5)-(5.7) may be rewritten into

E > H2
4
5
A−1

2
5

> A 2
3

> H > A
1
3
2
5
A

2
3
4
5

> L2 =
√

LA (5.10)

Z > A3
6
5
A−2

4
5

> A2
4
3
A−1

2
3

> A
3
2
3
2
A
− 1

2
1
2

> A
4
3
8
5
A
− 1

3
2
5

> A2 (5.11)

Y > E3
6
5
E−2

4
5

> Z 2
3

> E
3
2
3
2
E
− 1

2
1
2

> Z
1
3
2
5
Z

2
3
4
5

> E2 =
√

EZ (5.12)

That E > A 2
3

is well-known Stolarsky’s inequality (see [15]). (5.10) indicates

that H2
4
5
A−1

2
5

can be inserted in between E and A 2
3
, so (5.10) strengthens Stolarsky’s

inequality. It follows that Tong-Po Ling’s and Stolarsky’s inequality are unified into
the same chain of inequalities and refined by (5.5) or (5.10). At the same time they
are generalized to the case of arithmetic mean and exponential mean (identic mean) by
(5.6) or (5.11) and (5.7) or (5.12) in parallel.

REMARK 8. There include some concise or brand-new inequalities in (5.5)-(5.12),
such as

E > A 2
3

> H > L2 (5.13)

from (5.10), as well as Z > A2 from (5.11), i.e.

Z >

√
a2 + b2

2
. (5.14)

While Z > A
3
2
3
2
A
− 1

2
1
2

may be rewritten into Z >
a

3
2 + b

3
2

a
1
2 + b

1
2

= a + b −√
ab , i.e.

Z + G
2

> A. (5.15)

By (5.7) we get

E< Z 1
3

< Y 1
2
. (5.16)

Combining (5.13) with (5.16), we get a new chain of inequalities concerning
L, H, A, E, Z and Y :

L2 < H < A 2
3

< E< Z 1
3

< Y 1
2
. (5.17)

EXAMPLE 2. A reversed chain of inequalities for exponential mean (identic mean).
By part 2) of Conclusion 2, noticed D(1, 1) does not exist, we have

HD(
1
2
,
1
2
) < HD(

3
5
,
2
5
) < HD(

2
3
,
1
3
) < HD(

3
4
,
1
4
) < HD(

4
5
,
1
5
), (5.18)
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i.e.

e2E2(
√

a,
√

b) <

(
b

3
5 − a

3
5

b
2
5 − a

2
5

)5

<

(
b

2
3 − a

2
3

b
1
3 − a

1
3

)3

<

(
b

3
4 − a

3
4

b
1
4 − a

1
4

)2

<

(
b

4
5 − a

4
5

b
1
5 − a

1
5

) 5
3

,

(5.16)

i.e.

e2E2(
√

a,
√

b) <

(
b

2
5 +b

1
5 a

1
5 +a

2
5

b
1
5 +a

1
5

)5

< (b
1
3 + a

1
3 )3

<
(
b

1
2 + a

1
4 b

1
4 + a

1
2 )
)2

<
(
(b

1
5 + a

1
5 )(b

2
5 + a

2
5 )
) 5

3

(5.17)

If replace a, b with a2, b2 , divide the terms by e2 and take the square roots of them in
(5.17), then it may be denoted concisely by

E <

√
486
8e

H2
4
5
A−1

2
5

<

√
8

e
A 2

3
<

3
e
H <

3√32
e

A
1
3
2
5
A

2
3
4
5
, (5.21)

which is a reversed chain of inequalities of five items in left side of (5.10).

REMARK 9. By (5.10) and (5.21), we get

A
1
3
2
5
A

2
3
4
5

< H < A 2
3

< H2
4
5
A−1

2
5

< E

<

√
486
8e

H2
4
5
A−1

2
5

<

√
8

e
A 2

3

<
3
e
H <

3√32
e

A
1
3
2
5
A

2
3
4
5
.

(5.19)

It follows that

1 < E/A
1
3
2
5
A

2
3
4
5

<
3√32/e ≈ 1.16794, (5.23)

1 < E/H < 3/e ≈ 1.10364, (5.24)

1 < E/A 2
3

<
√

8/e ≈ 1.04052, (5.25)

1 < E/H2
4
5
A−1

2
5

<
√

486/8e ≈ 1.01376. (5.26)

Inequalities (5.23)-(5.26) indicate that regardless the size of positive numbers a

and b , the relative error estimating exponential mean E by A
1
3
2
5
A

2
3
4
5
, H , A 2

3
and H2

4
5
A−1

2
5

are approximate to 17%, 10% , 4% and 1% respectively.

EXAMPLE 3. Estimations of the lower and upper bounds of the extended mean.
From part 3) of Conclusion 2, and notice

GD,p = e
1
p E

1
p (xp, yp) =e

1
p Ep, (5.27)
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we have

e
2

p+q E p+q
2

< HD(p, q) <

√
e

1
p Epe

1
q Eq, if p, q > 0 and p �= q. (5.28)

If notice further

HD(p, q) = |b
p − ap

bq − aq
|

1
p−q

=
(

p
q

) 1
p−q
(

q
p

bp − ap

bq − aq

) 1
p−q

= e
1

L(p,q) HL(p, q),

(5.29)

then (5.28) can be rewritten into

e
1

A(p,q) − 1
L(p,q) Ep+q

2
< HL(p, q)

< e
1

A−1(p,q))− 1
L(p,q)

√
EpEq,

(5.30)

where A(p, q) =
p + q

2
, A−1 (p, q) =

2pq
p + q

, L(p, q) =
p − q

ln(p/q)
, p, q > 0 with

p �= q .
Combining (4.5) with (5.30), we can get two other estimated expressions of the

extended mean HL(p, q) .

e
1

A(p,q)− 1
L(p,q) Ep+q

2
< HL(p, q) < Ep+q

2
, (5.31)

√
EpEq < HL(p, q)

< e
1

A−1(p,q)− 1
L(p,q)

√
EpEq,

(5.32)

where p, q > 0 with p �= q . Inequalities (5.31), (5.32) are reversed if p, q < 0 with
p �= q .

Lastly, we can find out some new inequalities by using the theorem and corollaries
in this paper. No longer discuss it here.

RE F ER EN C ES

[1] B. C. CARLSON, The logarithmic mean, Amer. Math. Monthly, 79, (1972), 615–618.
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